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Abstract
Background: Bioinformatics tools are commonly used for assessing potential protein allergenicity.
While these methods have achieved good accuracies for highly conserved sequences, they are less
effective when the overall similarity is low. In this study, we assessed the feasibility of using position-
specific scoring matrices as a basis for predicting potential allergenicity in proteins.

Results: Two simple methods for predicting potential allergenicity in proteins, based on general
and group-specific allergen profiles, are presented. Testing results indicate that the performances
of both methods are comparable to the best results of other methods. The group-specific profile
approach, with a sensitivity of 84.04% and specificity of 96.52%, gives similar results as those
obtained using the general profile approach (sensitivity = 82.45%, specificity = 96.92%).

Conclusion: We show that position-specific scoring matrices are highly promising for
constructing computational models suitable for allergenicity assessment. These data suggest it may
be possible to apply a targeted approach for allergenicity assessment based on the profiles of
allergens of interest.

Background
Atopic allergy and other forms of hypersensitivity reac-
tions pose a major concern for public health, affecting up
to 25% of the population in industrial nations [1,2]. With
the rapid growth in the number of genetically modified
(GM) food, biopharmaceuticals and other biotechnology-
derived products, identifying potential allergenicity in

proteins has become crucial in product safety assessment
[3,4].

Unlike laboratory-based allergenicity assessment meth-
ods such as the skin prick test and RAST (radioallergosorb-
ent test), which are often rigorous and time-consuming,
the use of bioinformatics tools has come in favorably for
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accelerating the discovery of novel allergens. Guidelines
to evaluate allergenicity potential of proteins have been
jointly proposed by the Food and Agriculture Organiza-
tion (FAO)/World Health Organization (WHO) Expert
Consultation on Allergenicity of Foods Derived from Bio-
technology [5]. According to the bioinformatics section of
the guidelines, a protein is a potential allergen if it either
has an identity of ≥ 6 continuous amino acids or ≥ 35%
sequence similarity over a window of 80 amino acids with
a known allergen.

Although useful in some cases, it has been shown that the
FAO/WHO joint recommendation produces a large
number of false positives, resulting in specificities that are
too low to be of practical use [6,7]. To address these draw-
backs, more sophisticated bioinformatics tools have been
developed. These include support vector machines (SVM)
[8], Gaussian classification algorithms [9,10], wavelet
transform models [11], allergen motifs [12], IgE sequence
comparisons [13,14] and the use of allergen-representa-
tive peptides (ARP) [15]. While these systems are effective
for high similarity allergen sequences, they are less effec-
tive for when the overall similarity is low [16].

Position-specific scoring matrices (PSSM) have been very
successful for detecting distantly related protein
sequences [17-19], but have yet been applied for assessing
allergenic potentials in proteins. In this study, we shall
examine the feasibility of using PSSM as a basis for devel-
oping an effective allergenicity prediction system. As will
be seen below, the use of an iterative PSI-BLAST in combi-
nation with various filters for accuracy optimization
shows great promise for constructing general and group-
specific profiles suitable for allergenicity assessment.

Results and discussion
The performance of both profile-based approaches was
evaluated using eight different E-value thresholds (Table
1). We consider values of SP ≥ 80% and SE ≥ 80% useful
in practice [20] and assessed suitability of both methods
using the above cutoffs.

General profile model
The predictive performance of the general allergen profile
approach is in accordance with expected allergenic pat-
terns in proteins and provided an accuracy (ACC) of
greater than 85% (SE > 82%, SP > 85%) for E-value cutoffs
of ≤ 10-1. This approach is shown to perform best at the E-
value threshold of 10-9 (ACC = 95.02%). At this threshold,
the sensitivity and specificity of the model is 82.45% and
96.92% respectively.

Group-specific profile model
Allergen sequences are currently classified into 9 major
groups by the IUIS Allergen Nomenclature Sub-Commit-
tee http://www.allergen.org – i) weeds, ii) fungi, iii)
grasses, iv) trees, v) mites, vi) animals, vii) insects, viii)
food, and ix) others [21]. We constructed group-specific
profiles based on all 9 major allergen groups, and tested
their capability in predicting allergen sequences. As illus-
trated in Table 1, the approach achieved similar perform-
ance as the general profile model, and can predict
allergens with high accuracy (ACC > 84%, SE > 84%, SP >
84%) at E-value thresholds of ≤ 10-1. The best perform-
ance is observed at the E-value threshold of 10-9 (ACC =
94.88%). At this threshold, the sensitivity and specificity
of the model is 96.52% and 84.04% respectively.

