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Abstract

Background: RNA-protein interaction plays an essential role in several biological processes, such
as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity.
Identification of RNA-binding sites in proteins provides valuable insights for biologists. However,
experimental determination of RNA-protein interaction remains time-consuming and labor-
intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have
become highly desirable. Extensive studies of RNA-binding site prediction have led to the
development of several methods. However, they could yield low sensitivities in trade-off for high
specificities.

Results: We propose a method, RNAProB, which incorporates a new smoothed position-specific
scoring matrix (PSSM) encoding scheme with a support vector machine model to predict RNA-
binding sites in proteins. Besides the incorporation of evolutionary information from standard
PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and
dependency from the neighboring residues for each amino acid in a protein. Experimental results
show that smoothed PSSM encoding significantly enhances the prediction performance, especially
for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-
art systems by 4.90%~6.83%, 0.88%~5.33%, and 0.10~0.23 in terms of overall accuracy, specificity,
and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches,
RNAProB significantly improves sensitivity by 7.0%~26.9% over the benchmark data sets. To
prevent data over fitting, a three-way data split procedure is incorporated to estimate the
prediction performance. Moreover, physicochemical properties and amino acid preferences of
RNA-binding proteins are examined and analyzed.

Conclusion: Our results demonstrate that smoothed PSSM encoding scheme significantly
enhances the performance of RNA-binding site prediction in proteins. This also supports our
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assumption that smoothed PSSM encoding can better resolve the ambiguity of discriminating
between interacting and non-interacting residues by modelling the dependency from surrounding
residues. The proposed method can be used in other research areas, such as DNA-binding site
prediction, protein-protein interaction, and prediction of posttranslational modification sites.

Background

RNA-protein interaction plays an important role in vari-
ous biological processes, such as protein synthesis, gene
expression, posttranscriptional regulation, and viral infec-
tivity. The prediction results of RNA-binding sites in pro-
teins can provide biological insights for investigating
RNA-protein interaction. For instance, the ribosome is a
protein synthesis complex consisting of ribosomal RNAs
(rRNAs) and proteins. Sunita et al. [1] applied predicted
RNA-binding sites to study the relationship between RNA
methyltransferases RsmC and 16S rRNA. In addition,
Bechara et al. [2] incorporated predicted results from a
RNA-binding site predictor to inspect the connection
between fragile X mental retardation protein and G-quar-
tet RNA structure. Moreover, some RNA viruses, such as
human immunodeficiency virus (HIV) and hepatitis C
virus, have a RNA genome and replicate themselves by
interacting with host proteins [3]. Therefore, identifica-
tion of the RNA interacting residues in proteins provides
valuable information for understanding the mechanisms
of protein synthesis, gene regulation, and pathogen-host
interaction.

In recent years, rapid advances in genomic and proteomic
studies have yielded a tremendous amount of DNA and
protein sequences. We used the keyword "RNA-binding"
to search against the National Center for Biotechnology
Information (NCBI) protein sequence database on June 9,
2008, and obtained 196,686 protein sequences. However,
when searching against Protein Data Bank (PDB) [4] for
molecular/chain type containing protein and RNA, we
only retrieved 684 structures. In addition, experimental
determination of RNA-protein interaction remains time-
consuming and labor-intensive. Therefore, computational
approaches for predicting RNA-binding sites in proteins
have become increasingly important to understand the
mechanisms of RNA-protein interaction.

Previous work

Extensive studies of RNA-protein binding site prediction
have lead to the development of several methods, which
can be classified as follows.

I. Amino acid composition-based methods

Jeong et al. [5] used an artificial neural network (ANN) to
predict RNA-protein interacting residues based on amino
acid compositions and predicted secondary structure ele-
ments. It achieved Matthew's correlation coefficient

(MCC) of 0.29 and overall accuracy of 77.50% along with
specificity of 87.29% and sensitivity of 40.30%. Terribilini
et al. [6] presented RNABindR using a Naive Bayes classi-
fier on amino acid sequences to predict RNA binding sites
in proteins. RNABindR attained MCC, overall accuracy,
specificity, and sensitivity of 0.35, 84.80%, 93% and 38%,
respectively.

2. Evolutionary information-based methods

Jeong and Miyano [7] applied an ANN to predict the RNA
interacting residues based on evolutionary information
from the position-specific scoring matrix (PSSM), and
achieved MCC, overall accuracy, specificity, and sensitiv-
ity of 0.39, 80.20%, 91.04%, and 43.40%, respectively.
The MCC is further improved to 0.41 by the incorporation
of weighted profiles. Kumar et al. proposed a predictor,
PPRint [8], using PSSM profiles in a support vector
machine (SVM) model, and it achieved MCC, overall
accuracy, specificity, and sensitivity of 0.45, 81.16%,
89.55%, and 53.05%, respectively.

3. Hybrid methods

Wang and Brown [9] developed an SVM-based classifier,
BindN, using features including relative solvent accessible
surface area, hydrophobicity index, side chain pKa value,
molecular mass, and BLAST results. The overall accuracy,
specificity, and sensitivity of BindN are 74.25%, 75.70%,
and 65.78%, respectively.

