@,

BiolVled Central

BIVIC Bioinformatics

Methodology article
A comparison of common programming languages used in

bioinformatics
Mathieu Fourment* and Michael R Gillings

Address: Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia

Email: Mathieu Fourment* - m.fourment@gmail.com; Michael R Gillings - mgilling@rna.bio.mq.edu.au
* Corresponding author

Received: 4 October 2007
Accepted: 5 February 2008

Published: 5 February 2008
BMC Bioinformatics 2008, 9:82 doi:10.1186/1471-2105-9-82
This article is available from: http://www.biomedcentral.com/1471-2105/9/82

© 2008 Fourment and Gillings; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The performance of different programming languages has previously been
benchmarked using abstract mathematical algorithms, but not using standard bioinformatics
algorithms. We compared the memory usage and speed of execution for three standard
bioinformatics methods, implemented in programs using one of six different programming
languages. Programs for the Sellers algorithm, the Neighbor-Joining tree construction algorithm
and an algorithm for parsing BLAST file outputs were implemented in C, C++, C#, Java, Perl and
Python.

Results: Implementations in C and C++ were fastest and used the least memory. Programs in
these languages generally contained more lines of code. Java and C# appeared to be a compromise
between the flexibility of Perl and Python and the fast performance of C and C++. The relative
performance of the tested languages did not change from Windows to Linux and no clear evidence
of a faster operating system was found.

Source code and additional information are available from http://www.bioinformatics.org/
benchmark/

Conclusion: This benchmark provides a comparison of six commonly used programming
languages under two different operating systems. The overall comparison shows that a developer
should choose an appropriate language carefully, taking into account the performance expected and
the library availability for each language.

Background

Bioinformatic analyses involve a range of tasks and proc-
esses. Diverse programs have been written for various bio-
informatics applications using every available language.
Because of the size of bioinformatics datasets, computa-
tion time is not trivial, and efficiencies in computational
speed are desirable. Comparisons of the algorithm accu-
racy of different programs that undertake similar tasks
have been published [1-7] allowing assessment of the best

algorithms to use for specific tasks. However, it is possible
that the same program, written in different languages, or
running under different operating systems, may exhibit
significant differences in speed and efficiency. There is, at
present, little direct data on the underlying speed and effi-
ciency of equivalent algorithms written in different lan-
guages. While languages themselves have been
benchmarked, such comparisons have not been done
using algorithms that are relevant to bioinformatics [8].

Page 1 of 9

(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/82
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18251993
http://www.bioinformatics.org/benchmark/
http://www.bioinformatics.org/benchmark/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:82

A typical bioinformatics program reads FASTA files, holds
the DNA sequences in memory, performs different com-
puting tasks on the sequences, and finally writes the
results to a file. Another common task in bioinformatics is
text mining or text parsing. Large amounts of data can be
generated in different formats. Because file formats can be
different, linking programs in a pipeline is difficult, hence
scripts are written to act as interfaces between programs
performing the sequential parts of an analysis. Scripts are
also used to extract information from large data files, thus
enhancing the presentation of results. These quick scripts
are usually implemented in Perl or Python. Consequently,
any bioinformatics procedure has a number of areas
where programming might be improved, these being: the
space required to temporarily store data, the speed of
computation, linkage between programs, and presenta-
tion of analyses.

In this paper we examined three commonly used tasks in
biology, the Sellers algorithm [9] the Neighbor-Joining NJ
algorithm [10] and a program parsing the output of
BLAST [11]. In each case we tested the programs using dif-
ferent languages. This benchmark was conducted on both
Linux and Windows, since the computer used had a dual
boot. There were several reasons for this benchmarking
exercise. We specifically wanted to determine if C would
be faster than Java for performing recombination detec-
tion, which is an inherently difficult computational exer-
cise. We also wanted to examine the memory
requirements of each program/language combination,
since although memory capacity increases constantly and
hardware gets cheaper, the large datasets in bioinformat-
ics analyses can be a problem for desktop computers. We
also wanted to compare a script language, such as Perl,
with the compiled languages Java and C. To complete the
comparison, "rival" languages were also included. These
included C++, C# and Python. The languages selected for
this study were chosen on the basis that they are the most
popular and frequently used for biological applications.

