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Abstract

Background: The rapid growth of protein-protein interaction (PPI) data has led to the emergence
of PPl network analysis. Despite advances in high-throughput techniques, the interactomes of
several model organisms are still far from complete. Therefore, it is desirable to expand these
interactomes with ortholog-based and other methods.

Results: Orthologous pairs of 18 eukaryotic species were expanded and merged with
experimental PPI datasets. The contributions of interologs from each species were evaluated. The
expanded orthologous pairs enable the inference of interologs for various species. For example,
more than 32,000 human interactions can be predicted. The same dataset has also been applied to
the prediction of host-pathogen interactions. PPIs between P. falciparum calmodulin and several H.
sapiens proteins are predicted, and these interactions may contribute to the maintenance of host
cell Ca?* concentration. Using comparisons with Bayesian and structure-based approaches,
interactions between putative HSP40 homologs of P. falciparum and the H. sapiens TNF receptor
associated factor family are revealed, suggesting a role for these interactions in the interference of
the human immune response to P. falciparum.

Conclusion: The PPl datasets are available from POINT http://point.bioinformatics.tw/ and
POINeT http://poinet.bicinformatics.tw/. Further development of methods to predict host-
pathogen interactions should incorporate multiple approaches in order to improve sensitivity, and
should facilitate the identification of targets for drug discovery and design.
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Background

Many genome-wide high throughput yeast two-hybrid
analyses have generated PPI datasets for various model
organisms. Moreover, systematic manual curation of
human protein interactomes, including BioGRID [1],
MIPS [2], IntAct [3], PINdb [4], DIP [5], HPRD [6] and
MINT [7], has also generated significant, but far from
complete, datasets. Therefore, in addition to an empirical
screening of the interacting proteins of a given target, a
comparative strategy should further facilitate functional
annotation of uncharacterized proteins.

Using our knowledge of conserved interactions in other
organisms (or interologs) [8] to elucidate the interacting
networks of a particular target protein, we have previously
established a publicly accessible and functional database,
POINT (the Prediction Of INTeractome database) http://
point.bioinformatics.tw/[9]. The application of a similar
concept and the addition of further filtering criteria have
recently been reported and, as a result, have produced
many outstanding studies such as Ulysses [10], OPHID
[11] and HomoMINT [12]. Recently, additional high-
throughput yeast two-hybrid experiments have generated
an enormous number of human PPIs [13,14], which now
require assessments of their accuracy [15] and further
evaluations using the concept of interologs. Conversely,
interologs may be used to estimate the reliability of high
throughput observations.

It is expected that the interactions between conserved
orthologs, which are conserved genes and gene products
in different species, will be conserved as well. However,
accurate human interolog predictions inferred from dif-
ferent species are much less abundant than expected
[6,12]. Additionally, some argue that interologs are less
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conserved than orthologs [12]. The extent to which
ortholog-based PPI predictions can be applied has not
been extensively analyzed.

In this work, orthologous pairs from 18 eukaryotic species
have been expanded. Using experimental PPIs, interologs
for these 18 species can be predicted and analyzed. This
concept has been applied to host-pathogen PPI predic-
tions. An analysis of predicted H. sapiens-P. falciparum
interactions revealed PPIs that are highly related to the
maintenance of Ca2+levels in host cells. When comparing
this method to other prediction methods, we find that this
approach can complement Bayesian statistical methods
[16] and structure-based methods [17].

Results and discussion

Orthologs shared by H. sapiens and other model
organisms

The complete ortholog matrix from 18 eukaryotic species
is shown in Additional File 1: Table S1. For brevity, only
the orthologs between H. sapiens and five common model
organisms are presented (Table 1). These orthologs were
based on the HomoloGene database. Interologs were
determined from the model organisms M. musculus
(mouse), R. norvegicus (rat), D. melanogaster (fruit fly), C.
elegans (worm) and S. cerevisiae (yeast).