Challenges

Although many methods have been proposed for RNA-
binding site prediction, several challenges still remain.
First, many of previous methods yield low sensitivities in
tradeoff for high specificities since some biological appli-
cations, such as identification of critical residues for site-
specific mutagenesis, emphasize more on specificities
rather than sensitivities [6,8]. These methods could suffer
from low coverage of RNA-binding sites in high-through-
put proteomic analyses. Second, the MCC values of exist-
ing methods remain in the range of 0.27~0.45, which
presents a great scope for improvement in the comple-
mentary measure of prediction performance. Finally, in
most methods parameters such as the size of the sliding
window are selected from test results evaluated by n-fold
cross-validation, which may lead to overestimation of the
prediction performance. Thus, the performance would be
worse if a more rigorous procedure is applied for parame-
ter selection and performance evaluation.
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Our method and future applications

In this study, we propose a method, RNAProB (RNA-Pro-
tein Binding site prediction), for prediction of RNA-bind-
ing residues in proteins using SVM classifiers and a new
smoothed PSSM encoding scheme. Besides incorporation
of upstream and downstream residues in a standard PSSM
generated by PSI-BLAST, smoothed PSSM encoding also
considers, for each amino acid in a sequence, the depend-
ency effect from its neighboring amino acids. Similar to
the spatial domain method used in the research field of
image processing [10], smoothed PSSM encoding calcu-
lates the evolutionary information of a central position
based on the sum of those from surrounding residues.
Experimental results show that the prediction perform-
ance of smoothed PSSM encoding performs better than
the state-of-the-art approaches on the benchmark data
sets. Evaluated by five-fold cross-validation, RNAProB
outperforms the other approaches by 0.10~0.23 in MCC,
4.90%~6.83% in overall accuracy, and 0.88%~5.33% in
specificity. Most notably, our method significantly
improves sensitivity by 26.90%, 26.62%, and 7.05% for
the RBP86, RBP109, and RBP107 data sets, respectively.
To avoid data overfitting, we also incorporate a three-way
data split procedure to evaluate the prediction perform-
ance of RNAProB. Our results show that our method not
only achieves significant improvement on the perform-
ance, but also attains a high prediction accuracy evaluated
by a three-way data split procedure. Moreover, our analy-
sis indicates that smoothed PSSM could serve as a more
discriminative feature for distinguishing between interact-
ing and non-interacting residues. We believe that the pro-
posed encoding scheme could be applicable to other
research fields, such as DNA-binding sites, protein-pro-
tein interaction, and prediction of posttranslational mod-
ification sites.

Methods

Data sets

In this study, we apply three data sets used in previous
studies to compare the performance of our method and
other systems. Table 1 shows a summary of these data sets,
which are detailed as follows and available in the supple-
mentary material [see Additional files 1, 2, and 3].

Table I: Summary of three benchmark data sets

Data set RBP86 RBPI09 RBPI07
Number of protein chains 86 109 107
X-ray crystallography resolution >3 A >35A >35A
Sequence identity <70% <30% <25%
Number of interacting residues 4,568 3,581 2,555
Number of non-interacting residues 15,503 21,526 19,496

Non-interacting/interacting residues 3.39 6.01 7.63
Total number of residues 20,071 25,107 22,051

http://www.biomedcentral.com/1471-2105/9/S12/S6

1. RBP86

The RBP86 data set consists of 86 protein chains extracted
from RNA-protein complexes with X-ray crystallography
resolution better than 3 A in PDB. Sequence redundancy
in the data set is removed so that no protein pair has a
sequence identity greater than 70%. In the RNA-protein
complexes, a residue is regarded as interacting with RNA
if the distance between an RNA molecule and the residue
in the protein is less than 6 A. The resultant data set con-
tains 4,568 RNA interacting residues and 15,503 non-
interacting residues. The RBP86 data set has been used in
Terribilini et al. [6] and Kumar et al. [8]. In Kumar et al., it
is also referred to as the "main" data set.

2. RBP109

The RBP109 data set contains 109 protein sequences
obtained from 56 RNA-protein complexes with X-ray crys-
tallography resolution better than 3.5 A in PDB. For any
two protein chains, the sequence identity is no more than
30%. The numbers of interacting and non-interacting res-
idues are 3,581 and 21,526, respectively. The RBP109 data
set is downloaded from RNABindR web server [11]. In
Terribilini et al. [6], this is named as the "RB109" data set.

3. RBPI107

Derived from 61 RNA-protein complexes in PDB, the
RBP107 data set is comprised of 107 protein chains with
X-ray crystallography resolution better than 3.5 A and
sequence identity no more than 25%. Based on the cut-off
distance of 3.5 A, the RBP107 data set contains 2,555
interacting residues and 19,496 non-interacting ones.
Wang and Brown [9] applied this data set to construct and
evaluated their approach. In Kumar et al. [8], it is referred
to as the "alternate" data set.

Support vector machines (SVM)

SVM is a machine learning approach proposed by Vapnik
[12] based on structural risk minimization principle of
statistics learning theory. It can be used to deal with clas-
sification or regression. Distinguishing RNA binding resi-
dues form non-binding residues in a protein could be
regarded as a binary classification problem. For a set of
given input data vectors x; (x; € R4, i = 1, 2,..., n) with
labels y; (y; € {+1,-1},i=1, 2,..., n; where "+1" represents
a positive instance and "-1" denotes a negative instance),
the mission in the training procedure is to optimize the
following equation that maps input vectors into a higher
dimensional feature space (i.e., Hilbert space), and seeks
a separation hyperplane with a maximum margin to
divide positive instances from negative ones. The calcula-
tion of SVM is defined in Equation (1).
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subject to y;(w ®(x;) +b)21-&,,& 20,i=1,2,..,n,
(1)

where w € Rdis a weight vector, b is a bias (constant), and
®@ is a mapping function. For more flexible classification,
SVM allows instance i positions at the wrong side of
hyperplane with slack variable & and cost parameter C. In
SVM, a kernel function K(x; x;), such as linear, polyno-
mial, radial basis function (RBF), and sigmoid function, is
used to present @(x;) - ®(x;) where x; and x; are two data
vectors. In this study, we use RBF as the kernel function in
the SVM. The formulation of RBF is defined in Equation
(2), where yis a training parameter.

K(x;, x;) = exp(-7][x;- xj| [2) ()
Developed by Lin et al. [13], LIBSVM is a powerful and
well-known SVM package used by many researchers. We
apply LIBSVM to implement our classifiers for prediction
of RNA-binding sites in proteins.