Next, we tested the ability of group-specific profiles in
identifying allergens that belong to their respective group
category (Table 2). Among the 9 group-specific profile

Table 1: Prediction quality of the profile-based methods

Method E-value threshold FN FP ACC (%) SP (%) SE (%) PPV (%) NPV (%) MCC

General Profile 10 11 1792 21.67 10.38 96.42 13.99 94.71 0.08
1 22 737 67.03 63.17 92.58 27.74 98.25 0.38

10-1 31 298 85.72 85.11 89.80 48.45 98.22 0.59
10-2 36 184 90.42 90.80 87.95 60.22 98.03 0.68
10-3 41 137 92.27 93.14 86.56 66.70 97.87 0.72
10-4 43 108 93.44 94.61 85.70 71.76 97.77 0.75
10-6 48 83 94.32 95.87 84.04 76.53 97.55 0.77
10-9 53 62 95.02 96.92 82.45 81.34 97.34 0.79

Group-Specific 10 14 1801 21.14 9.92 95.43 13.79 93.48 0.06
Profiles 1 22 748 66.53 62.58 92.72 27.33 98.27 0.38

10-1 29 317 84.99 84.17 90.40 46.88 98.31 0.58
10-2 34 202 89.76 89.89 88.87 57.87 98.16 0.66
10-3 37 151 91.83 92.44 87.81 64.73 98.04 0.71
10-4 40 124 92.86 93.79 86.69 68.87 97.90 0.73
10-6 44 94 94.02 95.31 85.50 74.51 97.75 0.76
10-9 48 70 94.88 96.52 84.04 79.49 97.56 0.79
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models, 7 are capable of predicting allergens with accu-
racy greater than 80%. Mite profile model achieved the
best performance with an accuracy of 95.29% (SE =
90.81%, SP = 95.80%), followed by grass profile model
(ACC = 87.81%, SE = 87.16%, SP = 87.91%), and insect
profile model (ACC = 87.20%, SE = 82.08%, SP =
87.82%). The poorest performance was observed for food
model (ACC= 69.63%, SE = 83.22%, SP= 63.89%). This
may be attributable to the fact that food allergens contain
highly diverse protein sequences that do not share much
common features and sequence patterns.

Comparison with existing methods
To benchmark the performance of the profile-based pre-
diction methods, the five testing datasets, each consisting
of 302 allergen sequences and 2000 non-allergen
sequences, was used to evaluate six available techniques –
the FAO/WHO evaluation scheme [5], SVM global
description approach [8], SVM amino acid composition
approach [14], SVM dipeptide composition approach
[14], MEME motif discovery tool [12] and ARP technique
[15]. The overall performance of each technique is indi-
cated by the average performance over the five datasets.

As illustrated in Table 3, the overall performance of both
general and group-specific profile-based models outper-
forms all other existing prediction systems investigated in
this study. Both SVM amino acid and dipeptide composi-
tion methods [14] and the ARP technique [15] achieved

high sensitivity (~89%) but low specificity (~57%) was
also observed. The SVM global description approach [8]
achieved the closest performance to the profile-based
models in terms of accuracy (~93%). However, it exhibits
high specificity (~95%) but low prediction sensitivity
(~77%). The MEME motif discovery approach is shown to
produce the lowest sensitivity (1.26%), which is lower
than the reported sensitivity of 7% (at 0.001 E-value)
[12]. This may be due to several reasons: i) differences in
the testing dataset; and ii) the derived MEME motifs did
not manage to capture essential features in allergen
sequences. In agreement with previous reports [6,7], the
FAO/WHO evaluation scheme predicts allergens with low
specificity (23.31%) and low accuracy (31.58%). In con-
trast to PSSM, the FAO/WHO similarity-based evaluation
scheme incorrectly predicts a large proportion of proteins
derived from bacteria (37%), viruses (9%) and yeasts
(9%) as positives. It is possible that some of these proteins
may contain Ig-binding epitopes, though not necessarily
demonstrate IgE binding. Among the false negatives,
majority are distant homologues derived from fungi
(39%), food (23%) and insect (9%).