Based on ortholog information, the conservation of genes
and ortholog groups among 18 eukaryotic species were
identified. We found 81 genes that were conserved in all
18 species presented in HomoloGene (Additional File 2:
Table S2), suggesting that these genes are fundamental
and/or vital to eukaryotes. Interestingly, 243 genes are
missing in P. falciparum, but found in the other 17 species,
including members of the proteosome, various ATP syn-

Table I: Numbers of ortholog shared by human and five model organisms

Species Number of Number of Shared Orthologs Groupsb
(Taxonomy ID)2 Genes with

Orthologs

H. sapiens M. musculus R. norvegicus D. melanogaster C. elegans S. cerevisiae
H. sapiens (9606) 19 491 19 491 (100%) 16 330 15116 5039 (25.82%) 3951 (20.27%) 1593 (8.17%)
(83.78%) (77.55%)

M. musculus 19 142 16 330 19 142 (100%) 16 674 4990 (26.07%) 3942 (20.59%) 1607 (8.39%)
(10090) (85.31%) (87.11%)
R. norvegicus 17 766 15116 16 674 17 766 (100%) 4662 (26.24%) 3711 (20.89%) 1509 (8.49%)
(1o116) (85.08%) (93.85%)
D. melanogaster 7794 5039 (64.65%) 4990 (64.02%) 4662 (59.82%) 7794 (100%) 3377 (43.33%) 1344 (17.24%)
(7227)
C. elegans (6239) 4971 3951 (79.48%) 3942 (79.30%) 3711 (74.65) 3377 (67.93%) 4971 (100%) 1189 (23.92%)
S. cerevisiae 4589 1593 (34.71%) 1607 (35.01%) 1509 (32.88%) 1344 (29.29%) 1189 (25.91%) 4589 (100%)
(4932)

aThese species are ranked by the number of genes with ortholog information available.
bThe percentage below the number of ortholog refers to the coverage on the species given in the left most column.
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thases and many mitochondria-related genes. While most
species in the HomoloGene database share a high propor-
tion of orthologs with other species (ranging from 48.3%
in O. sativa to 87.4% in H. sapiens), less than 20% of the
5,266 genes in P. falciparum can be grouped with genes
from other species. This suggests that the lifestyle and bio-
logical processes of this parasite deviate from those of
other organisms.

PPIs in the POINT database

PPIs from the various model organisms were used to infer
PPIs (interologs) in higher order organisms such as H.
sapiens. Because experimental PPIs from the target organ-
isms are needed to verify these inferred PPIs, collections of
PPIs are essential for an ortholog-based approach. The
POINT database has collected most of the available public
PPI data for a range of organisms (Table 2). It contains
more than 44,000 human PPIs with available ortholog
information. In addition, more than 70,000 yeast interac-
tions are available, suggesting that a considerable number
of human interologs can be inferred. Most of these inter-
actions were obtained from high-throughput techniques
such as yeast two-hybrid screening, which is prone to a
high rate of false positives and other errors. Within the
high-confidence dataset, where only PPIs verified by two
or more methods or reported in the literature two or more
times are included, there are 28,559 human PPIs and
25,612 yeast PPIs with available ortholog information.

While the use of high-confidence PPIs eliminates many
potential PPIs that are present in the available datasets,
this trimming process reduces the false positive rate.
Among the organisms listed in Table 2, S. cerevisiae shows
the most dramatic drop in the number of PPIs when only
high-confidence PPIs are selected. The reason for this is
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obvious: this species is a single cell organism. Most of the
PPI datasets were obtained using high-throughput
approaches, and have not been verified by other methods
or reported independently in the literature. For H. sapiens,
the number of high-confidence PPIs exceeds even those of
yeast. However, some species in the HomoloGene data-
base do not have PPI data available. For example, P. trog-
lodytes (Chimpanzee) and C. familiaris (dog) have no
inferred human interologs despite the large number of
orthologs they share with H. sapiens.

