
BioMed CentralBMC Bioinformatics

ss
Open AcceProceedings
Normalizing biomedical terms by minimizing ambiguity and
variability
Yoshimasa Tsuruoka*1, John McNaught1,2 and Sophia Ananiadou1,2

Address: 1School of Computer Science, The University of Manchester, MIB, 131 Princess Street, Manchester, M1 7DN, UK and 2National Centre
for Text Mining (NaCTeM), MIB, 131 Princess Street, Manchester, M1 7DN, UK

Email: Yoshimasa Tsuruoka* - yoshimasa.tsuruoka@manchester.ac.uk; John McNaught - john.mcnaught@manchester.ac.uk;
Sophia Ananiadou - sophia.ananiadou@manchester.ac.uk

* Corresponding author

Abstract
Background: One of the difficulties in mapping biomedical named entities, e.g. genes, proteins,
chemicals and diseases, to their concept identifiers stems from the potential variability of the terms.
Soft string matching is a possible solution to the problem, but its inherent heavy computational cost
discourages its use when the dictionaries are large or when real time processing is required. A less
computationally demanding approach is to normalize the terms by using heuristic rules, which
enables us to look up a dictionary in a constant time regardless of its size. The development of good
heuristic rules, however, requires extensive knowledge of the terminology in question and thus is
the bottleneck of the normalization approach.

Results: We present a novel framework for discovering a list of normalization rules from a
dictionary in a fully automated manner. The rules are discovered in such a way that they minimize
the ambiguity and variability of the terms in the dictionary. We evaluated our algorithm using two
large dictionaries: a human gene/protein name dictionary built from BioThesaurus and a disease
name dictionary built from UMLS.

Conclusions: The experimental results showed that automatically discovered rules can perform
comparably to carefully crafted heuristic rules in term mapping tasks, and the computational
overhead of rule application is small enough that a very fast implementation is possible. This work
will help improve the performance of term-concept mapping tasks in biomedical information
extraction especially when good normalization heuristics for the target terminology are not fully
known.

from The Second International Symposium on Languages in Biology and Medicine (LBM) 2007
Singapore. 6-7 December 2007

Published: 11 April 2008

BMC Bioinformatics 2008, 9(Suppl 3):S2 doi:10.1186/1471-2105-9-S3-S2

<supplement> <title> <p>Proceedings of the Second International Symposium on Languages in Biology and Medicine (LBM) 2007</p> </title> <editor>Christopher JO Baker and Su Jian</editor> <note>Proceedings</note> <url>http://www.biomedcentral.com/1471-2105-9-S3-info.pdf</url> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/9/S3/S2

© 2008 Tsuruoka et al.; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/S3/S2
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9(Suppl 3):S2 http://www.biomedcentral.com/1471-2105/9/S3/S2
Background
Named entities such as names of genes, proteins, chemi-
cals, tissues, and diseases play a central role in informa-
tion extraction from biomedical documents [1-3]. To fully
utilize the information they convey in the document, we
generally need to perform two steps. In the first step,
which is commonly called named entity recognition, we
identify the regions of text that are likely to be named enti-
ties and classify them into predefined categories. Substan-
tial research efforts have been devoted to the
improvement of named entity recognizers, and today we
can identify biomedical named entities in the literature
with reasonable (although still not entirely satisfactory)
accuracy by using rule-based or machine learning-based
techniques [4-8].

In the second step, we map the recognized entities with
the corresponding concepts in the dictionary (or ontol-
ogy). This step is crucial for making the extracted informa-
tion exchangeable at the concept level [9]. This mapping
task has proven to be non trivial especially in the biomed-
ical domain [10-13]. One of the main problems is that
biomedical terms have many potential variants, and it is
not possible for a dictionary to cover all possible variants
in advance.

One possible approach to tackle this problem is to use soft
string matching techniques. Soft matching enables us to
compute the degree of similarity between strings, and thus
we can associate a term with its concept even when the
dictionary fails to contain the exact spelling of the term. In
fact, soft matching methods have been shown to be useful
in several gene/protein name mapping tasks [11,13,14].
Soft string matching, however, is not without drawbacks:
the method requires a considerable computational cost
when looking up the dictionary [15]. This problem is par-
ticularly serious when we use large dictionaries such as
those for gene/protein names and disease names, which
can contain more than hundreds of thousands terms.
Although there are techniques to speed up the computa-
tion for simple similarity measures like uniform-cost edit
distance [16], it is hard to apply those techniques to the
sophisticated similarity measures needed in real mapping
tasks. To make matters worse, the size of the literature that
we need to analyze for biomedical information extraction
could be huge—MEDLINE abstracts contain more than 70
million sentences, let alone full papers.

Another approach to alleviate the problem of term varia-
tion is to normalize the terms by using heuristic rules [17-
19]. For example, converting capital letters to lower case
has been shown to be an effective normalization rule for
gene/protein names [17]. The distinct advantage of the
normalization approach over the soft matching approach
is the speed of looking up the dictionary. Once the terms

are normalized, we can use a hashing technique to lookup
a dictionary with a constant computational cost regardless
of its size, while the cost for soft matching increases line-
arly with the size of the dictionary.