Conclusion
It is shown that profile-based methods are highly promis-
ing for assessing potential allergenicity and cross-reactiv-
ity in proteins with sensitivities and specificities of over
80%. The strength of such models lies in its ability to
detect distantly related protein homologues through the

Table 2: Average prediction quality of the group-specific profiles. Performance of group-specific profile models at E-value threshold of 
10-9.

Profile ACC (%) SP (%) SE (%) PPV (%) NPV (%) MCC

Animal 86.01 87.55 65.39 27.09 97.26 0.36
Food 69.63 63.89 83.22 48.85 90.37 0.43
Weed 77.79 78.44 69.33 18.70 97.26 0.27
Insect 87.20 87.82 82.08 44.05 97.71 0.54
Mite 95.29 95.80 90.81 68.48 99.02 0.76
Grass 87.81 87.91 87.16 49.27 98.25 0.59
Tree 82.10 81.56 86.88 35.85 98.14 0.48
Fungi 80.50 80.82 78.17 35.77 96.51 0.44
Other 82.50 83.62 61.13 17.29 97.55 0.26

Table 3: Comparison of the performance between the profile-based methods and existing allergenicity prediction systems

Method ACC (%) SP (%) SE (%) PPV (%) NPV (%) MCC (%)

General profile model 95.02 96.92 82.45 81.34 97.34 0.79
Group-specific profile model 94.88 96.52 84.04 79.49 97.56 0.79
FAO/WHO [5] 31.58 23.31 86.36 14.55 91.83 0.08
SVM (global description) [8] 93.01 95.40 77.22 59.02 96.52 0.71
SVM (aa composition) [14] 61.77 57.61 89.33 24.14 97.28 0.32
SVM (dipeptide composition) [14] 61.73 57.55 89.40 24.12 92.29 0.32
MEME/MAST motifs [12] 86.84 99.75 1.26 31.59 87.00 0.04
ARP [15] 61.55 57.45 88.74 18.92 97.12 0.31
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use of iterated profiles [17-19]. To date, the exact mecha-
nisms of allergy remains unclear as the structural, func-
tional or biochemical properties of allergens that leads to
allergic responses have yet to be elucidated. The allergen
profiles that are constructed in this study may also be used
as a basis for identifying common amino acid residues or
physicochemical properties that support allergenicity
[20].

Methods
Dataset
The training and testing dataset consist of 11,510 non-
redundant (1,510 experimentally verified allergens and
10,000 putative non-allergens) sequences. Known aller-
gen protein sequences were extracted from Swiss-Prot
[23], GenBank [24], the Allergen Nomenclature database
of the International Union of Immunological Societies
(IUIS) [21], Allergome [25], the Food Allergy Research
and Resource Program (FARRP) Protein AllergenOnline
Database [7] and the Structural Database of Allergen Pro-
teins (SDAP) [13]. The distribution of the allergen data
used in this study is illustrated in Figure 1. An initial list of
protein sequences unlikely to be associated with allergy
was generated by extracting all protein sequences from
Swiss-Prot with the exception of entries containing text
strings 'allergen', 'allergy', 'atopy' or derivatives thereof in
the annotation [9]. From this list, 10,000 putative non-
allergens were randomly selected for model construction.
Only 1 putative non-allergen sequence is extracted from
each protein family to avoid bias.

The dataset was shuffled randomly and partitioned into
five sets for five-fold cross validation, each time using one
set for testing and the remaining four sets for training.
Each training set contains 1,208 experimentally deter-
mined allergens and 8,000 non-allergens while each test-

ing set contains 302 experimentally determined allergens
and 2,000 non allergens.

Profile-based methods
The general strategy of our iterative profile-based methods
is shown in Figure 2. Allergen profiles are generated and
optimized using sequences in the training set while
sequences in the testing set are used to evaluate the overall
performance of the profile-based methods. The system is
implemented using the NCBI BLAST package [17] and
PERL scripts.