Python and Perl are often called script languages and
when executed, are compiled in an intermediate represen-
tation without creating an intermediate file (syntax tree in
Perl and byte code in Python) and then interpreted. Both
languages use automatic memory management and have
large free libraries. They are suitable for web scripting (e.g.
CGI), parsing and pipeline implementation such as Inter-
ProScan [12].

C and C++ are fully compiled languages, suitable for sys-
tem-intensive tasks.

Java and C# are semi-compiled languages using automatic
memory management. A Java program is compiled in an
intermediate-level code or bytecode then it is run by either

http://www.biomedcentral.com/1471-2105/9/82

an interpreter or compiler at runtime, in this case, the Java
Virtual Machine (JVM). In C# the intermediate-level code
is called Microsoft Intermediate Language and is run on
the .NET Common Language Runtime engine.

Volunteer projects have produced libraries or modules for
biologists. The most popular open source projects, which
are incorporated in the Open Bioinformatics Foundation,
are BioPerl, BioPython and BioJava [13].

Results

The languages we investigated can be divided into 3
groups: The script group of Perl and Python; the semi-
compiled group of Java and C#; and the compiled group
of C and C++.

Firstly we compared languages within groups, then we
compared the groups to each other (Fig. 1, 2, 3, 4), and
finally we compared speed performance between Win-
dows and Linux. In this paper we will refer to ease of cod-
ing as the number of coding lines needed to write a
program, taking into account the availability of libraries,
which is a factor in the number of coding lines needed for
compiling a program.

Perl versus Python

Perl clearly outperformed Python for I/O operations. Perl
was three times as fast as Python when reading a FASTA
file and needed half of the space to store the sequences in

50

45 -
40 | @ Linux

m Window s

35 -
30 |

25 4
20 +
15 4
10 4

Time in seconds

C Ct++ C# Java Perl
Language

Python

Figure |

Speed comparison of the global alignment program.
Speed comparison of the global alignment algorithm using a
gap penalty of 10 implemented in C, C++, C#, Java, Perl and
Python. The programs were run on Linux and Windows plat-
forms. Two DNA sequences of 3216 bp and 3217 bp were
used.

Page 2 of 9

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:82

14

12 4

m Linux
10 A .
B window s

Time in seconds

| I
0 ‘ . ‘

C C++ C# Java Perl
Language

Python

Figure 2

Speed comparison of the Neighbor-Joining program.
Speed comparison of the Neighbor-Joining algorithm using
the Jukes-Cantor evolutionary model implemented in C,
C++, C#, Java, Perl and Python. The programs were run on
Linux and Windows platforms. The input file was an align-
ment of 76 DNA sequences.

memory (Fig 4). From the results of the global alignment
and NJ programs Python appeared to have better charac-
ter string manipulation capabilities than Perl. Even
though the NJ program required reading a file, where
Python did not perform well compared to Perl (Fig 2), the

45

40
o Linux

w
a1
L

B Windows| pom

Time in minutes
N n w
o [62] o

—_
(3]
L

—_
o
L

; LLEL

0 i

C C++ C# Java Perl
Language

Python

Figure 3

Speed comparison of the BLAST parsing program.
Speed comparison of the BLAST parsing program imple-
mented in C, C++, C#, Java, Perl and Python. The programs
were run on Linux and Windows platforms. The input file
was a 9.8 Gb file from a BLASTP run.

http://www.biomedcentral.com/1471-2105/9/82

300000

250000 = Alignment

m NJ2

200000 -

150000

Memory in kB

100000

50000 -

oLk

Java Perl Python
Language

Figure 4

Memory usage comparison of the Neighbor-Joining
and global alignment programs. Memory usage compar-
ison for the Neighbor-Joining and global alignment programs
implemented in C, C++, C#, Java, Perl and Python. The pro-
grams were run on a Linux platform.

computation of the dissimilarity matrix was actually the
most discriminating task, since more than 90% of
processing time was taken up by this step for every lan-
guage except C, where it took up 75% of processing time.