What is most important in the normalization approach is
how we normalize the terms. Bad heuristic rules often lose
important information in the terms. For example, deleting
all digits from a term is probably a bad rule for gene/pro-
tein names, because the rule makes it impossible to distin-
guish ‘ACE1’ and ‘ACE2’ although it enables us to match
‘ACE’ with ‘ACE1.’

Although using good heuristic rules is certainly impor-
tant, their development is not straightforward. It requires
good intuition and extensive knowledge of the terminol-
ogy in question; the developer has to know the types of
variation and potential side effects of normalization. Con-
sequently, it remains to be seen what normalization rules
would work well for various classes of named entities in
the biomedical domain.

In this paper, we present a novel approach for the auto-
matic discovery of term normalization rules, which
requires no expert knowledge of the terminology. To
achieve this goal, we leverage the important insight pro-
vided in previous studies [17,20] in which contrast and
variability in gene names were analyzed to test the effec-
tiveness of several normalization heuristics. Their work
suggests that one could distinguish good normalization
rules from bad ones by analyzing the effect of normaliza-
tion on the relationships between terms and their concept
IDs in the dictionary. We take their work one step further
and present a framework for discovering a list of “good”
normalization rules from a dictionary in a fully auto-
mated manner.

Methods
Ambiguity and variability
In this section, we describe two notions that are needed to
quantify the utility of a normalization rule. We call them
ambiguity and variability.

First, let us define a dictionary simply as a list of terms {t1,
…, tN} where each term is associated with a concept ID cj
∈ {c1, …, cM}. In the biomedical domain, concept IDs typ-
ically correspond to the unique identifiers for conceptual
entities such as genes, chemicals, and diseases defined in
biomedical databases (e.g. UniProt, InChI, and OMIM).

Table 1 shows an imaginary dictionary consisting of only
three concept IDs. Here, we define two values for the dic-
tionary: the ambiguity value and the variability value. The
ambiguity value quantifies how ambiguous, on average,
Page 2 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 3):S2 http://www.biomedcentral.com/1471-2105/9/S3/S2
the terms in the dictionary are. More specifically, we
define the ambiguity value as follows:

where N is the number of terms in the dictionary, and
C(ti) is the number of the concept IDs that include a term
whose spelling is identical to ti.

The variability value, in contrast, quantifies how variable
the terms are. This is calculated as:

Where M is the number of concept IDs in the dictionary,
and T(cj) is the number of unique terms that the concept cj
includes.

For the dictionary shown in Table 1, we can calculate
these values as follows:

These values can be seen as the indicators of the complex-
ity of terminology. Ideally, we do not want the terms to be
ambiguous or variable, because both lead to impaired
performance in mapping tasks. We thus favour smaller
values for these factors.

Now let us see how a normalization rule can change the
situation. Suppose that we have the normalization rule
that removes hyphens. By applying it to the terms in the

dictionary, ‘IL-2’ becomes ‘IL2’, and ‘IL-3’ becomes ‘IL3’.
Then we obtain new values for ambiguity and variability:

We have succeeded in reducing the variability value with-
out increasing the ambiguity. This indicates that this nor-
malization rule is a good one.

For the same dictionary shown in Table 1, we could think
of a different normalization rule that replaces all digits
with the special symbol ‘#’. If we apply this rule to the dic-
tionary, ‘IL2’ and ‘IL3’ become ‘IL #’, ‘IL-2’ and ‘IL-3’
become ‘IL-#’, and ‘ZFP580’ and ‘ZFP581’ become
‘ZFP###’. We then obtain:

Although we have a decreased value for variability, the
ambiguity value has increased. This indicates that this
normalization rule may not be a good one.

The examples above demonstrate that we could distin-
guish good normalization rules from bad ones by observ-
ing the change of the ambiguity/variability values defined
in the dictionary. In general, a normalization rule reduces
the variability value at the sacrifice of the increase in the
ambiguity value. Therefore, what we want is a rule that
can maximize the reduction of the variability value and
keep the increase of the ambiguity value minimal.

We now need to integrate the two values in order to quan-
tify the overall “goodness” of a normalization rule. We
define a new value, which we call complexity, as follows:

where α is the constant that determines the trade-off
between ambiguity and variability.

Now the problem has become very simple; if a normaliza-
tion rule can reduce the complexity value for the diction-
ary, then the rule is a good rule, otherwise it is a bad rule.

ambiguity
N

C ti
i

N

() ()=
=
∑ 1

1

, (1)

variability() ()=
=

∑ 1
1M
T cj

j

M

, (2)

ambiguity() ()= + + + + + + + +

=

1
9

1 1 2 1 1 2 1 1 1

1 22.

variability() ()= + +

=

1
3

3 3 3

3

ambiguity() ()= + + + + + + + +

=

1
9

1 1 2 1 1 2 1 1 1

1 22.

. ...

variability() ()= + +

=

1
3

2 2 3

2 33

ambiguity() ()= + + + + + + + +

=

1
9

2 2 2 2 2 2 1 1 1

1 66.

. ...

variability() ()= + +

=

1
3

3 3 2

2 66

complexity ambiguity() ()× ()= variability
α

,

(3)

Table 1: Ambiguity and variability in a dictionary. This is an
imaginary dictionary consisting of three concept IDs. All terms
belonging to the same concept ID are assumed to be
synonymous (conveying the same meaning).

