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Abstract

Background: Biomedical and chemical databases are large and rapidly growing in size. Graphs
naturally model such kinds of data. To fully exploit the wealth of information in these graph
databases, a key role is played by systems that search for all exact or approximate occurrences of
a query graph. To deal efficiently with graph searching, advanced methods for indexing,
representation and matching of graphs have been proposed.

Results: This paper presents GraphFind. The system implements efficient graph searching
algorithms together with advanced filtering techniques that allow approximate search. It allows
users to select candidate subgraphs rather than entire graphs. It implements an effective data
storage based also on low-support data mining.

Conclusions: GraphFind is compared with Frowns, GraphGrep and glndex. Experiments show
that GraphFind outperforms the compared systems on a very large collection of small graphs. The
proposed low-support mining technique which applies to any searching system also allows a
significant index space reduction.

Background

Application domains such as bioinformatics and chem-
informatics represent data as graphs where nodes are basic
elements (i.e. proteins, atoms, etc...) and edges model
relations among them. In these domains, graph searching
plays a key role. For example, in computational biology
locating subgraphs matching a specific topology is useful

to find motifs of networks that may have functional rele-
vance. In drug discovery, the main task is to find novel
bioactive molecules, i.e., chemical compounds that, for
example, protect human cells against a virus. One way to
support the solution of this task is to analyze a database
of known and tested molecules with the aim of building a
classifier which predicts whether a novel molecule will be
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active or not. Future chemical tests can focus on the most
promising candidates. Users may ask to find molecules
containing the query graph (exact search) or subgraphs
similar to the one described by the query (approximate
querying) (see Figure 1 for an example).

The graph searching problem can be formalized as fol-
lows. Given a database of graphs D = {G,, G,,..., G, } (e.g.
collection of molecules, etc.) and a query graph Q (e.g pat-
tern), find all graphs in D containing Q as a subgraph.
Moreover, all occurrences of Q in those graphs should be
detected. In many important application D consists of a
single huge graph. Since most of these problems involve
solutions of the graph isomorphism problem, an efficient
exact solution can not exists. In order to make searching
time acceptable research efforts have tried to improve the
following steps [1,2].

1. Reduce the search space by filtering. For a database of
graphs a filter limits the search to only possible candidate
graphs. For a single-graph database only the possible can-
didate subgraphs are identified. The common idea is to
extract structural features of graphs and store them in a
global index. When a query graph is presented, its own
structural features are extracted and compared with the
features stored in the index to check compatibility [3-6].
Most existing systems use subgraphs of small size (typi-
cally not larger than 10 nodes). However, even though
small subgraphs are used, the size of the index and its time
construction may be high. Therefore, high-support/high-
confidence mining rules are used to index only frequent
and not redundant subgraphs (i.e. a subgraph is redun-
dant when its presence in a graph can be predicted by the
presence of its subgraphs) [7-9].

2. Store Data. In order to scale to very large databases of
graphs indexing structures and data must be stored in sec-
ondary memory. Applications make use of advanced data-
base management systems [4].

3. Match. After candidate graphs have been selected, an
exhaustive search on these graphs must be performed.
This step is implemented either by traditional (sub)graph-
to-graph matching techniques [10,11] or by an imple-
mentation on an extension of the SQL algebra [12].

In this paper, GraphFind, an enhancement of the applica-
tion-independent graph searching system GraphGrep
[5,12], is presented. Experiments show that GraphFind
outperforms the compared systems on a very large collec-
tion of small molecules, available at the web site of the
National Cancer Institute [13]. A key feature of GraphFind
is the use of low-support data mining technique (Min-
Hashing [14]) to reduce the index size. It is shown that
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such a mining technique can be successfully applied to
enhance other systems such as gindex [7].