Interologs inferred from ortholog pairs

Given n objects in an undirected network (graph), there
will be n(n-1)/2 relationships among these n objects and
n*n relationships for a directed network. Since there are
19,491 human ortholog groups (Table 1), we therefore
can assume that there are 19,491*(19,491-1)/2 pairwise
interactions among these gene products. Certainly, a com-
plete graph is not reasonable or biologically feasible.
However, we can assume that each interaction can be
associated with a probability and that the probability for
a non-interacting pair will be 0. At this stage, we do not
have enough information to assign a probability for each
theoretical interaction. However, we can expand all
189,939,795 interactions among these 19,491 ortholo-
gous groups.

The interologs were inferred from ortholog information.
Using the orthologous groups shared by humans and
other species, we can obtain the maximum number of
interologs from currently available interactomes. Only
two orthologous groups shared by more than two species
can be used to infer interologs. For example, if ortholo-
gous group A is shared by humans and mice, and orthol-
ogous group B is also shared by humans and mice, there

Table 2: Protein-protein interactions collected in the POINT database.

Species (Taxonomy ID)2

All Available PPIs

Confident PPIs

PPI Orthologs Groups PPIP PPI Orthologs Groups PPIb
S. cerevisiae (4932) 82 445 70 264 31 162 25612
H. sapiens (9606) 45 378 44 251 29 074 28 559
D. melanogaster (7227) 29 342 14 071 1106 764
C. elegans (6239) 5267 1572 692 288
M. musculus (10090) 3851 3746 1320 1291
P. falciparum (36329) 2844 188 8 8
R. norvegicus (10116) 1469 1399 1003 964
A. thaliana (3702) 1420 691 353 223
S. pombe (284812) 356 227 163 98
G. gallus (9031) 43 41 17 16
0. sativa (39947) 49 33 | |
C. familiaris (9615) 2 2 | |
2 These species are ranked by the number of available PPIs, except for Others and Inter-species.
b Orthologous Group PPIs are PPls with ortholog information available.
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will be a potential interolog A-B between humans and
mice, although the probabilities associated with these two
interactions (one in human and one in mouse) are not
known.

Based on this assumption, we analyzed a number of
orthologous group pairs and identified a number of spe-
cies sharing these orthologous groups for H. sapiens (Addi-
tional File 3: Table S3). Among the 189,939,795
interactions, 180,191,177 interologs were inferred from
ortholog information. This translates to 94.86% coverage
of interologs (ICH5S4). Although the theoretical interolog
coverage is high (nearly 95%), the interolog coverage on
currently available PPIs is not significant. For all available
human PPIs, only 3,859/44,251 interactions (8.72%) can
be inferred from known interactions in other model
organisms. Using the trimmed set of high-confidence
PPlIs, this coverage drops to 4.61% (1,316/28,559). There
is an obvious gap between the theoretical upper boundary
and the experimentally observed data.

To investigate the origin of this gap, we further analyzed
the interolog coverage of each model organism. Five com-
mon model organisms were selected. The number of
inferable interologs, experimental PPI derived interologs
and their interolog coverage were calculated (Table 3 and
Table S3). It is interesting that the most commonly used
model organism, S. cerevisiae (yeast), has a theoretical
interolog coverage of only 0.67% (interologs inferred
from yeast divided by all human interactions), whereas
the ICHSA of M. musculus (mouse) and R. norvegicus (rat)
are larger by two-orders of magnitude. However, for
experimental human PPIs, the ICH54 of mouse is only 2-
fold higher than that of yeast, and the ICH54 of rat is lower
than that of yeast. The species contributions, C5, shown
in this table are also informative. While mouse contrib-
utes 43.07% of the known interologs, yeast contributes
only 19.85%. This trend was mostly unchanged for high-
confidence PPIs, except the contribution of yeast was
boosted to 32.29%.
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The mapping of all orthologous group pairs permits inter-
olog prediction for various eukaryotic species. For exam-
ple, in the POINeT web service http://
poinet.bioinformatics.tw/, interologs can be inferred for
seven eukaryotic species (H. sapiens, M. musculus, D.
melangaster, C. elegans, S. cerevisiae, A. thaliana, and P. fal-
ciparum). Currently, more than 32,000 human interologs
can be inferred. Among them, 3,859 have been confirmed
by experimental evidence. The continual growth of inter-
actomes in every eukaryotic species will continue to
improve the ability to predict interologs.