Python was the worst performer for parsing a BLAST file
(Fig 3), taking more than 38 minutes to process the file
compared to Perl, which took only 7.28 minutes. This dif-
ference did not arise from any inability of Python to han-
dle large files, since it took only 3.2 minutes to read the
file without processing the lines. Perl accomplished the
same task in only 1.4 minutes.

Perl emphasizes support for common application-ori-
ented tasks, by having built-in regular expressions, file
scanning and report generating features. Python empha-
sizes support for common programming methodologies
such as data structure design and object-oriented pro-
gramming.

Java versus C#

C# appeared to require less memory than Java for holding
strings in memory, as demonstrated when reading DNA
sequences from a file (Fig 4). C# also needed less time to
read this type of file. Interestingly, Java was slightly faster
in the global alignment program (Fig 1) but much slower
in the NJ program (Fig 2). Java regular expression imple-
mentation appeared to outperform C# (Fig 3). This differ-
ence did not arise through any inability of C# to handle
large files, since it read these files faster than Java did. Java

Page 3 of 9

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:82

needed 3.2 minutes whereas C# took only 2.8 minutes to
read the same file.

C versus C++

The performance of C and C++ was very similar (Fig 1, 2,
3, 4). This is perhaps not surprising since C++ is an exten-
sion of C. When a C program was compiled with the C++
compiler we obtained near-identical results, but when
C++ standard libraries (ie. character strings) were used,
the performances tended to slightly deteriorate. It is
important to note that tokenization was twice as fast as
regular expressions for parsing the same BLAST file, but it
took more time to write the program using tokens.

Group versus group

The global alignment example demonstrated that the
semi-compiled languages (Java and C#) were nearly as
fast as the compiled group (C and C++), whereas the inter-
preted languages (Perl and Python) were sixty-fold slower
(Fig 1). In the NJ program, the performance of C# was
similar to C and C++, while Java took significantly more
time (Fig 2).

The biggest drawback for semi-compiled languages is their
memory usage, since they required about 20 times more
memory than C and 3 times more memory than Perl (Fig
4).

Java and C# appeared to be a compromise between the
speed of C/C++ and the ease of coding of Perl/Python.

Surprisingly, Java performed better than Perl during the
regular expression benchmark.

In Java it is possible to embed C code to enhance the effi-
ciency of a program using Java Native Interface (JNI)
extensions. The equivalent in Perl would be the eXternal
Subroutine (XS) extension. For example, the core of the NJ
program was written in Perl, but when the subroutine cal-
culating a pairwise comparison was written in C, it sped
up the program from 11.8 seconds to 0.29 seconds. NI
improved this speed to a lesser extent, from 2.58 seconds
to 0.71 seconds. Any loss of portability was compensated
for by the gain in performance, since there was no need to
rewrite the entire program.

Windows versus Linux

The relative performance of the tested languages did not
change on Windows but the overall performance changed
depending on the program compared. Only C# and
Python appeared consistently faster in every program on
Windows. In the global alignment program all the imple-
mentations performed better in the Windows environ-
ment (Fig 1). In the NJ (Fig 2) and the BLAST parser (Fig
3), C and C++ were both slower on Windows whereas on

http://www.biomedcentral.com/1471-2105/9/82

Windows, Java and Perl were faster in the NJ example (Fig
2) but slower in the BLAST parser example.

The comparison of Linux and Windows has to be carefully
interpreted, since the compiler implementations are dif-
ferent, as well as the operating system running them. In
the end, speed and memory usage are the critical factors,
since the user is looking for performance in the programs,
not more generally in the OS or compilers.

Case study: BLAST server

A fast and memory efficient program can make a signifi-
cant difference when running on a public server such as
BLAST, which is queried millions of time a day. The obvi-
ous choice for such a computer intensive program was to
use C with Perl CGI for the web interface. If we consider
that Perl was nearly 60 times slower than C in the global
alignment benchmark and that a query sequence of 3500
nucleotides against the non-redundant database took
roughly 10 seconds (including the transfer over the web),
then if the query is submitted a million times during the
day, the total computation time would have increased 60
fold, taking considerably more server time. The same
observation would apply for the memory usage. After
choosing the appropriate programming language, it is
also important to keep improving the base algorithm.
New algorithms for analyzing phylogenetic relationships
have reduced computing time from weeks to days, or even
hours [14].