Concept ID Term

1 IL2
1 IL-2
1 Interleukin
2 IL3
2 IL-3
2 Interleukin
3 ZFP580
3 ZFP581
3 Zinc finger protein
Page 3 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 3):S2 http://www.biomedcentral.com/1471-2105/9/S3/S2
Generating rule candidates
The next problem is how we automatically generate nor-
malization rules. Ideally, we want to allow normalization
rules to be of any type, such as regular expressions and
context-free grammars. However, we found it difficult to
incorporate such complex rules in a fully automatic man-
ner because it entails a huge search space for rule hypoth-
eses.

In this work, we focus only on character-level replacement
rules. By focusing on this type, we can easily generate rule
candidates from the terms in the dictionary. For example,
the first and the second terms in the dictionary given in
Table 1 constitute the following pair.

IL2

IL-2

From this pair, we can easily see that we will be able to
match the two terms if we remove the hyphens (i.e.
replace the hyphens with the null character), which in turn
will reduce the variability value of the dictionary. In other
words, we can automatically generate the rule that
removes hyphens, by observing this term pair.

More formally, we can represent any pair of terms X and Y
as follows:

LXCR

LYCR

where L is the left common substring shared by X and Y,
R is the right common substring, and XC and YC are the
substrings at the center that are not shared by the two
strings. From this representation, we create the rule that
replaces YC with XC, which will transform Y into X.

For the above example pair ‘IL2’ and ‘IL-2’, L is ‘IL’, R is ’2’,
YC is ‘-’, and XC is the null character. If we take the first
term ‘IL2’ and the third term ‘Interleukin’ from the dic-
tionary in Table 1, L is ‘I’, R is the null character, YC is ‘nter-
leukin’, and XC is ‘L2’.

Discovering rules
In the previous sections, we have defined a measure to
quantify the utility of a normalization rule and presented
a method to generate a rule candidate from any given term
pair. Now we describe the whole process of rule discovery.
The process is as follows:

1. Generate rule candidates from all possible pairs of syn-
onymous terms in the dictionary (i.e. terms sharing the
same concept ID).

2. Select a rule that can reduce the complexity value
defined by Equation 3.

3. Apply the rule to all the terms in the dictionary.

4. Go back to 1—repeat until the predefined number of
iterations is reached.

Notice that the process is iterative—we apply the discov-
ered rule immediately to the dictionary and then use the
updated dictionary for the next iteration. This is because
the rules discovered are to be used in sequential manner;
the end product of our rule discovery system is a list of
normalization rules, and we shall use them exactly in the
same order specified in the list. Thus the terms in the dic-
tionary have to be sequentially updated in the rule discov-
ery process to make sure that they go through the same
rule applications.

In step 2, we need to select a good rule from the rule can-
didates generated in step 1. The obvious strategy would be
to select the rule that maximizes the reduction of the com-
plexity value of the dictionary. However, we found this
strategy impractical when the dictionary is large, because
it requires us to try applying every rule candidate to the
dictionary to see its utility. In this work, we use a less com-
putationally intensive strategy. First, we sort the rule can-
didates in descending order of frequency of occurrence.
We then pick up the first rule that can decrease the com-
plexity value. This strategy worked reasonably well, since
the rule candidates that are generated many times
decrease the variability value to a greater degree than
infrequent ones do.

To further improve the efficiency of the entire process, we
do not consider any rule candidates that have failed once
to reduce the complexity value. This pruning method is
not completely safe, because the terms in the dictionary
change as the process proceeds and thus a candidate that
has been rejected once could become acceptable at some
point. However, we found that the speed-up gain out-
weighs the demerit when the dictionary is large.

Results and discussion
Dictionaries
We used two large-scale dictionaries for the experiments
to evaluate our rule discovery algorithm. One is a diction-
ary for human gene/protein names, and the other for dis-
ease names.

The gene/protein name dictionary was created from
BioThesaurus [21], which is a collection of more than two
million gene/protein names for various species. We
selected only the human genes/proteins by consulting the
UniProt database [22] and removed the names that were
Page 4 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 3):S2 http://www.biomedcentral.com/1471-2105/9/S3/S2
nonsensical (e.g. IDs for other databases). The resulting
dictionary consisted of 14,893 concept IDs and 205,909
terms.

The disease dictionary was created from UMLS Metathe-
saurus [23], which is a large multi-lingual vocabulary
database that contains biomedical and health related con-
cepts and their various names. We extracted all entries that
were associated with the semantic type “Disease or Syn-
drome.” The resulting dictionary consisted of 48,391 con-
cept IDs and 148,531 terms.

Table 2 shows statistics of the dictionaries. Note that the
terms in the gene/protein dictionary are highly ambigu-
ous in the first place. For evaluation purpose, we also cre-
ated a reduced version for each dictionary by removing all
ambiguous terms.

Evaluation using held-out terms
As discussed in the Methods section, we create normaliza-
tion rules in such a way that they minimize the variability
and ambiguity of the terms in the dictionary. We thus
know that they are “good” rules for the terms included in
the dictionary. It is, however, not clear if those rules are
also appropriate for the terms that are not included in the
dictionary. In other words, we need to evaluate how the
discovered rules will help map unseen terms with their cor-
rect concept IDs.