Results and discussion

Approach

GraphFind locates all exact and approximate occurrences
of a query graph in collections of graphs. It combines fil-
tering techniques described in [5] with a recent matching
algorithm [11]. Each graph is stored as a set of small sub-
graphs. At query time, such a representation allows the
selection of candidate subgraphs. GraphFind is imple-
mented on top of Berkeley DB [15] to store both indexing
structures and data graphs. A low-support data mining
technique (Min-Hashing [14]) is applied to reduce the
index size of GraphFind and gIndex [7].

Related compared systems

GraphGrep [5,12] finds all exact and approximate occur-
rences of a query graph in collections of graphs. Approxi-
mate queries are special subgraphs that may contain: (a)
nodes with a special wildcard symbol “?”, that can match
any node; (b) approximate paths (represented by a wild-
card symbol “*”) which are paths of any length that can
connect two nodes. GraphGrep enumerates all small sub-
graphs (say paths with no more than 4 nodes) in the data-
base together with all occurrences sites and the number of
such occurrences. Matching is performed by combining
such occurrences making use of an extension of the classi-
cal SQL algebra [12].

Daylight [3] is a commercial system to search in mole-
cules databases. The index of each graph is a fixed-size bit
vector. It enumerates all existing small paths in a graph,
hashes them, and adds them to the vector. A disadvantage
of such an approach is that different and unrelated paths
may “collide” at the same bit position. An academic freely
available emulation of Daylight, called Frowns [10],
makes use of an efficient matching subgraph algorithm
[11]. All above systems are designed to optimize the query
time, at the cost of large preprocessing time.

Data mining techniques have been applied to reduce
index construction (space and time) complexity. Related
recent work includes [8,9] (stable release of such software
are upcoming). gindex [7] represents the state of art in this
area. The key ideas of glndex are: (i) index frequent sub-
graphs with a size-increasing support function; (ii) repre-
sent them in a canonical form (strings); and (iii) store
such strings in a prefix tree.

Although there is a long history of research on indexing
for exact searching in database of graphs, only recently
have indexing structures for approximate search been pro-
posed [16-18]. SAGA [18] appears to be the most flexible
system. It finds subgraphs of a query which are similar
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Querying a database of molecules. Graphs represent molecules. During the match process, edge information is ignored.
Query occurrences are shown in bold. For Q, since query matches overlap, only one occurrence in each molecule is depicted.
The number of occurrences is also given. Molecular descriptions include hydrogen atoms for search accuracy. In a context
where hydrogen atoms are not considered, query Q, is present || times in G, 6 in G, and 10 in G3. The approximate query
specifies any path of an unspecified length between atoms C and N. Approximate queries may also contain atoms with unknown
label (they match any atom).
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(allowing node gaps, node mismatches and graph struc-
tural differences) to subgraphs in the database. Algo-
rithms for networks alignment [19] such as NetworkBlast
[20] may be used to find approximate occurrences of a
query path in a single graph. The main difference between
those systems and GraphFind is that GraphFind users may
specify precisely at query construction time which nodes
or paths are approximate. Thus, GraphFind can not be
compared with those systems because it controls the
semantics of the output precisely.

Results

In order to evaluate the performance of GraphFind, we
have compared it with the main graph search systems
(GraphGrep [12], GFrowns, and gIndex [7]). GFrowns is
an implementation of the system Frowns [10] to deal with
general graphs. Experiments show that GraphFind com-
pared had better behavior than gindex in terms of scala-
bility on the tested databases. In addition, GraphFind
improves our previous system GraphGrep which is com-
monly used in the literature as a test system. Experimental
analysis was performed on a Pentium IV with 1GB of
memory using Linux OS. All algorithms were imple-
mented in C++.

Test sets

To test the proposed system, a database of 40000 mole-
cules, available at the web site of the National Cancer
Institute [13], was used. It contains sparse graphs having
from 20 to 270 nodes. The database was divided into sub-
sets of size ranging from 1000 to 40000 molecules.

Systems were tested using a set of 40 queries drawn from
the molecules database. The number of nodes, for each
query, ranges from 4 to 32. Query time is given as the sum
of filtering time and matching time.