Discussion

All the programs examined here were written by the same
programmer with different levels of experience in Java,
Perl and C++. The other languages were implemented
while learning them. Even though the semantics of these
languages is similar, since C influenced C++, C#, Java, Perl
and Python directly or indirectly, the philosophy of some
of the languages is different and programs should be
implemented according to the language paradigm. For
example, Perl programmers favor hash tables to arrays,
coupled with a loop which is more widely used in C. It is
also important to keep in mind that the hash function can
be costly when adding a new value and the memory allo-
cated would be larger than an array containing the same
number of elements. The advantage of a hash table is the
speed in retrieving some data, but when the programmer
needs to examine sequentially all the values in the hash
table, then a hash table should be avoided because of the
extra cost occurring when adding the key-value pair. In the
Perl NJ algorithm an implementation using an array to
store the sequences appeared to be faster and more mem-
ory efficient than a program using a hash table. Hence no
hashtable was used in this benchmark. There is an impor-
tant tradeoff between performance and convenience. Perl
and Python allow reading and loading a file in memory in

Page 4 of 9

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:82

one statement. While this approach is convenient com-
pared to reading and processing a file line by line, the
operating system could start swapping memory out, thus
slowing everything down.

Object creation, garbage collection and memory recycling
are costly in terms of CPU and memory usage, hence some
precautions should be taken when creating objects and
the number of objects should be reduced as much as pos-
sible. To prevent memory leaks or heavy applications,
objects should also be reused when possible and immuta-
ble objects such as the String object in Java should be
avoided especially when temporary objects are created in
frequently used routines. C# and Java have a higher mem-
ory-size penalty for objects than other object oriented lan-
guages such as C++ due to their ability to use reflection.
Reflection is a powerful tool that contributes to the flexi-
bility of these two languages. However this feature should
only be used when needed, since reflection method calls
have a substantial performance overhead, make the code
harder to understand and errors are found at runtime
instead of compile-time.

The way objects are accessed and stored in memory influ-
ences the performance of each language. C++, C# and Java
store objects as a block of data and access them via con-
stant offsets, whereas objects in Python are implemented
as hash tables. There are several ways to create objects in
Perl. Different data structures can be used, but most pro-
grammers use hashes, even though arrays are faster, pre-
vent attribute collisions and take less memory.

It is worth noting that the Perl implementation of the NJ
algorithm was substantially improved by converting each
sequence to an array instead of using the substr function
on the string of characters for computing the similarity
matrix. Although the program was 10% faster, the mem-
ory footprint showed a ten-fold increase.

Expressiveness

The number of lines in a program varies from one pro-
grammer to another, and also on their willingness to
shorten the code to the detriment of readability. It is
important to emphasize that it is hardly possible to find a
correlation between expressiveness and performance.
Nevertheless, a noticeable difference was observed (Fig.
5), especially with regular expressions. In Perl, a unique
statement can be used to detect a pattern and the captured
pattern is retrieved with the special variable $1, whereas in
Java the programmer has to instantiate a Pattern object
which is a compiled representation of the regular expres-
sion, then create a Matcher object which performs match
operations on a character sequence by interpreting the
pattern object. The following examples illustrate the
retrieval of a GI number from a FASTA file:

http://www.biomedcentral.com/1471-2105/9/82

300
= Alignment
250 - N\
O Parser
2200 -
©
5 150 -
o
5
= 100 -
50
0 i
Java Perl Python
Language
Figure 5

Number of lines for each program. Number of lines for
the global alignment, BLAST parser and Neighbor-Joining
programs implemented in C, C++, C#, Java, Perl and Python.