One way of evaluating such performance is to use a held-
out data set for evaluation. Before executing a rule discov-
ery process, we remove some randomly selected terms
from the dictionary and keep them as separate data. We
then execute the rule discovery process. The mapping per-
formance is then evaluated by applying the discovered
rules also to the held-out terms and looking them up in
the dictionary, where the lookup system produces, for
each heldout term, zero or more concept IDs by exact
string matching. The overall lookup performance can be
evaluated in terms of precision and recall. Precision is
given by

where nm is the total number of concept IDs output by the
lookup system, and nc is the total number of correct con-
cept IDs output by the system. Recall is given by

where nh is the number of heldout terms.

With these performance measures, we carried out several
sets of experiments for automatic rule discovery. Through-
out all experiments reported in this paper, we set the
tradeoff parameter α in Equation 3 to 0.1. All capital let-
ters in the terms are converted to lower case before apply-
ing our rule discovery algorithm.

Table 3 shows the result for the human gene/protein dic-
tionary. We used the reduced version of the dictionary in
this experiment in order to make clear how normalization
affects the precision of lookup performance (i.e. the
lookup precision without normalization is ensured to be
100%). We used 1,000 heldout terms for evaluation. The
first column shows the iteration counts of the rule discov-
ery process. The second column shows the values of ambi-
guity and variability in the dictionary. The third column
shows the rules discovered. The fourth column shows the
lookup performance evaluated using the heldout terms.

The table clearly shows that the recall of lookup improved
as we applied the discovered rules to the terms. More
importantly, the degradation of precision was kept mini-
mal. The discovered rules indicate that some technical
words such as ‘protein’, ‘precursor’, ‘variant’ and ‘hypo-
thetical’ are not important in conceptually characterizing
a term and thus can be safely removed. The 14th rule is
concerned with the acronym ‘il’. The rule effectively con-
verts its long form ‘interleukin’ into the acronym. Some of
the rules capture synonymous expressions. For example,
the 25th rule replaces the word ‘subunit’ with ‘chain’.

Table 4 shows the result for the (reduced) disease diction-
ary. Again, the discovered rules improved the recall of
lookup performance without causing a significant deteri-
oration of precision. The rules discovered were very differ-precision

n
n

c

m

()= , (4)

recall
n
nh

()= c , (5)

Table 2: Statistics of the dictionaries

Dictionary #Concept IDs #Terms Ambiguity Variability

Gene/protein name dictionary (original) 14,893 205,909 5.715 13.826

Gene/protein name dictionary (reduced) 14,882 174,162 1.000 11.703

Disease dictionary (original) 48,391 148,531 1.005 3.069

Disease dictionary (reduced) 48,391 147,859 1.000 3.056
Page 5 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 3):S2 http://www.biomedcentral.com/1471-2105/9/S3/S2

Page 6 of 10
(page number not for citation purposes)

Table 3: Discovering rules from a gene/protein dictionary

Dictionary Lookup performance

Iter. Ambiguity Variability Rule Precision Recall

0 1.004 10.399 (convert capital letters to lower case) 0.975 0.194

1 1.006 10.101 ‘ ’ → ‘-’ 0.967 0.233

2 1.009 9.759 ‘-’ → ‘’ 0.966 0.280

3 1.012 9.318 ‘protein’ → ‘’ 0.958 0.340

4 1.013 9.155 ‘precursor’ → ‘’ 0.959 0.347

5 1.013 9.038 ‘,’ → ‘’ 0.961 0.366

6 1.013 9.006 ‘incfinger’ → ‘nf’ 0.961 0.368

7 1.013 8.979 ‘isoforma’ → ‘’ 0.962 0.375

8 1.013 8.953 ‘isoformb’ → ‘’ 0.962 0.377

9 1.013 8.937 ‘prepro’ → ‘’ 0.962 0.379

10 1.013 8.916 ‘ike’ → ‘’ 0.962 0.380

11 1.013 8.911 ‘rotocadherin’ → ‘cdh’ 0.962 0.380

12 1.013 8.891 ‘(drosophila)’ → ‘’ 0.962 0.383

13 1.013 8.873 ‘variant’ → ‘’ 0.962 0.384

14 1.014 8.867 ‘nterleukin’ → ‘l’ 0.962 0.384

15 1.014 8.857 ‘drosophilahomologof’ → ‘homolog’ 0.963 0.385

16 1.014 8.846 ‘coupledrecepto’ → ‘p’ 0.963 0.387

17 1.014 8.830 ‘(s.cerevisiae)’ → ‘’ 0.963 0.390

: : : : : :

20 1.014 8.805 ‘oncogene’ → ‘’ 0.963 0.393

21 1.014 8.796 ‘ingfinger’ → ‘nf’ 0.963 0.394

22 1.014 8.790 ‘isoformc’ → ‘’ 0.963 0.395

23 1.014 8.783 ‘ransmembrane’ → ‘mem’ 0.963 0.395

24 1.014 8.778 ‘ibosomal’ → ‘p’ 0.964 0.396

25 1.014 8.770 ‘subunit’ → ‘chain’ 0.964 0.397

26 1.014 8.761 ‘s.cerevisiaehomologof’ → ‘’ 0.964 0.398

: : : : : :

34 1.014 8.719 ‘/’ → ‘f’ 0.962 0.400

: : : : : :