Feature extraction and representation

Evolutionary information has been shown to be effective
for RNA-binding site prediction [8]. For this reason, we
use PSI-BLAST [14] to search against NCBI non-redundant
(nr) database and generate a PSSM based on BLOSUMG62
substitution matrix [15] for each protein with e-value as
0.001 and iteration number as 3. A PSSM is comprised of
L vectors (L denotes the length of the protein), in which
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contain the log-likelihoods for different amino acids in a
position. Next, we illustrate two different encoding
schemes to represent the PSSM.

I. Standard PSSM encoding scheme

Standard PSSM has been used for RNA-binding site pre-
diction by Kumar et al. [8]. For a PSSM profile, the feature
representation of a residue ¢; at position i in a protein
sequence is presented by an evolutionary information vec-
tor V; comprised of log-likelihoods for 20 different amino
acids. Considering the surrounding residues of «;, we
apply a sliding window of size w to incorporate the evolu-
tionary information from upstream and downstream
neighbors. The feature vector of a residue ¢; is represented
by (Vi.qw-1)j2:+++s Vi Vis(w-1)/2)- For the N-terminal and C-
terminal of a protein, (w-1)/2 ZERO vectors, consisting of
20 zero elements, are appended to the hand or tail of a
PSSM profile. The feature values in each vector are nor-
malized to a range between -1 and 1. In our study, we
apply different sliding window sizes ranging from 3 to 41
with astepas 2 (i.e.,, w=3,5,...,41). Figure 1(A) shows an
example of standard PSSM of a protein with e-value as
0.001 and iteration number as 3 in PSI-BLAST.

2. Smoothed PSSM encoding scheme

In addition to the consideration of neighbors of a residue
o, we propose a new encoding scheme to incorporate the
dependency of surrounding residues. In a standard PSSM
profile, the log-likelihood at each position is calculated
based on an assumption that each position is independ-
ent from the others. However, Terribilini et al. [6]
observed that RNA binding residues tend to occur in clus-

(A B)
ARNDCQEGH ILEMTFEPSTWYV ARNDCOQEGH I LKMEFTEPSTWYFV
lv 3555355654051 35425236 IV 6-2 612-17-3 94845 0 9 3401 6 4 9245 2
2N 13 7042232411354 225641 2N 4601720713248 1.3 714144 5 510 2510 4
3P 04 435304 4453568036535 3P 312 S20B616252 0.6 51842 § 51412 T 6
4K 2 04 4 5 3254 4361 3522532 4K 5732322018302 517 92318 0 81527431
54 54 4 54 4 43 314443114352 54 516322015 93025 T-13 62147 0 41627 44 18
6y P F 233 1323132223021 72232 6Y 117423303 92027 715 $2016 3 610 26 1519
7P 255 36 4255514568346 65 7P 440916312 $2527 §4 31416 2 5 926 1518
8L |3 4 5 4 1 0 4 6 4 2 42 1 25035 4 . §L 4.4 Js 1 31 7 421 24 0705 74325 5 4 2747 0
mp 94 |5 4 4 1 4 0 2 2 4 4 3 52 4 1 045 5 2 9a [CI0s 533 2 tp 22203 1028 0 4 8 3037 23]
wp P11 3228210432 21031208354 10D 0162 73 5 3D2H#B 6 2 334 05 739342
Ha |3 03 15221154206 212654 1Ua 4011582 0 519202 8 9133 82 1393319
RH MO0l L6 1 4 4 J 5 2 4 1 6 4 1 06 353 DH 6540 52 3 3141761616 637 7 4 440342
BL 1255524251 4334310540 1BL 139 63% 551616271725 5399 4 24342
MT 202401 04 1333350046353 4T 30454325 2 22018-19 920 736-14 8 2403319
I5K 4 2016 3241345464206 54 158 247485 1 22384616 116 7312010 -1 31 24 17
6K 0 4326 2043546163 026354 16K 1 346162 1 32319.16 4174113120 9 0312216
7L 0453352463 4343232541 7L 11464519 0 1217-16 4 1413 29-19-10 029 22 -14
BL 12545 1241242015341 342 18, 1| 5BI52 6 482010 1 8 94212 6§32 7
8D 04 035 1 34455556 301634 19D 0S5BI6-2 5 4B2A-12 08 9242010 92821 7
2L 1 0540323341 4012220342 DL 482A1623 45519 9 1 710420 9 882 5
AV 2 4 5 4 35335323 10322544 2V 470470 0424404 510412606 5 7819 3
ZC 22026 4241555462036 54 2o 74472 2 SBA4A2 9 B2 0 §R2A S
Be 11126404123 526311652 Bo 7216200362 9861102616 1 53122 2

Figure |
Examples of (A) standard PSSM and (B) smoothed PSSM generated by PSI-BLAST (e-value = 0.001, iteration number = 3).
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ters. Their analysis revealed that 95% of interacting resi-
dues in the RBP109 data set have at least one additional
interacting residue among the four amino acids on either
side, and 49% of those have at least four. Inspired by the
consideration of adjacent pixels used in the spatial
domain method from the research field of image process-
ing [10], we present a new encoding scheme to model the
dependency or correlation among surrounding neighbors
of a central residue. Similar to the feature representation
in standard PSSM encoding, we use a sliding window of
size w to incorporate the evolutionary information from
upstream and downstream residues. In the construction
of a smoothed PSSM, each row vector of a residue ¢; is rep-
resented and smoothed by the summation of ws sur-
rounding row vectors (Vomoothed i = Vi-(ws-1)j2 + -+ + Vit oo +
Vii(ws-1)2)- For the N-terminal and C-terminal of a pro-
tein, (w-1)/2 ZERO vectors, are appended to the hand or
tail of a smoothed PSSM profile. Using the smoothed
PSSM encoding scheme, the feature vector of a residue ¢;
is represented by (Vsmoothed_i-(w-l)/Z'"" Vsmoothed_i""'
Vomoothed_i+(w-1)2)- The feature values in each vector are
normalized to a range between -1 and 1. Here, we apply
different smoothing window sizes from 3 to 11 with a step
as 2 (i.e., ws =3, 5,..., 11). Figure 1(B) illustrates an exam-
ple of a smoothed PSSM profile. At position 9, the corre-
sponding value of amino acid 'A' represented by a
smoothed PSSM encoding is the sum of [(-2)+(-2)+(-
3)+5+(-2)+3+0].