Prediction of inter-species host-pathogen interactions

P. falciparum is a parasite with a complex life cycle, and
this malarial parasite threatens millions of lives world-
wide. Based on the HomoloGene database, P. falciparum
has the least similar genome in comparison to other spe-
cies. Only roughly 20% (990/5,266) of the genes share
orthologous groups with other organisms. This suggests
that many cellular processes vital to other eukaryotes may
be missing or replaced in P. falciparum, and the interplay
between the parasite and its two hosts may compensate
for the functions missing in the P. falciparum genome. The
interactome of P. falciparum has been determined experi-
mentally [18] and modeled genome-wide [19]. This
allows comparisons to be done between the genomes and
interactomes of P. falciparum and its two hosts, H. sapiens
and A. gambiae (the African malaria mosquito).

Using the experimental PPIs and interologs, 3,090 inter-
species interactions between P. falciparum and H. sapiens
(and not intra-P. falciparum interactions) were found
(Additional File 4: Table S4). The Gene Ontology annota-
tions of the P. falciparum and H. sapiens genes were identi-
fied. These inter-species PPIs have been grouped based on
the ontology of their biological processes. The resulting
network is illustrated in Figure 1. The nodes in Figure 1 are
biological processes from P. falciparum and H. sapiens.
Links between P. falciparum and H. sapiens biological proc-
esses were derived from interactions linking two genes

Table 3: Contributions of model organisms to human theoretical and experimental interologs.

Species (Taxonomy ID) Theoretical Interologs Coverage?

Experimental PPIs and Interologsb

HomoloGene OrthoMCL  TIGR EGO All Available PPls Confident PPIs
ICHsA ICHsA ICHsA Interologs ~ ICHA csp Interologs  ICHsA csP
H. sapiens (9606) 94.86% 100.00% 95.78% 3859 8.72% N/A 1316 4.61% N/A
M. musculus (10090) 70.19% 77.56% 50.24% 1662 3.76%  43.07% 551 1.93% 41.86%
R. norvegicus (10116) 60.14% 71.59% 35.83% 480 1.08%  12.44% 251  0.88% 19.07%
D. melanogaster (7227) 6.68% 12.01% 4.79% 766  1.73%  19.85% 92 0.32% 7.00%
C. elegans (6239) 4.11% 8.05% 2.78% 231 0.52% 5.99% 29 0.10% 2.20%
S. cerevisiae (4932) 0.67% 2.02% 0.77% 766  1.73%  19.85% 425  1.49%  32.29%
3a|CHSA for theoretical interologs are the number of interologs divided by all theoretical human PPIs derived from each ortholog databases.
b |CHSAfor all available and confident experimental interologs are the number of interologs divided by available and confident human PPls.
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sents a GO biological process in either P. falciparum or H. sapiens. The nodes of biological processes for P. falciparum are
shaded based on their involvement in the inter-species interaction network; darker color implies larger involvement. For P. fal-
ciparum, most of the interactions are related to metabolic and cellular processes.

that participate in the respective biological processes in
the two species. Darker lines indicate the involvement of
more interactions, allowing more interplay between the
two biological processes. The P. falciparum biological
processes are shaded using different levels of grey. Darker
nodes indicate that more genes are involved in the proc-
ess. In Figure 1, the metabolic processes and cellular proc-
esses of P. falciparum are most abundant in the host-
parasite interaction network. This is understandable, since
P. falciparum is a parasite and needs to acquire nutrients
from the host erythrocyte. In the genomic-wide model of
the P. falciparum interactome, only a small fraction of
intra-P. falciparum interactions contributed to metabolic
processes [19], which supports the notion that P. falci-
parum metabolic processeses may be dependant on
human metabolic and cellular processes. There are also
other interesting interactions between P. falciparum and

the antimicrobial, antibacterial, cell killing and immune
system processes of H. sapiens.