37 1.014 8.703 ‘hypothetical’ → ‘’ 0.962 0.402

: : : : : :

41 1.014 8.685 ‘eptid’ → ‘rote’ 0.962 0.403

42 1.014 8.682 ‘eucinerichrepeatcontaining’ → ‘rrc’ 0.962 0.403

43 1.014 8.678 ‘betadefensin’ → ‘defb’ 0.962 0.404

: : : : : :

57 1.014 8.639 ‘molecule’ → ‘antigen’ 0.962 0.405

: : : : : :

62 1.014 8.631 ‘oxonly’ → ‘x’ 0.962 0.406

63 1.014 8.627 ‘hromosome21openreadingframe’ → ‘21orf’ 0.962 0.407

64 1.014 8.625 ‘typeicytoskeletal’ → ‘’ 0.962 0.408

: : : : : :

68 1.014 8.611 ‘member’ → ‘’ 0.962 0.410

69 1.014 8.587 ‘lfactoryreceptorfamily’ → ‘r’ 0.963 0.413

: : : : : :

BMC Bioinformatics 2008, 9(Suppl 3):S2 http://www.biomedcentral.com/1471-2105/9/S3/S2
ent from those for the gene/protein dictionary. For
example, the fourth rule that removes ‘o’s enables us to
match words in British spelling (e.g. ‘oesophageal’) with
American counterparts (e.g. ‘esophageal’). The fifth rule
that replaces ‘ies’ with ‘y’ can convert plural forms into sin-
gular. The 13th rule captures synonymous expressions in
medical terminology (i.e. ‘kidniy’ (kidney) and ‘rinal’
(renal); note that ‘e’s are already converted to ‘i’s by a pre-
vious rule).

Evaluation using MEDLINE snippets
In the experiments presented in the previous section, we
have demonstrated that the normalization rules discov-
ered by our algorithm work well for unseen terms as well.
It is, however, still not entirely clear how useful and safe
those rules are. Although we used heldout data for evalu-
ation, the nature of the heldout terms might be too similar
to the remaining terms in the dictionary and thus we can-
not rule out the possibility that the rules were actually
overfitting the data. Moreover, the distribution of the
terms in the dictionary is different from that of the terms
appearing in real text, so the rules that are harmless within
the dictionary might cause a problem of ambiguity when
applied to terms in text.

To confirm the effectiveness of our normalization
method, we need evaluation data that stem from real text
rather than a dictionary. Fortunately, the BioCreAtIvE II
gene normalization task [24] provides data which can be
used for our experiments. The data (the “training.genelist”
file) includes gene/protein name snippets extracted from
MEDLINE abstracts, and each snippet is assigned an Ent-
rezGene ID. Table 5 shows some examples of the snippets.
This evaluation setting could be seen as the situation
where we have a named entity recognizer that can perfectly
identify the regions of gene/protein names in text. We
converted the EntrezGene IDs to UniProt IDs so that they
can be compared to the IDs in our human gene/protein
dictionary. The resulting evaluation data consisted of 965
gene/protein name snippets and their IDs (there were 33
EntrezGene IDs that we failed to convert to UniProt IDs).

With this evaluation data, we ran experiments using our
gene/protein name dictionary (not the reduced version).
The result is shown in Table 6. Again, the discovered rules
improved the recall of lookup performance without los-
ing precision. The main reason why the improvement of
recall is not as significant as in Table 3,4 is that, unlike hel-
dout terms, many of the snippets are readily mappable to
the terms in the dictionary without any normalization.
The useful rules were slightly different from the ones in
Table 3. For example, the 38th rule, in effect, converts
‘receptor’ to ‘r’. The 44th rule converts ‘alpha’ to ‘a’. The
Roman numeral ‘i’ is converted to the Arabic counterpart
‘1’ by the 75th rule.

Lookup performance
The greatest advantage of the normalization approach is
the speed of looking up a dictionary. Once we normalize
the terms in the dictionary and the input term, we can use
a hashing technique to look it up in a constant time regard-
less of the dictionary size. The cost required for normaliz-
ing the terms in the dictionary is not a problem since it is
done prior to processing the text. In contrast, the cost
required for normalizing the input term could be an issue
because we need to invoke the normalization process
every time we come across a term in the course of text
processing.

To see the computational overhead of normalization, we
carried out experiments using the same dictionary and
evaluation data used in the above experiment. We imple-
mented the methods in C++ and ran the experiments on
AMD Opteron 2.2GHz servers.

Table 7 shows the result. The bottom row shows the result
of our automatic normalization method in which we used
the 100 normalization rules discovered by the algorithm.
We can see that the application of 100 rules made the
lookup process several times slower than the case without
any normalization. Note, however, that it is still more
than ten thousand times faster than the soft matching
cases where a simple character-level bigram similarity was
employed. 0.67 seconds per lookup with soft matching
may not appear to be hugely problematic, but it is not a
desirable speed when we want to process a large amount
of text or when real time processing is required (recall that
we used only the human gene/protein dictionary in this
experiment, which is a tiny fraction of the biomedical ter-
minology).