Window size selection and parameter optimization

In order to optimize the performance of RNAProB, we
have to determine the best combination of several param-
eters, including the sliding window size w, cost parameter
C and kernel parameter y in the SVM classifier, the
smoothing window size ws, and the weight parameters w,
and w, in SVM. Table 2 shows the workflow of window
size selection and parameter optimization. In our study,
the best parameters are optimized with respect to overall
accuracy. First, we test the performance of different sliding
window sizes w from 3, 5, 7,..., 41 in standard PSSM

http://www.biomedcentral.com/1471-2105/9/S12/S6

encoding scheme using default C and y parameters in
SVM, and initial weight parameter w; as 1 and w, as the
ratio of the number of non-interacting residues to that of
interacting residues in a data set. As shown in Table 1, the
ratios of the numbers of non-interacting residues to those
of interacting residues in the RBP86, RBP109, and
RBP107 data sets are 1:3.39, 1:6.01, and 1:7.63, respec-
tively. Second, based on the optimized sliding window
size w selected from the first step, the best combination of
cost parameter C and kernel parameter y is determined
with initial weight parameters. The log,C and log,y
ranged from -3 to 12 and -3 to -15, respectively. Third, the
prediction performance of different smoothing window
sizes ws ranged from 3 to 11 with a step 2 is evaluated
using initial weight parameters and previously selected
parameters (i.e., w, C, and y). Fourth, due to data set
imbalance, the weight parameters w, and w_, are tuned
with optimized w, C, , and ws. After these steps, the opti-
mal parameters, including sliding window size w, cost
parameter C, kernel parameter 7, smoothing window size
ws, and weight parameters w; and w, are determined.

System architecture

The system architecture of RNAProB is shown in Figure 2.
Given a protein sequence, RNAProB performs the follow-
ing steps:

1. Apply PSI-BLAST to generate a standard PSSM of the
protein.

2. Generate a smoothed PSSM of the protein using an
optimized smoothing window size.

3. Construct a feature vector for each residue in the pro-
tein sequence by an optimized sliding window size, and
normalize all feature values in the vector into a range of -
1and 1.

Table 2: The workflow of window size selection and parameter optimization.

Sliding window size (w) Cand y Smoothing window size (ws) Weight parameter (w, and w_))
Step | 3<w< 4l (step =2) Default - Default ratio
Step2  Optimized w from step | -3<1og,C< 12 (step=1) Default ratio
-3 <log,y<-I5 (step = -1)
Step3  Optimized w from step | Optimized C and yfrom step 2 3<ws< | (step=2) Default ratio
Step4  Optimized w from step | Optimized C and yfrom step 2 Optimized ws from step 3 | <w <8#(step=1),w,=1I
Final Optimized w from step | Optimized C and yfrom step 2 Optimized ws from step 3 Optimized w, and w_, from step4

#In the RBP107 data set, we test w, ranged from | to 10 (step = I).
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4. Use a trained SVM classifier with optimized parameters
(C,  wy, w,) to predict the interacting and non-interact-
ing residues in the protein.

After the above steps, RNAProB outputs the correspond-
ing interacting or non-interacting state of each residue in
the protein.

Training and testing

The performance of RNAProB is assessed by n-fold cross-
validation and three-way data split. To compare with
other approaches, we use five-fold cross-validation to
evaluate the performance of RNAProB. However, to pre-
vent data-overfitting, a three-way data split procedure is
applied to assess our predictor. The performance of
RNAProB is evaluated as follows.

I. n-fold cross-validation

A data set is randomly divided into five distinct non-over-
lapping sets of positive and negative instances (i.e., n = 5),
four of which are used to train the predictor and the accu-
racy of the predictor is evaluated on the remaining set.
This procedure is repeated five times.

2. Three-way data split

To avoid over fitting, we use a more stringent three-way
data split procedure [16,17] to evaluate the performance
of RNAProB. A data set is randomly partitioned into three
non-overlapping sets: a training set for classifier learning,
a validation set for parameter selection, and a test set for
performance evaluation. In this paper, we divide a data set
into five distinct sets, three for training, one for validation,
and one for testing. The procedure is also iterated 5 times.

Performance evaluation measures

For comparison with other approaches, we follow the
measures used in previous work [8,9,18], including specif-
icity (Spec), sensitivity (Sens), MCC [19], and overall
accuracy (Acc). Specificity and sensitivity measure how
well the binary classifier recognizes negative and positive
cases, respectively. A specificity of 100% and a sensitivity
of 100% imply that the classifier identifies all non-inter-
acting residues as non-interacting and all interacting resi-
dues as interacting, correspondingly. When a predictor's
specificity increases, its sensitivity often decreases. On the
other hand, MCC, which considers both under- and over-
predictions, gives a complementary measure of the predic-
tion performance, where MCC = 1 denotes a perfect pre-
diction, MCC = 0 indicates a completely random
assignment, and MCC = -1 means a perfectly reverse cor-
relation. Moreover, overall accuracy presents how well the
classifier distinguishes true positives and true negatives,
and 100% overall accuracy denotes a perfect prediction.
The definitions of specificity, sensitivity, MCC, and over-
all accuracy are defined in Equations (3), (4), (5), and (6),
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respectively. In the equations, TP, TN, FP, and FN denote
the numbers of true positives, true negatives, false posi-
tives, and false negatives, correspondingly.