Filtering and analysis of predicted inter-species
interactions

Although more than 3,000 H. sapiens-P. falciparum PPIs
were inferred, not all of these interactions are likely to take
place under physiological conditions due to spatiotempo-
ral constraints. Filtering using gene ontology annotations
resulted in 918 host-pathogen interactions. Further filter-
ing of P. falciparum sequences using the presence/absence
of translocational signals led to 95 PPIs (Figure 2). Only
15 P. falciparum proteins participate in these 95 PPIs
(Table 4). One of the P. falciparum proteins, calmodulin
(PF14_0323), interacts with 50 human proteins. It is well
known that P. falciparum requires an environment with
high Ca2*levels [20], and the abundence of calmodulin-
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Figure 2

lllustration of filtered H. sapiens-P. falciparum interactions. P. falciparum calmodulin (PF14_0323) shares |3 interaction
partners with human calmodulin (CALM3), suggesting competition between the two proteins, and interference of host cell
Ca?* homeostasis. (Red: red blood cell; Green: the parasitophorous vacuole).

based interactions may help P. falciparum maintain this
high Ca2+ concentration [21]. Among the 50 human pro-
teins interacting with PF14_0323, 13 also interact with
human calmodulin (CALM3). This suggests that P. falci-
parum calmoduin shares some of the targets of human cal-
modulin, and may hijack these PPIs for its own purpose.
The protein with the second highest number of interac-
tions was N-myristoyltransferase (PF14_0127). Many

proteins interacting with calmodulin require myristoyla-
tion in N-terminal [22-24], further supports the function-
ing of the calmodulin-centric network.

Previously, Dyer et al. [16] have inferred host-pathogen
interactions using Bayesian statistics. H. sapiens-P. falci-
parum PPIs predicted by the Bayesian approach are mainly
enriched in 'blood coagulation' and 'membrane integra-
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Table 4: P. falciparum proteins participate in 95 PPIs filtered from 918 host-pathogen interactions.

Gene Symbol Gene ID Description Number of Interactions
PF14_0323 811905 Calmodulin 50
PF14_0127 811708 N-myristoyltransferase 6
PF14_0627 812209 ribosomal protein S3, putative 6
PFI1_0188 810735 heat shock protein 90 6
PF14_0399 811981 ADP-ribosylation-like factor, putative 4
PFI3_0157 814127 ribose-phosphate pyrophosphokinase 4
MAL7PI1.162 2654986 dynein heavy chain, putative 4
PF14_0486 812068 elongation factor 2 3
PFI11_0486 811029 MAEBL 3
PFF0345w 3885886 translation initiation factor IF-2, putative 2
PFE0795c¢ 812973 nif-like protein, putative 2
PFI1_0396 810942 Protein phosphatase 2C 2
PFB0605w 812721 Ser/Thr protein kinase, putative |
PF14_0664 812246 biotin carboxylase subunit of acetyl CoA carboxylase, putative |
PF14_0297 811879 ecto-nucleoside triphosphate diphosphohydrolase I, putative |

tion' protein interactions. This may partly be due to the
gene ontology terms used to filter the PPIs. It is difficult to
compare the two works, since the datasets and methodol-
ogy used are different. However, the intersection of the
two datasets reveals 3 interactions between PF14_0359
and the TNF receptor associated factor family (TRAF1,
TRAF2 and TRAF6). PF14_0359 is a hypothetical protein.
Inspection of the HomoloGene database reveals that
PF14_0359 may be a homolog of DNAJA1 (HSP40). The
functional implications of these three interactions require
further investigation. However, TNF associated factor
family are known to be involved in host immune
response, suggesting that P. falciparum may interfere with
this defence mechanism in H. sapiens. All in all, the diver-
sity of different host-pathogen interaction inference meth-
ods suggests that these and other approaches may
complement each other. And further development of the
ability to predict host-pathogen interactions may benefit
from the combination of multiple diverse approaches.