We should nevertheless emphasize that the purpose of
this work is not to claim that our automatic term normal-
ization approach is superior to soft string matching
approaches. Soft matching methods have a distinct advan-
tage of being able to output similarity scores for matched
terms. Also, soft matching is in general more robust to var-
ious transformations than normalization approaches. The
heavy computational cost is not a problem in certain
applications. Soft matching and normalization are, in
fact, complementary.

The table also shows the performance achieved by the
heuristic rules given in Fang et al. [18]. The normalization
consists of case normalization, replacement of hyphens
with spaces, removal of punctuation, removal of paren-
thesized materials, and removal of spaces. Their normali-
zation gave a better recall than our system at the price of a
degradation of precision. Among their normalization
rules, removal of parenthesized materials is particularly
interesting, because this rule can never be produced by
Page 7 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 3):S2 http://www.biomedcentral.com/1471-2105/9/S3/S2

Page 8 of 10
(page number not for citation purposes)

Table 4: Discovering rules from a disease dictionary

Dictionary Lookup performance

Iter. Ambiguity Variability Rule Precision Recall

0 1.001 2.794 (convert capital letters to lower case) 0.994 0.158
1 1.002 2.747 ‘,’ → ‘’ 0.989 0.184
2 1.002 2.667 ‘ nos’ → ‘’ 0.986 0.216
3 1.003 2.609 ‘[x]’ → ‘’ 0.985 0.263
4 1.003 2.580 ‘o’ → ‘’ 0.982 0.275
5 1.003 2.554 ‘ies’ → ‘y’ 0.983 0.291
6 1.003 2.529 ‘ ’ → ‘-’ 0.984 0.305
7 1.003 2.504 ‘-’ → ‘;’ 0.984 0.317
8 1.003 2.484 ‘e’ → ‘i’ 0.985 0.332
9 1.004 2.472 ‘iasi’ → ‘rdir’ 0.986 0.336
10 1.004 2.459 ‘’s’ → ‘’ 0.986 0.345
11 1.004 2.449 ‘s’ → ‘z’ 0.986 0.347
12 1.004 2.448 ‘;(nz)’ → ‘’ 0.986 0.347
13 1.004 2.447 ‘kidniy’ → ‘rinal’ 0.986 0.347
14 1.004 2.446 ‘pulmnary’ → ‘lung’ 0.986 0.347
15 1.004 2.443 ‘ir’ → ‘ri’ 0.986 0.348
16 1.004 2.441 ‘aimia’ → ‘imiaz’ 0.986 0.349
17 1.004 2.439 ‘[d]’ → ‘’ 0.986 0.349
18 1.004 2.436 ‘aimlytic;animiaz’ → ‘imlytic;animia’ 0.986 0.351
: : : : : :
24 1.004 2.427 ‘z;thi’ → ‘’ 0.986 0.354
: : : : : :
31 1.004 2.420 ‘z;’ → ‘/’ 0.986 0.355
32 1.004 2.348 ‘/’ → ‘;’ 0.987 0.377
33 1.004 2.348 ‘dizrdri;liv’ → ‘livri;dizrd’ 0.987 0.377
: : : : : :
38 1.004 2.345 ‘uding’ → ‘’ 0.987 0.378
: : : : : :
42 1.005 2.343 ‘zufficiincy’ → ‘cmpitinci’ 0.987 0.380
: : : : : :
50 1.005 2.339 ‘(in;zputum)’ → ‘in;zputum’ 0.987 0.381
: : : : : :
57 1.005 2.335 ‘iincy’ → ‘’ 0.987 0.382
: : : : : :
70 1.005 2.333 ‘[idta]’ → ‘’ 0.987 0.385
: : : : : :
89 1.005 2.327 ‘ph’ → ‘f’ 0.987 0.387
: : : : : :
93 1.005 2.325 ‘ci’ → ‘x’ 0.987 0.388
: : : : : :

Table 5: Gene/protein name snippets. Examples of the gene/protein name snippets used in the lookup experiments reported in Table
6 and 7. The snippets are indicated in boldface type.

Snippets in context EntrezGene IDs

… conserved in VH1 and the VH1-related (VHR) human protein. 1845
These properties suggest that VHR is capable of regulating intracellular … 1845
… the kinase domain of the keratinocyte growth factor receptor (… 2263
… (bek/fibroblast growth factor receptor 2) were infected with … 2263
The Ah (dioxin) receptor binds a number of widely disseminated … 196
… as a component of the DNA binding form of the Ah receptor. 196
: :

BMC Bioinformatics 2008, 9(Suppl 3):S2 http://www.biomedcentral.com/1471-2105/9/S3/S2
our algorithm. This is an instance of “clever” rules that are
difficult to discover without the help of human knowl-
edge.

We conducted a brief error analysis on the results of this
mapping task to see what types of term variations were yet
to be captured by the system. Somewhat surprisingly,
there were still many terms that could be mappable via

character-level replacement rules. This indicates that we
could improve the rule discovery process by employing a
more sophisticated method to explore the hypothesis
space. Our rule discovery algorithm has some commonal-
ities with Transformation Based Learning (TBL) [25], so
the approaches proposed to improve the training process
in TBL (e.g. [26] and [27]) may also be useful in pursuing
this direction. The other types of unresolved variations

Table 7: Dictionary lookup performance. This table shows the speed and accuracy of dictionary lookup tasks using the human gene/
protein dictionary and gene/protein name snippets. F-score is the harmonic mean of precision and recall. The values in the
parentheses are the threshold values in soft string matching.