Specificity = TN/(TN + FP) x 100 (3)

Sensitivity = TP/(TP + FN) x 100 (4)

MCC = (TP x TN — FP x EN) / \/(TP + FP) x (TP + FN) x (IN + FP) x (TN + FN)

(5)
Acc = (TP + TN)/(TP + TN + FP + FN) x 100 (6)

In addition to the above measures, we also use the receiver
operating characteristic (ROC) curve [20] and area under
the ROC curve (AUC) [21] to evaluate the performance of
standard and smoothed PSSM encoding schemes. In an
ROC curve plot, the X-axis represents false positive rate
(i.e., 1-specificity) and Y-axis denotes true positive rate
(i.e., sensitivity). We incorporate different thresholds in
the SVM classifier to plot the true positive rates against
false positive rates in an ROC curve. Moreover, AUC cal-
culates the area under an ROC curve and the maximum
value of AUC is 1, which denotes a perfect prediction. A
random guess results in an AUC value close to 0.5.

To determine the thresholds in the SVM classifiers, we fol-
low the criteria used in the previous work. We notice that
the thresholds in other approaches are optimized with
respect to different measures. For example, Kumar et al.
[8] and Jeong and Miyano [7] both optimized their results
in the RBP86 data set based on MCC. In addition, Terri-
bilini et al. [6] also selected the thresholds with the best
MCC for the RBP109 data set. On the other hand, Wang
and Brown [18] determined the best thresholds in the
RBP107 data set based on the average of specificity and
sensitivity. Therefore, the thresholds in RNAProB are opti-
mized with respect to MCC for the RBP86 and RBP109
data sets, while the threshold is determined by the average
of sensitivity and specificity for the RBP107 data set.

Results

Effect of smoothed PSSM encoding scheme

Here we compare the performance of smoothed PSSM
and standard PSSM encoding scheme in terms of MCC,
overall accuracy, ROC curve, and AUC for the benchmark
data sets. Table 3 shows the performance comparison of
standard PSSM and smoothed PSSM using five-fold cross-
validation and three-way data split. Evaluated by five-fold
cross-validation, smoothed PSSM encoding scheme
attains overall accuracy of 87.99%, 89.70%, and 80.44%
compared to 83.39%, 87.38%, and 77.80% by standard
PSSM encoding for the RBP86, RBP109, and RBP107 data
sets, respectively. Moreover, smoothed PSSM encoding
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Table 3: Performance comparison of standard PSSM and
smoothed PSSM.

Data set Smoothed PSSM Standard PSSM

Acc (%) MCC Acc (%) MCC
RBP86 87.99 (87.65) 0.68 (0.67) 83.39 (83.35) 0.502 (0.496)
RBP109 89.70 (89.36) 0.58 (0.56) 87.38 (86.95) 0.45 (0.43)
RBP107  80.44 (79.84) 0.42 (0.40) 77.80 (77.55) 0.36 (0.35)

§ The performance of incorporating a three-way data split procedure
is shown in the parentheses.

scheme achieves improvements of 0.06~0.178 in MCC
compared to standard PSSM. Similarly, assessed by three-
way data split, smoothed PSSM encoding also performs
better than standard PSSM in terms of both overall accu-
racy and MCC in the three data sets.

Figure 3(A), (B), and 3(C) illustrate the ROC curves and
AUC of smoothed PSSM and standard PSSM encoding
schemes for the three benchmark data sets. The solid blue
line and dotted red line represent the ROC curves plotted
according to the performance of smoothed PSSM and
standard PSSM encoding schemes, respectively. When
smoothed PSSM encoding scheme is used to represent the
proteins, AUC achieve 0.929, 0.902, and 0.860 on the
RBP86, RBP109, and RBP107 data sets, respectively; on
the other hand, standard PSSM only attains AUC of 0.835,
0.824, and 0.817.

Experimental results demonstrate that our proposed
smoothed PSSM encoding scheme not only achieves good
prediction performance, but also yields a significant
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improvement over standard PSSM encoding. Smoothed
PSSM encoding scheme outperforms standard PSSM by
2.32%n~4.60% in overall accuracy and 0.06~0.178 in
MCC. The consideration of dependency among neighbor-
ing residues works well in distinguishing interacting resi-
dues from non-interacting ones; accordingly, the
prediction performance of smoothed PSSM encoding
scheme is substantially improved. This supports our
assumption that the incorporation of the correlation
between surrounding residues in PSSM profiles can signif-
icantly enhance the performance of RNA-binding site pre-
diction.

RNAProB prediction performance on the benchmark data
sets

For each data set, we used five-fold cross-validation and
three-way data split to evaluate the prediction perform-
ance, which is detailed below and summarized in Table 4.

|. Performance comparison with other approaches on the RBP86
data set

The window sizes, including the sliding window size w
and smoothing window size ws, and other parameters in
RNAProB are selected with respect to overall accuracy.
First, Figure 4(A) shows the overall accuracy of applying
different sliding window sizes on the RBP86 data set. The
overall accuracy evaluated by both five-fold cross-valida-
tion and three-way data split grows rapidly before it
reaches 77%. However, a slow growth in the overall accu-
racy is observed as the size of sliding window is greater
than 25. Thus, the sliding window size w is set as 25 for
the RBP86 data set. Next the prediction performance of
different smoothing window sizes based on previously

A B) ©
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0.8
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£ 2 2
= s =
2 2 E
g 2 04 “n
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0 T T T 0 T T T 0 T T
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 08 1 (1] 0.2 0.4 0.6 0.8 1
1-Specificity 1-Specificity 1-Specificity
e Smoothed PSSM, AUC=0.929 e Smoothed PSSM, AUC=0.902 e Smoothed PSSM, AUC=0.860
= = Standard PSSM, AUC=0.835 — = Standard PSSM, AUC=0.824 = = Standard PSSM, AUC=0.817

Figure 3

ROC curves and AUC of the (A) RBP86, (B) RBP109, and (C) RBP107 data sets.
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Table 4: Performance of five-fold cross-validation and three-way data split for the benchmark data sets.