Perl:

print $1 if($string =~/*>gi\ |(\ d{3.})/);

Java:

Pattern p = Pattern.compile(">gi\ |(\ d{3,})");
Matcher m = p.matcher(string);

if(m.find()) System.out.print(m.group(1));

Language philosophies often explain differences in the
relative expressiveness and readability of languages. For
example, the philosophy of Python is to take the clearest,
simplest and most straightforward approach to writing a
program, and to accept the resulting performance penalty.
Whereas Perl gives more freedom to the programmer
resulting, in some cases, in programs that are unreadable
for non Perl programmers.

Factors such as performance and memory usage are
important, but need not be the sole determinant when
choosing a language. Since time management is also an
important factor, a language can be chosen for its library,
future scalability, active community and interface to other
languages.

While it is hard to define a learning curve for each lan-
guage, advantages and disadvantages of each language can
be found. Memory management such as memory alloca-

Page 5 of 9

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:82

tion makes tasks easier for Java, C#, Perl, Python and Perl
programmers, even though memory usage should always
be under scrutiny. The use of pointers in C and C++ can
be overwhelming for a learner, and it may take some time
to master their use. Python is designed to be a highly read-
able language, frequently using English keywords,
whereas the five other languages use punctuation.

Platform independence can be a factor for choosing a lan-
guage and can also facilitate its learning. Java uses a virtual
machine to run on different operating systems and since
Perl and Python are stored in a text file and not in a binary
file these scripts can be run on any computer having the
appropriate interpreter.

The standard library diversity and size of Java, Python and
C# are a major advantage compared to the other lan-
guages,. including sets of classes to create graphical inter-
faces, data structures (vectors, hash tables, stacks, queues),
regular expression, database access and networking.

Although the Perl standard library appears smaller com-
pared to Java, Python and C#'s, it benefits from a large
community of programmers creating modules gathered
by the CPAN network [15].

C has a very limited standard library supporting input and
output streams, memory allocation, mathematics, charac-
ter strings, and time values. The C++ library contains the
C library as well as a class to manipulate string of charac-
ters and the Standard Template Library containing con-
tainers or data structures such as algorithms, an improved
String library and input/output stream libraries.

As shown previously in the global alignment example,
Java and Perl can communicate with a program written in
C, speeding up the program using JNI and XS respectively.
For example, if a computer intensive command based pro-
gram written in C needs a graphical interface, an easy solu-
tion would be to use the Swing library and the JNI
framework instead of rewriting the whole program in
Java. The possibility of a language to language interface is
useful when some code is already written in one of them.

As well as C, the JNI framework allows Java to interact
with C++ and Fortran. The downside of this approach is
the loss of portability. Java can also interact with Python
using Jython, which is an implementation of Python in
Java.

Some bioinformatics tasks, such as loading a FASTA file or
parsing a BLAST file, are so frequently used that it makes
sense to reuse bits of code by creating libraries or mod-
ules. Many programmers produce modules for the bioin-
formatics community and make them available through

http://www.biomedcentral.com/1471-2105/9/82

their websites. The most widely used libraries are BioPerl,
BioPython and BioJava. These Open Source projects
belong to the Open Bioinformatics Foundation and they
provide toolkits with multiple functionality that make it
easier to create customized pipelines or analysis.

Unfortunately libraries with this level of organization and
diversity are not available for C, C++ and C# even though
some small libraries are available independently [16,17]

In this paper we focused on the performance of languages,
not on the performance of the algorithm implementa-
tions. For example the speed of the alignment program
could be improved by using a one-dimension array of size
n x m instead of a 2-dimensional matrix of size n x m.
This approach would speed up the memory allocation,
but this was not the goal of this benchmark.

In this paper, to find the fastest implementations we used
profiling tools included in libraries or using compilation/
execution options. Profiling provides important informa-
tion about applications, such as memory usage and the
fraction of time spent in each function. By using profiling
and a trial-and-error approach programs were signifi-
cantly improved. We used the Devel::DProf library in Perl,
the Xprof option in Java, the cProfile module in Python,
the default profiler in C# using -profile = default and the -
pg compiler option coupled with the gprof program in C
and C++.