Method Precision Recall F-score Average lookup time (microsecond)

Bigram similariy (0.97) 0.758 0.587 0.661 6.7 × 105

Bigram similariy (0.95) 0.691 0.592 0.638 6.8 × 105

Bigram similariy (0.93) 0.612 0.610 0.611 6.8 × 105

No normalization 0.809 0.502 0.619 7
Case normalization 0.782 0.582 0.666 8
Heuristic normalization [18] 0.730 0.657 0.692 8
Automatic normalization 0.767 0.633 0.694 29

Table 6: Evaluation using gene/protein name snippets from MEDLINE abstracts

Dictionary Lookup performance

Iter. Ambiguity Variability Rule Precision Recall

0 5.797 12.479 (convert capital letters to lower case) 0.782 0.582
1 5.807 12.161 ‘-’ → ‘’ 0.766 0.603
2 5.811 12.025 ‘ precursor’ → ‘’ 0.767 0.611
3 5.812 11.941 ‘,’ → ‘’ 0.767 0.611
4 5.812 11.907 ‘inc finger protein’ → ‘nf’ 0.767 0.611
5 5.812 11.868 ‘ isoform 1’ → ‘’ 0.767 0.611
6 5.813 11.832 ‘ isoform 2’ → ‘’ 0.766 0.611
7 5.813 11.806 ‘ isoform a’ → ‘’ 0.766 0.611
8 5.813 11.781 ‘ isoform b’ → ‘’ 0.766 0.611
9 5.813 11.748 ‘ containing protein’ → ‘containing’ 0.766 0.611
10 5.813 11.730 ‘ variant’ → ‘’ 0.766 0.611
: : : : : :
21 5.815 11.597 ‘nterleukin’ → ‘l’ 0.767 0.613
: : : : : :
24 5.816 11.566 ‘specific’ → ‘’ 0.767 0.615
: : : : : :
33 5.816 11.450 ‘protein’ → ‘gene’ 0.765 0.616
34 5.828 11.056 ‘ gene’ → ‘’ 0.765 0.619
: : : : : :
38 5.829 11.016 ‘ recepto’ → ‘’ 0.767 0.623
: : : : : :
44 5.830 10.970 ‘ alph’ → ‘’ 0.765 0.625
: : : : : :
75 5.831 10.838 ‘ i’ → ‘1’ 0.766 0.626
: : : : : :
84 5.831 10.790 ‘ lpha’ → ‘’ 0.766 0.627
: : : : : :
86 5.831 10.782 ‘ beta’ → ‘b’ 0.767 0.630
: : : : : :
100 5.832 10.732 ‘ type’ → ‘’ 0.767 0.633
Page 9 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 3):S2 http://www.biomedcentral.com/1471-2105/9/S3/S2
include different word ordering (e.g. ‘IgA Fc receptor’ and
‘Fc receptor for IgA’) and coordination (e.g. ‘ZNF133, 136
and 140’).

Conclusions
Developing good heuristics for term normalization
requires extensive knowledge of the terminology in ques-
tion, and it is the bottleneck of normalization approaches
for term-concept mapping tasks. In this paper, we have
shown that the automatic development of normalization
rules is a viable solution to the problem, by presenting an
algorithm that can discover effective normalization rules
from a dictionary. The algorithm is easy to implement and
efficient enough that it is applicable to large dictionaries.
Experimental results using a human gene/protein diction-
ary and a disease dictionary have shown that the automat-
ically discovered rules can improve recall without a
significant loss of precision in term-concept mapping
tasks. This work should be particularly useful for termi-
nologies for which good normalization rules are not fully
known.

In this work, we limited the type of normalization rules to
character-level replacement. There are, however, many
good heuristics that cannot be captured in this frame-
work. Extending the scope of normalization rules to more
flexible expressions is certainly an interesting direction of
future work.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
YT developed the algorithm, carried out the experiments
and drafted the manuscript. JM and SA conceived the
study and participated in its design and coordination. All
authors read and approved the final manuscript.

Acknowledgements
We thank Y. Sasaki, J. Tsujii for many valuable comments and discussions,
and also the reviewers. Our thanks to the Rebholz Text Mining Group at
EMBL-EBI, Hixton, for domain expertise related to bio-resources. This
research was supported by the EC project BOOTStrep FP6-028099 (http:/
/www.bootstrep.org). The UK National Centre for Text Mining is spon-
sored by the JISC/BBSRC/EPSRC.

This article has been published as part of BMC Bioinformatics Volume 9 Sup-
plement 3, 2008: Proceedings of the Second International Symposium on
Languages in Biology and Medicine (LBM) 2007. The full contents of the sup-
plement are available online at http://www.biomedcentral.com/1471-2105/
9?issue=S3.

References
1. Kim JD, Ohta T, Tateisi Y, Tsujii J: GENIA corpus—semantically

annotated corpus for bio-textmining. Bioinformatics 2003,
19(Suppl 1):i180-i182.

2. Kulick S, Bies A, Libeman M, Mandel M, McDonald R, Palmer M,
Schein A, Ungar L: Integrated Annotation for Biomedical Infor-

mation Extraction. Proceedings of HLT-NAACL 2004 Workshop:
Biolink 2004 2004:61-68.