Data set Measurements Spec. (%) Sens. (%) Acc (%) MCC Threshold
RBP86 5-fold CV 90.36 79.95 87.99 0.68 0.36
3-way data split 90.01 79.64 87.65 0.67 0.36
RBP109 5-fold CV 93.88 64.62 89.70 0.58 0.35
3-way data split 94.14 60.63 89.36 0.56 0.35
RBP107 5-fold CV 80.87 77.14 80.44 0.42 0.11
3-way data split 80.65 73.62 79.84 0.40 0.12

determined sliding window size (i.e. w = 25) is illustrated
in Figure 4(B) and 4(C). In Figure 4(B), although there is
a very slow growth in the overall accuracy, we observe that
MCC is improved from 0.50 to 0.67 when the size of
smoothing window is increased from 1 to 7. Nevertheless,
the performance improvement in MCC (i.e. improvement
< 0.01) is not significant as the size of smoothing window
is greater than 7. Similar trends in MCC and overall accu-
racy are also observed in Figure 4(C). Therefore, we use 7
as the smoothing window size ws in our method. As
shown in Table 4, the performance of RNAProB evaluated
by five-fold cross-validation achieves MCC, overall accu-
racy, specificity, and sensitivity of 0.68, 87.99%, 90.36%,
and 79.95%, (with sliding window size w = 25, smoothing
window size ws = 7, cost parameter C = 4, kernel function
parameter ¥ = 0.015625, weight parameter w; =4, w , =1,
and threshold value = 0.36), respectively. Besides, using a
more rigorous three-way data split procedure, our method
also attains MCC, overall accuracy, specificity, and sensi-
tivity of 0.67, 87.65%, 90.01%, and 79.64%, (with w = 25,
ws=7,C=1, y=0.03125, w, = 4, w, = 1, and threshold
value = 0.36), correspondingly. The experimental results
of window size selection and parameter optimization on
the RBP86 data set are shown in the supplementary mate-
rial [see Additional file 4].

The performance comparison with two other approaches
developed on the same data set is shown in Table 5. Jeong
and Miyano [7] used an ANN to incorporate evolutionary
information and obtained MCC, overall accuracy, specifi-
city, and sensitivity of 0.39, 80.20%, 91.04%, and
43.40%, respectively. The MCC of their proposed method
was further improved to 0.41 based on a weighted profile
approach. In addition, Kumar et al. developed PPRint [8],
which incorporated PSSM profiles in an SVM model, and
attained MCC, overall accuracy, specificity, and sensitivity
0f0.45, 81.16%, 89.55%, and 53.05%, respectively. Com-
pared to these approaches, our method not only achieves
high overall accuracy but also significantly improves the
sensitivity by 26.90%~36.55% using five-fold cross-vali-
dation. Moreover, RNAProB achieves 0.68 in MCC, com-
pared to 0.45 by PPRint and 0.41 by Jeong and Miyano.

2. Performance comparison with RNABindR on the RBP 109 data set
Figure 5 illustrates the experimental results of different
sliding and smoothing window sizes on the RBP109 data
set. Similar to the RBP86 data set, the RBP109 data set
exhibits a slow growth in the prediction performance
when sliding window size w is greater than 25 or smooth-
ing window size ws is larger than 7. Thus, we also select w
as 25 and ws as 7 for this data set. Table 4 shows that
RNAProB attains 0.58, 89.70%, 93.88%, and 64.62% in
MCC, overall accuracy, specificity, and sensitivity using
five-fold cross-validation (with w = 25, ws =7, C=4, y=
0.015625, w; = 4, w, = 1, and threshold value = 0.35),
respectively. Besides, evaluated by three-way data split,
our method obtains MCC, overall accuracy, specificity,
and sensitivity of 0.56, 89.36%, 94.14%, and 60.63%
(withw =25, ws=7,C=8, y=0.015625, w, =4, w, =1,
and threshold value = 0.35), respectively. The prediction
performance of different window sizes and parameters on
the RBP109 data set is detailed in the supplementary
material [see Additional file 5].

Table 5 illustrates the performance comparison with
RNABindR [6,11], a Naive Bayes based method developed
on the same data set. Using five-fold cross-validation,
RNAProB achieves 0.58, 89.70%, 93.88%, and 64.62% in
MCQC, overall accuracy, specificity, and sensitivity, respec-
tively, compared favourably to 0.35, 84.80%, 93.00%,
and 38.00% by RNABindR. Particularly, our method sig-
nificantly outperforms RNABindR by 26.62% in terms of
sensitivity.

3. Performance comparison with other approaches on the RBP107
data set

The prediction performance of different sliding and
smoothing window sizes on the RBP107 data set is dem-
onstrated in Figure 6. Similar to the RBP86 data set, we
observe that the overall accuracy converges as sliding win-
dow size is greater than 25 on the RBP107 data set in Fig-
ure 6(B). Moreover, the MCC shows a slight peak when
the smoothing window size reaches 7 in Figure 6(C). Thus
RNAProB also selects w as 25 and ws as 7 for this data set.
As illustrated in Table 4, our method reaches 0.42,

Page 9 of 19

(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 12):S6

(A)

http://www.biomedcentral.com/1471-2105/9/S12/S6

81.00%
80.00%

79.00%

78.00%

7700% +—rn AP Qee PG ¥ N

76.00%

75.00% SO

74.00% e
73.00% A

72.00% ra

71.00% T T
3 5 7 8

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

=== Acc (Five-fold cross-validation) O Acc (Three-way data split)

Window Size

B

1.00
0.90

0.80

0.70

0.60 /
0.50

0.40

0.30

—o=MCC (Five-fold cross-validation) o Acc (Five-fold cross-validation)

Window Size

©

1.00

0.90

0.80

0.70

0.60 /
0.50

0.40

0.30

== MCC (Three-way data split) ©— Acc (Three-way data split)

Window Size

Figure 4

(A) Accuracy with respect to different sliding window sizes using five-fold cross-validation and three-way data split for the
RBP86 data set, respectively. (B) The performance of the RBP86 data set with different smoothing window sizes by five-fold
cross-validation. (C) The performance of the RBP86 data set with different smoothing window sizes by three-way data split.
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Table 5: Performance comparison of different approaches using five-fold cross-validation for the benchmark data sets.