Conclusion

As expected, C was the best performer in this benchmark,
in terms of both speed and memory usage. But to achieve
such performances generally requires more code because
of the reduced standard library. This benchmark is only a
preliminary test involving a limited number of analysis
types. Comparisons using different programs may change
the relative performance of the languages. Graphic inter-
faces are very important in biology, hence it would be
interesting to compare the libraries available.

The best choice of language for a task would be according
to the original philosophy, keeping in mind that Java is
portable web oriented language, Perl is a powerful script
language, Python is an easily coded language and C and
C++ are efficient languages used in operating systems and
drivers.

Performances can also vary depending on the compiler
and version used. Sun is constantly improving the Java
compiler and interpreter and other JVM implementations
are also available such as Kaffe [18] and IBM's.

The primary motivation for this benchmark was to com-

pare a recombination detection program in Java and C.

Page 6 of 9

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:82

The recombination program written in Java ran in 11 min-
utes and the new version in C ran in 9 minutes with the
same dataset and the same parameters. This test involved
some hundreds of sequences and a single gene target.
Given the rapid improvements in high throughput
sequencing technologies, it is likely that tests involving
orders of magnitude more sequences will be conducted in
the future. Savings in computing time will be essential for
such analyses to be efficient.

Methods

Benchmark design

During the benchmarking process, unnecessary services
were disabled. Each program was run three times and the
minimum time and memory usage were recorded.

C and C++ programs were optimized with the flag -O3.
No multi-threading was used explicitly to write the pro-
grams. Compilers or interpreters are described in Table 1.

The speed of processing was timed using the GNU pro-
gram 'time' which is present in most of the Linux distribu-
tions. In this paper we present only the user time from the
output. Profiling was also used to inspect the time repar-
tition and memory allocation. On Windows, a simple Perl
script launching the programs with the option -Dprof was
used to time all processes. The memory usage was meas-
ured on Linux using the command "grep Vm/proc/pid/
status", only for the NJ and global alignment programs
since parsing does not use much memory.

All the programs were run on the following machine with
a dual boot Linux/Windows:

Linux: Fedora core 7, kernel 2.6.21-1.3228

Windows: Windows XP professional, Version 2002, serv-
ice pack 2

Intel(R) Core(TM)2 CPU 6400 @ 2.13 GHz

4 GB DDR2 memory

http://www.biomedcentral.com/1471-2105/9/82

250 GB hard drive

Algorithms

Sellers algorithm [9]

The Sellers algorithm is a simple global sequence align-
ment method using a dynamic programming approach
with a gap penalty. Scores for aligned characters are com-
puted (see equation 1) and stored in a similarity matrix F
with a linear gap penalty d, and where s(j, j) is the substi-
tution score for character i and j.

F(i-1,j)+d
F(i,j)=max{ F(i—1,j—1) + s(i, j) (1)
F(i,j—1)+d

In this example a two-dimensional matrix is used to store
the highest scores with the top left corner representing the
beginning of the sequences and the bottom right corner
representing the end of the sequences, which is the start-
ing point of the alignment. For sequences of sizes n and
m, the running time of the algorithm is O(nm) and the
amount of memory used is in O(nm). This program
requires reading sequences from FASTA files, initializing a
two-dimensional matrix, character comparison and char-
acter string concatenation. A sub-sequence of 3216 nucle-
otides from the L segment of a Hantavirus genome
[GeneBank:AJ005637] was used and then deletions, inser-
tions and SNPs were introduced manually along the
sequence at random to generate a second sequence of
3217 nucleotides. The sequences were not read from a file
but were hard coded to avoid input streams, and thus
focus entirely on memory allocation and character string
manipulations.