Conclusion

The expansion of all orthologous pairs enables the infer-
ence of interologs for various eukaryotic organisms, as
illustrated by POINeT http://poinet.bioinformatics.tw/.
The same inference method can also be applied to the pre-
diction of inter-species interaction, especially in the case
of host-pathogen interactions. The H. sapiens-P. falciparum
PPIs inferred in our work reveal that P. falciparum may uti-
lize calcium modulating proteins in the host cell to main-
tain Ca2+* levels, and this may serve as a target for drug
development strategies [25].

Methods

Ortholog information for interolog analysis

One of the limitations inherent in the analysis of inter-
ologs is the assignment of the orthologs, which is
achieved using various BLAST algorithms together with

several additional criteria [6,9,11,26,27] or from the NCBI
HomoloGene and other protein/gene cluster databases.
In this work, the ortholog information for each human
gene was identified using the NCBI HomoloGene Release
54 [28]. The NCBI HomoloGene database contains
homologous information for 18 eukaryotic organisms
and has been augmented with homology and phenotype
information drawn from various sources, e.g.,, MGI [29]
and Fly base [30].

Collection of PPIs

The new version of POINT integrated several publicly
accessible PPI datasets (Additional File 5: Table S5). These
data sources have diverse entry formats, disparate ID sys-
tems and different protein symbols. The diversity of these
datasets made the task of performing cross-site browsing
or iterative querying very tedious and challenging. We sys-
tematically re-organized these datasets to improve and
standardize the publicly accessible PPIs. High-throughput
PPI datasets are prone to false positives and errors. There-
fore, we also generate a relatively high-confidence PPI
subset, which refers to a PPI subset where the PPIs have
been verified by two or more experimental methods or
published in the literature two or more times.

Evaluation of interolog coverage

The interolog coverage is quantifiable from an estimation
of the ortholog-based PPI prediction power. The defini-
tion of interolog coverage is as follows:

ICH8A = I[—;{SA x100%
T

where THSA is the total number of human (H. sapiens)
interactions (whether theoretical, experimental, or highly
confident), N is the number of interologs, and ICH54 is the
interolog coverage for the human interactome. Another
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measure is the contribution of a given model organism to
the human interologs and this is defined as

5P

C¥ =t
11 HSA

x100%

where TIH54 is the total number of human interologs, IS is
the number of interologs inferred from species Sp, and C5»
is the contribution of species Sp to human interologs.

Inference and filtering of inter-species interactions

With the expanded orthologous pairs, intra- and inter-
species PPIs can be inferred with ease. The inference of H.
sapiens-P. falciparum interactions are based on ortholo-
gous pairs with one-side orthology to P. falciparum. For
example, given a PPI between M, and M, in species M, if
M, has an ortholog in P. falciparum (P,), and M, has an
ortholog Hy, in H. sapiens (but not in P. falciparum), an
interaction between P, and Hy is inferred.

However, interologs inferred from orthologous pairs may
not occur in vivo, especially in the case of inter-species
interactions. P. falciparum inhabits a parasitophorous vac-
uole after its entry into the red blood cell. A transloca-
tional signal peptide (RELXE/Q) is required to translocate
P. falciparum proteins into red blood cell cytoplasm for
host-cell manipulation [31-33]. Also, proteins localized
in the nucleus (both H. sapiens and P. falciparum) are not
likely to participate in inter-species PPIs. Two filters have
been applied to reduce such unlikely cases. The first filter
utilizes gene ontology annotations. Human proteins with
the following annotations were removed: mitochondria,
nucleus, ribosome, cell process, helicase activity, complex,
nuclease activity, nucleic acid binding, nucleotide binding
or proteolysis. The second filter utilizes the translocation
signal RELXE/Q, where X refers to any amino acids. P. fal-
ciparum sequences matching this pattern within the first
25% of its length are kept, since translocation signals are
likely to appear at the N-terminal.
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