Data set Method Spec. (%) Sens. (%) Acc (%) MCC Threshold
RBP86 Jeong 2006 91.04 434 80.2 0.39 (0.41)* -
PPRint 89.55 53.05 8l.16 0.45 -
RNAProB § 90.36 79.95 87.99 0.68 0.36
RNAProB # 90.01 79.64 87.65 0.67 0.36
RBP109 RNABindR 93.00 38.00 84.80 0.35 -
RNAProB § 93.88 64.62 89.70 0.58 0.35
RNAProB # 94.14 60.63 89.36 0.56 0.35
RBP107 BindN-PCP& 69.84 66.28 69.32 0.27 -
BindN-ALL% 75.70 65.78 74.25 - -
PPRint 75.54 70.09 7543 0.32 -
RNAProB § 80.87 77.14 80.44 0.42 0.11
RNAProB # 80.65 73.62 79.84 0.40 0.12

§ presents the performance by five-fold cross-validation.
# denotes the performance by a three-way data split procedure.
* indicates the performance of weighted profiles by Jeong and Miyano [7].

&BindN-PCP represents the results based only on physicochemical properties, while BindN-ALL shows the performance using physicochemical

properties, relative solvent accessible surface area, and BLAST results.

80.44%, 80.87%, and 77.14% in MCC, overall accuracy,
specificity, and sensitivity by five-fold cross-validation
(withw =25, ws=7,C=4, y=0.015625, w; =4, w, =1,
and threshold value = 0.11), respectively. In addition,
RNAProB also attains MCC, overall accuracy, specificity,
and sensitivity of 0.40, 79.84%, 80.65%, and 73.62% by
three-way data split (with w = 25, ws =7, C =8, y =
0.015625, w; =4, w, = 1, and threshold value = 0.12), cor-
respondingly. The detailed experimental results on the
RBP109 data set are summarized in the supplementary
material [see Additional file 6].

Table 5 compares the performance of RNAProB with other
approaches on the RBP107 data set. Based on physico-
chemical properties, BindN (i.e. referred to as BindN-PCP
in Table 5) attains MCC, overall accuracy, specificity, and
sensitivity of 0.27, 69.32%, 69.84%, and 66.28%, respec-
tively [9]. Incorporated with more biological features,
BindN (i.e. denoted as BindN-ALL in Table 5) further
improves specificity and accuracy by 5.86% and 4.93%
with a slight decrease in sensitivity [18]. PPRint improves
sensitivity to 70.09% with the other measures performed
comparable to those of BindN-ALL. Our method signifi-
cantly outperforms the-state-of-the-art approaches by
0.10, 5.10%, 5.33%, and 7.05% in MCC, overall accuracy,
specificity, and sensitivity, respectively. This demonstrates
that RNAProB not only achieves accurate performance,
but also substantially improves sensitivity in the predic-
tion of RNA-binding sites.

Discussion

Physicochemical preferences of interacting and non-
interacting residues

In this section, we examine the physicochemical proper-
ties of RNA interacting and non-interacting residues. Fig-
ure 7(A), (B), and 7(C) show the amino acid
compositions of interacting and non-interacting residues
in the RBP86, RBP109, and RBP107 data sets, respectively.
It is observed that interacting and non-interacting residues
show preferences for different amino acids. RNA interact-
ing residues tend to have high compositions for Arginine
(R), Asparagine (N), Glutamine (Q), Glycine (G), Histi-
dine (H), and Lysine (K). For example, there are relatively
high proportions for Arginine (R) and Lysine (K), which
may interact with negatively charged RNA with their pos-
itive side chains. In addition, the smallest amino acid,
Glycine (G), also has a high composition in interacting
residues because it rotates easily and provides flexibility to
interact with RNA molecules. Moreover, positively
charged Histidine (H) can have an aromatic interaction
with RNA molecules due to its specific pKa value and imi-
dazole ring. On the other hand, non-interacting residues
show slight preferences for Alanine (A), Aspartic acid (D),
Glutamic acid (E), Isoleucine (I), Leucine (L), Phenyla-
lanine (F), and Valine (V). Cysteine (C), Aspartic acid (D),
and Glutamic acid (E) are favoured by non-interacting res-
idues because of their negatively charged side chains. In
addition, although Kumar et al. [8] reported that Aspartic
acid (D) showed no preference for interacting or non-
interacting residues in their main data set (i.e., the RBP86
data set in our study), we observed that the Aspartic acid
(D) composition of non-interacting residues is signifi-
cantly higher than that of interacting residues in both of
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Figure 5

(A) Accuracy with respect to different sliding window sizes using five-fold cross-validation and three-way data split for the
RBP109 data set, respectively. (B) The performance of the RBP109 data set with different smoothing window sizes by five-fold
cross-validation. (C) The performance of the RBP109 data set with different smoothing window sizes by three-way data split.
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(A) Accuracy with respect to different sliding window sizes using five-fold cross-validation and three-way data split for the
RBP107 data set, respectively. (B) The performance of the RBP107 data set with different smoothing window sizes by five-fold
cross-validation. (C) The performance of the RBP107 data set with different smoothing window sizes by three-way data split.
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Figure 7

Amino acid compositions of interacting and non-interacting residues in the benchmark data sets.
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Figure 8
Grouped amino acid compositions of interacting and non-interacting residues in the benchmark data sets.
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the RBP109 and RBP107 data sets. Our analysis indicates
that the finding from Kumar et al. could be a bias from the
data set.