Neighbor-Joining method [10]

NJ is a distance-based algorithm for constructing phyloge-
netic trees and is probably the most widely used distance
based method. The method uses the minimum evolution-
ary criterion and starts by assuming a bush-like tree that
has no internal branches. Then it combines node i and
node j that minimizes equation 2 where r is the current
number of nodes and d(i, j) is the distance between i and
j. At each stage in the process two terminal nodes are

Table I: Language list with respective compiler or interpreter name and version

Linux Windows
Language Compiler/interpreter version Compiler/interpreter version
C GNU gcc 4.1.1 gce 342
C++ GNU g++ 4.1.1 gt+ 342
CH gmes/mono 1.1.17.1 .NET csc 2.0.50727
Java Sun JDK javac/java 1.5.0_09 Sun DK javac/java 1.5.0_12
Perl Perl 5.88 Active state perl 5.88
Python Python 244 python 2.5.1

Page 7 of 9

(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ005637

BMC Bioinformatics 2008, 9:82

replaced by one new node. This process is repeated until
two nodes are separated by one branch.

Qi j) = (r = 2)d(i, j) = Y d(i, k)= Y d(jk) (2)
k=1 k=1

The running time of the algorithm is O(n3) and the

amount of memory used is in O(n2).

This program requires reading sequences from FASTA
files, initializing a two-dimensional dissimilarity matrix
from a pairwise comparison of the DNA sequences, and
finally performing the clustering algorithm. Memory allo-
cation, input and output streams, character string manip-
ulation and tree building are the main components of this
program. The nodes of the tree were implemented as
structures in C and C++, as objects in C#, Java and Python
and anonymous hash tables in Perl.

The most computer intensive component of this program
is the pairwise comparison used to compute the dissimi-
larity matrix. In the test example 76 Hantavirus segment L
sequences were used with an overall alignment length of
6580 nucleotides.

Basic Local Alignment Search Tool parsing BLAST [11]
BLAST is a tool calculating sequence similarities between
a query sequence and sequences lodged in a specially for-
matted database. It uses a lookup table to match words
and a local alignment method to extend them. In the out-
put one can find the query aligned to a similar sequence
and statistics about the significance of the alignment.

BLAST results can be as large as several gigabytes and a
program is usually needed to parse the interesting parts or
to feed another program. For example, numerous Gene
Ontology [19] programs use BLAST outputs to assign GO
terms to unknown sequences.

Tokenization can be used to parse BLAST result files but
this can be tedious and requires a good knowledge of the
structure of the input. Regular expressions make this kind
of task easier, with the only inconvenience being potential
loss in speed. The program parses and prints in a one line
comma separated file, the name of the sequence, contain-
ing the gene identifier, bit score, identity percentage, e-
value and positive matches. In the example we tested, the
output was redirect to/dev/null on Linux and NUL on
Windows.

The test program made use of input streams and regular
expressions. A program using tokenization was written in
C as a control to benchmark regular expressions.

http://www.biomedcentral.com/1471-2105/9/82

A 9.8 Gb file from a BLASTP search with a Caenorhabditis
elegans sequence (accession number
[GeneBank:ABD75716] was used in this program. Our
program did not aim to compare the regular expression
performances of each language but the overall speed of
such a task. Since the regular expressions used are quite
simple and are applied to relatively short strings of char-
acters (a line in a BLAST file is usually not longer than 80
characters) the program will spend more time reading the
file than actually parsing it.

To read such a large file and overcome the 2 GB file size
limitation the flags "-D LARGEFILE_SOURCE -
D_FILE_OFFESET_BITS = 64" were used when compiling
the C and C++ source code.

The Perl Compatible Regular Expression [20] library was
used for C and C++ since their standard library does not
implement built-in regular expressions.

Abbreviations

BLAST, Basic Local Alignment Search Tool; CGI, Common
Gateway Interface; CPAN, Comprehensive Perl Archive
Network; CPU, Central Processing Unit; DNA, Deoxyribo
Nucleic Acid; FASTA, FAST-All; GI, Geninfo Identifier;
GO, Gene Ontology; 1/O, input and output; JNI, Java
Native Interface; JVM, Java Virtual Machine; NJ, Neighbor
Joining; SNP, Single Nucleotide Polymorphism; XS, eXter-
nal Subroutine.

Authors' contributions

MF participated in the design of the study and in the
implementation of the programs. MRG participated in the
design and coordination of the study and helped to draft
the manuscript. All authors read and approved the final
manuscript.