Method 1: general allergen profiles
This method predicts potential allergens by performing a
RPS-BLAST search against a database of general allergen
profiles optimized for accuracy and performance. The
construction of allergen profiles involves an initial screen-
ing step and a subsequent optimization step, as outlined
in Figure 3.

During the initial screening step, a PSI-BLAST search (10
iterations, e-value threshold 10-3) was performed on each
allergen sequence in the training set against all other aller-
gen sequences in the dataset. This generates a profile or
PSSM for each allergen protein sequence. In this study, a
minimum of two sequences was used for constructing a
profile.

In the optimization step, another round of PSI-BLAST
search was performed on each of the selected allergen
sequence using eight different e-value thresholds (10, 1,
10-1, 10-2, 10-3, 10-4, 10-6 and 10-9). This generates eight
profiles for each allergen sequence corresponding to the
different e-value threshold. Each of the eight profiles was
tested by RPS-BLAST using allergen sequences in the train-
ing set as query. For each allergen sequence in the training
dataset, the best profile (with the highest accuracy) was
selected and incorporated into the predictive model. This
approach produces a collection of general allergen pro-
files optimized for accuracy and performance.

Method 2: group-specific allergen profiles
This method predicts protein allergenicity by performing
a RPS-BLAST search against a database of group-specific
allergen profiles optimized for accuracy and performance.

Allergen sequences in the training set were partitioned
into nine groups – i) weeds, ii) fungi, iii) grasses, iv) trees,
v) mites, vi) animals, vii) insects, viii) food, and ix) oth-
ers, according to the recommendation by the IUIS Aller-
gen Nomenclature Sub-Committee [24]. For the screening
phase, PSI-BLAST was performed by partitioning allergens
into the 9 major groups and using individual groups of
allergens as the training dataset. This generates profiles
specific to each particular group of allergens, which are

Distribution of the allergen data used in this studyFigure 1
Distribution of the allergen data used in this study.
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subsequently optimized according to their predictive
accuracy and used for constructing group-specific aller-
genicity prediction systems.

Performance measures
The predictive performance of the general and group-spe-
cific models was evaluated using sensitivity (SE), specifi-
city (SP), accuracy (ACC), positive predictive value (PPV),
negative predictive value (NPV), and Matthews correla-
tion coefficient (MCC) [26]. In the latter, the positive
dataset consists of testing allergen sequences belonging to
a specified group whereas the negative dataset consists of
all other allergen sequences in the testing set except the
selected group. SE = TP/(TP+FN), SP = TN/(TN+FP) and
ACC = (TP+TN)/N, indicate percentages of correctly pre-
dicted allergens, non-allergens and all proteins respec-
tively. PPV = TP/(TP+FP) and NPV = TN/(TN+FN) denote

the proportion of allergens and non-allergens that are cor-
rectly predicted, respectively. TP (true positives) repre-
sents known allergens and TN (true negatives) for non-
allergens. FN (false negatives) denotes known allergens
predicted as non-allergens, and FP (false positives) repre-
sents non-allergens predicted as allergens. The MCC,
which is used to measure the randomness of the predic-
tion, is computed and defined as follow:

The MCC returns a value between -1 and 1: MCC = 1 for
100% agreement of the prediction, MCC = 0 for com-
pletely random prediction and MCC = -1 for 100% disa-
greement of the prediction.

Five-Fold cross validation
Five-fold cross validation was performed to assess the
quality of all predictive models described in this study
[20]. In k-fold cross-validation, k random, (approxi-
mately) equal-sized, disjoint partitions of the sample data
are constructed, and a given model is trained on (k-1) par-
titions and tested on the excluded partition. The results
are averaged after k such experiments, and the observed
error rate may be taken as an estimate of the error rate
expected upon generalization to new data.
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Schematic representation of how allergen profiles are con-structed in this studyFigure 3
Schematic representation of how allergen profiles 
are constructed in this study. The development of this 
approach consists of A) a preliminary screening step and B) 
an optimization step.

General strategy of the profile-based methodFigure 2
General strategy of the profile-based method. The general strategy involves performing a RPS-BLAST search on the 
query protein against a searchable database of allergen profiles generated by PSI-BLAST. Query sequences that generate hits 
above the specified e-value threshold are predicted to be potential allergens.
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