To further analyze the physicochemical properties of the
RNA interacting and non-interacting residues, each amino
acid is classified into one of the four groups: acidic (DE),
basic (HKR), polar (CGNQSTY), and non-polar (AFILM-
PVW) [22]. Figure 8 shows the grouped amino acid com-
positions of interacting and non-interacting residues for
the benchmark data sets. It is observed among the three
data sets that basic and polar amino acids tend to interact
with RNA, and acidic and non-polar amino acids are not
favoured by RNA molecules. Particularly, our analysis
shows that the compositions of basic amino acids exhibit
significantly over-represented patterns for interacting resi-
dues.

(A)The rRNA group (55 protein chains with 2,392

interacting and 5,302 non-interacting residues).

http://www.biomedcentral.com/1471-2105/9/S12/S6

Furthermore, we inspect the amino acid compositions of
proteins that interact with different RNA molecules. The
proteins in the RBP109 data set are divided into four cat-
egories according to the definition in Terribilini et al [6].
Figure 9(A), (B), (C), and 9(D) show the amino acid com-
positions of (A) rRNA, (B) mRNA, snRNA, dsRNA, and
siRNA, (C) tRNA, and (D) viralRNA, respectively. It is
observed that viralRNA group shows a different amino
acid composition compared to the other groups. Proteins
that interact with viralRNA evolve fast and induce confor-
mational changes in the active sites. Thus, these proteins
exhibit a specific mechanism to interact with viralRNA.

Comparison of smoothed PSSM and standard PSSM

Here we examine the correlation between interacting and
non-interacting residues for both smoothed PSSM and
standard PSSM encoding schemes. We incorporate Pear-
son correlation coefficient (PCC) [23] to measure the cor-
relation between the evolutionary information of

(B) The mRNA, snRNA, dsRNA, and siRNA group
(23 protein chains with 394 interacting and

3,320 non-interacting residues).

25%
20% +—
15% - =
10% ~

* Iak_g 1”,ﬂ|1h e ak

ARNDCQEGHILKMFPSTWYYV

E rRNA Non-Interacting O rRNA Interacting

25%
20%
15%
10%

r
|
ol 1 11 H.]Iil,'.:n,n ik

ARNDCQEGHI LKMFPSTWYYV

B mRNANon-Interacting  COmRNA Interacting

(C)The tRNA group (19 protein chains with 646

interacting and 9,095 non-interacting residues).

(D) The viralRNA group (12 protein chains with 149

interacting and 3,809 non-interacting residues).
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Figure 9

Amino acid compositions of interacting and non-interacting residues in four different RNA groups of the RBP109 data set.
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(A) The RBP86 data set (B) The RBP109 data set
A
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Figure 10
Pearson correlation coefficient between interacting and non-interacting evolutionary vectors generated by different PSSM
encoding schemes in the benchmark data sets.

interacting and non-interacting for an amino acid. For  interacting and non-interacting amino acid a, respectively.
each amino acid a, we use two vectors, X and Y, to present ~ The Pearson correlation coefficient for a series of n meas-
the sum of PSSM evolutionary information vectors for =~ urements for variables X and Y is defined in Equation (7).
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Figure 10 shows the Pearson correlation coefficient
between interacting and non-interacting evolutionary
information vectors based on different PSSM encoding
schemes in the benchmark data sets. It is observed that the
correlation coefficients calculated from smoothed PSSM
encoding scheme are lower than those from standard
PSSM, especially for Cysteine (C) and Tryptophan (W). In
Figure 10(A), smoothed PSSM encoding attains lower cor-
relation coefficients not only in interacting residues, such
as arginine (R), asparagine (N), glutamine (Q), glycine
(G), histidine (H), and lysine (K), but also in non-inter-
acting residues, including alanine (A), aspartic acid (D),
glutamic acid (E), isoleucine (I), leucine (L), phenyla-
lanine (F), and valine (V). Similarly, Figure 10(B) and
10(C) also show lower correlation coefficients between
interacting and non-interacting residues based on
smoothed PSSM encoding. Furthermore, it is observed
that the correlation coefficients calculated with smooth-
ing window size ws = 7 are usually lower than those gen-
erated by other smoothing window sizes. If an encoding
scheme leads to a lower Pearson correlation coefficient, it
indicates that the encoding scheme can better resolve
ambiguity in discriminating interacting residues from
non-interacting ones. Our analysis lends support to our
assumption that smoothed PSSM encoding scheme can
improve the recognition RNA interacting and non-inter-
acting sites by modelling the dependency from surround-
ing residues.

Conclusion

We present RNAProB, which combines a new smoothed
PSSM encoding scheme with a SVM model for prediction
of RNA-binding sites in proteins. In a standard PSSM pro-
file, evolutionary information is calculated based on an
assumption that each position is independent of others.
However, the correlation or dependency from surround-
ing residues is incorporated in the proposed smoothed
PSSM encoding. Experimental results show that the pre-
diction performance of smoothed PSSM encoding per-
forms better than the state-of-the-art approaches on the
benchmark data sets. Evaluated by five-fold cross-valida-
tion, RNAProB outperforms the other approaches by
0.10~0.23 in MCC, 4.90%~6.83% in overall accuracy,
and 0.88%~5.33% in specificity. Most notably, our
method significantly improves sensitivity by 26.90%,
26.62%, and 7.05% for the RBP86, RBP109, and RBP107
data sets, respectively. Performance improvement in
RNAProB not only demonstrates that smoothed PSSM can
better resolve the ambiguity in discriminating RNA inter-
acting and non-interacting residues, but also supports our
assumption that consideration of correlation between

http://www.biomedcentral.com/1471-2105/9/S12/S6

neighboring residues can significantly enhance prediction
accuracy. To prevent data over fitting, a rigorous three-way
data split procedure is incorporated to evaluate our pre-
diction performance. The proposed method can be used
in other research topics, such as DNA-binding site predic-
tion, protein-protein interaction, and prediction of post-
translational modification sites.
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