Acknowledgements
The work in this paper was supported by Macquarie University through an
IMURS PhD scholarship granted to MF.

References

I. Raghava GPS, Searle SM], Audley PC, Barber |D, Barton GJ:
OXBench: A benchmark for evaluation of protein multiple
sequence alignment accuracy. BMC Bioinformatics 2003, 4:47.

2. Posada D: Evaluation for detecting recombination from DNA
sequences: Empirical data. Mol Bio Evol 2002, 19(5):708-717.

3. McGuffin LJ: Benchmarking consensus model quality assess-
ment for protein fold recognition. BMC Bioinformatics 2007,
8:345.

4. lIrizarry RA, Wu Z, Jaffee HA: Comparison of Affymetrix Gene-
Chip expression measures. Bioinformatics 2006, 22:789-794.

5. Kuhner MK, Felsenstein J: A simulation comparison of phylog-
eny algorithms under equal and unequal evolutionary rates.
Mol Biol Evol 1994, 11:459-468.

6. Clegg AB, Shepherd AJ: Benchmarking natural-language pars-
ers for biological applications using dependency graphs. BMC
Bioinformatics 2007, 8:24.

7. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov
AV, Frith MC, Fu Y, Kent WJ, Makeev V], Mironov AA, Noble WS,
Pavesi G, Pesole G, Regnier M, Simonis N, Sinha S, Thijs G, van Helden

Page 8 of 9

(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=ABD75716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14552658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14552658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14552658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids= 11961104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids= 11961104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17877795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17877795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16410320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16410320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8015439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8015439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17254351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17254351

BMC Bioinformatics 2008, 9:82

17.
18.
19.

20.

J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z: Assessing
computational tools for the discovery of transcription factor
binding sites. Nat Biotechnol 23:137-144.

Prechelt L: An empirical comparison of C, C++, Java, Perl,
Python, Rexx and Tcl. IEEE Computer 2000, 33:23-29.

Sellers PH: On the theory and computation of evolutionary
distances. SIAM | Appl Math 26:787-793.

Saitou N, Nei M: The neighbor joining method: A new method
for constructing phylogenetic trees. Mol Biol Evol 1987,
4:406-42.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic Local
Alignment Search Tool. | Mol Biol 1990, 215:403-410.

Zdobnov EM, Apweiler R: InterProScan — an integration plat-
form for the signature-recognition methods in InterPro. Bio-
informatics 2001, 17:847-848.

Mangalam H: The Bio* toolkits — a brief overview. Brief Bioinform
2002, 3:296-302.

Guindon S, Gascuel O: PhyML - A simple, fast, and accurate
algorithm to estimate large phylogenies by maximum likeli-
hood. Systematic Biology 2003, 52:696-704.

Comprehensive Perl Archive Network (CPAN) [htep://
WWw.cpan.org

Butt D, Roger AJ, Blouin C: libcov: A C++ bioinformatic library
to manipulate protein structures, sequence alignments and
phylogeny. BMC Bioinformatics 2005, 6:138.

BioC++ [http://biocpp.sourceforge.net]

Kaffe [http://www.kaffe.org]

Conesa A, Gotz S, Garcia-Gémez JM, Terol J, Taléon M, Robles M:
Blast2GO: A universal tool for annotation, visualization and
analysis in functional genomics research. Bioinformatics 2005,
21:3674-3676.

Perl Compatible Regular Expression [http://www.pcre.org]

http://www.biomedcentral.com/1471-2105/9/82

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 9 of 9

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530136
http://www.cpan.org
http://www.cpan.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15938750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15938750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15938750
http://biocpp.sourceforge.net
http://www.kaffe.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16081474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16081474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16081474
http://www.pcre.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Perl versus Python
	Java versus C#
	C versus C++
	Group versus group
	Windows versus Linux
	Case study: BLAST server

	Discussion
	Expressiveness

	Conclusion
	Methods
	Benchmark design

	Algorithms
	Sellers algorithm
	Neighbor-Joining method
	Basic Local Alignment Search Tool parsing BLAST

	Abbreviations
	Authors' contributions
	Acknowledgements
	References