3. Tanabe L, Xie N, Thom LH, Matten W, Wilbur WJ: GENETAG: a
tagged corpus for gene/protein named entity recognition.
BMC Bioinformatics 2005, 6(Suppl 1):S3.

4. Tanabe L, Wilbur WJ: Tagging gene and protein names in bio-
medical text. Bioinformatics 2002, 18(8):1124-1132.

5. Zhou G, Zhang J, Su J, Shen D, Tan C: Recognizing names in bio-
medical texts: a machine learning approach. Bioinformatics
2004, 20(7):1178-1190.

6. Hanisch D, Fundel K, Mevissen HT, Zimmer R, Fluck J: ProMiner:
rule-based protein and gene entity recognition. BMC Bioinfor-
matics 2005, 6(Suppl 1):S14.

7. Settles B: ABNER: an open source tool for automatically tag-
ging genes, proteins, and other named entities in text. Bioin-
formatics 2005, 21:3191-3192.

8. Wren JD: A scalable machine-learning approach to recognize
chemical names within large text databases. BMC Bioinformat-
ics 2006, 7(Suppl 2):S3.

9. Blaschke C, Hirschman L, Valencia A: Information extraction in
molecular biology. Briefings in Bioinformatics 2002, 3(2):154-165.

10. Krauthammer M, Rzhetsky A, Morozov P, Friedman C: Using
BLAST for identifying gene and protein names in journal
articles. Gene 2000, 259:245-252.

11. Yeganova L, Smith L, Wilbur WJ: Identification of related gene/
protein names based on an HMM of name variations. Comput
Biol Chem 2004, 28:97-107.

12. Hirschman L, Colosimo M, Morgan A, Yeh A: Overview of BioCre-
AtIvE task 1B: normalized gene lists. BMC Bioinformatics 2005,
6(Suppl 1):S11.

13. Cohen WW, Minkov E: A graph-search framework for associat-
ing gene identifies with documents. BMC Bioinformatics 2006,
7:440.

14. Tsuruoka Y, McNaught J, Tsujii J, Ananiadou S: Learning string sim-
ilarity measures for gene/protein name dictionary look-up
using logistic regression. Bioinformatics 2007, 23(20):2768-2774.

15. Tsuruoka Y, Tsujii J: Improving the Performance of Dictionary-
based Approaches in Protein Name Recognition. Journal of
Biomedical Informatics 2004, 37:461-470.

16. Navarro G: A guided tour to approximate string matching.
ACM Computing Surveys 2001, 33:31-88.

17. Cohen KB, Dolbey AE, Acquaah-Mensah GK, Hunter L: Contrast
And Variability In Gene Names. Proceedings of the Workshop on
Natural Language Processing in the Biomedical Domain 2002:14-20.

18. Fang H, Murphy K, Jin Y, Kim JS, White PS: Human Gene Name
Normalization using Text Matching with Automatically
Extracted Synonym Dictionaries. Proceedings of BioNLP'06 2006.

19. Schuemie MJ, Mons B, Weeber M, Kors JA: Evaluation of tech-
niques for increasing recall in a dictionary approach to gene
and protein name identification. Journal of Biomedical Informatics
2007, 40:316-324.

20. Liu H, Hu ZZ, Torii M, Wu C, Friedman C: Quantitative Assess-
ment of Dictionary-based Protein Named Entity Tagging.
Journal of the Americal Medical Informatics Association 2006,
13(5):497-507.

21. Liu H, Hu ZZ, Zhang J, Wu C: BioThesaurus: a web-based the-
saurus of protein and gene names. Bioinformatics 2006,
22:103-105.

22. The Universal Protein Resource (UniProt). Nucleic Acids
Research 2007, 35(Database issue):D193-D197.

23. Humphreys BL, Lindberg DAB: Building the unified medical lan-
guage system. Proceedings of the 13th SCAMC 1989:475-480.

24. Morgan AA, Hirschman L: Overview of BioCreative II Gene
Normalization. Proceedings of the Second BioCreative Challenge Eval-
uation Workshop 2007:17-22.

25. Brill E: Transformation-Based Error-Driven Learning and
Natural Language Processing A Case Study in Part-of-
Speech Tagging. Computational Linguistics 1995, 21(4):543-565.

26. Samuel K: Lazy Transformation-Based Learning. Proceedings of
the Eleventh International Florida Artificial Intelligence Research Society
Conference 1998:235-239.

27. Ngai G, Florian R: Transformation-Based Learning in the Fast
Lane. Proceedings of the Second Meeting of the North American Chapter
of the Association for Computational Linguistics (NAACL) 2001:40-47.
Page 10 of 10
(page number not for citation purposes)

http://www.bootstrep.org
http://www.bootstrep.org
http://www.biomedcentral.com/1471-2105/9?issue=S3
http://www.biomedcentral.com/1471-2105/9?issue=S3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14871877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12139435
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12139435
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17032441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17032441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17698493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17698493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17698493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15542019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15542019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16267085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16267085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142230

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Ambiguity and variability
	Generating rule candidates
	Discovering rules

	Results and discussion
	Dictionaries
	Evaluation using held-out terms
	Evaluation using MEDLINE snippets
	Lookup performance

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