Experiments on a single graph database were performed
using synthetic data described in [21]. The Min-Hashing
technique was analyzed using both synthetic and mole-
cules database.

Comparisons

Figure 2 reports preprocessing time and index size of
GraphFind, GraphGrep, GFrowns, and gindex on the
molecule databases. Concerning [, = 4, GraphFind and
gIndex were comparable and faster than the other sys-
tems. However, GFrowns and gIndex outperformed the
others on index space. Notice that, the maximum data-
base size treatable by gIindex was 16000. Figure 3 reports
querying time. gindex and GraphFind showed compara-
ble behavior.

Preprocessing time and index size of GraphFind using [, =
10 is considerable higher than the ones obtained using /,
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= 4 (see Figure 2). Results of GraphGrep and GFrowns
with [, =10 are not reported since they are clearly outper-
formed by GraphFind and gIndex. The querying time of
GraphFind (I, = 10) is not shown since it does not yield
any speed-up with respect to the case of [, = 4.

glndex filtering with /, = 10 compared to I, = 4 discards
more graphs, but is slower.

In Figure 4, the performances of GraphFind, GraphGrep
and GFrowns on a single large graph are shown. Although
the amount of space required by GraphFind is high, the
querying results very efficient. gindex is not reported since
it does not treat graphs with thousands of nodes.

Figure 5 reports the performance of GraphFind on approx-
imate queries on a database of 8000 molecules available
at [13]. As expected, by increasing the allowed degree of
approximation in a query, the execution time and the
number of matching subgraphs returned by such a query
grow.

Finally, the Min-Hashing algorithm was applied to reduce
the index size of GraphFind and gIndex (see Figure 6). The
running time of Min-Hashing does not affect the preproc-
essing performance (less than one percent of the total
time in all tests). However, the index size is considerably
reduced in both GraphFind and gIndex.

Conclusions

This paper has presented GraphFind, an application-inde-
pendent graph searching system that enhances Graph-
Grep. The system allows exact and approximate graph
searching where the approximations can be precisely spec-
ified. Comparisons with competitive systems show that
GraphFind performs well and scales better. GraphFind
significantly reduces data storage with respect to Graph-
Grep overhead thanks to low-support data mining. The
proposed low-support mining technique, which applies
to other searching methods also, reduces indexing space
significantly.

GraphFind can be easily implemented in a distributed
environment. The database of graphs may be distributed
among several servers according to a graph similarity cri-
terion. When graph searching is applied to a huge graph
(network), the graph may be partitioned into components
based on a minimum cut strategy (e.g. locate hubs and cut
at them). Future work will include the design and the
experimental analysis of a GraphFind distributed version
on web-scale databases. Moreover, methods to rank out-
puts will be added on specific domains of application.
This will be a domain-specific extension. Datasets, soft-
ware and results are freely available at [22].
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Preprocessing time and index size for molecular databases. For all systems the value of I, unless specified, is 4. Index
size refers to the space needed by the fingerprint database and the data storage. For GraphFind the size of its fingerprint is
explicitly indicated (GraphFindy;). GraphGrep requires the same space as GraphFind. For gIndex and GFrowns data storage is
very small compared to its fingerprint size. Preprocessing represents the time to compute the fingerprint and to store all data
in secondary memory. Preprocessing of GraphFindNT includes the time needed to compute and write the fingerprint only.

Methods

GraphFind models the nodes of data graphs as having an
identification number (node-id) and a label (node-label).
An id-path of length n is a list of n + 1 node-ids with an
unlabeled edge between any two consecutive nodes. A
label-path of length n is a list of n + 1 node-labels. Label-
paths and the id-paths of the graphs in a database are used
to construct the index of the database and to store the data
graphs.

Index construction

Let], be a fixed positive integer. For each graph in the data-
base and for each node, all paths that start at this node
and have length from one up to |, are collected. The index

is implemented using a hash table. The keys of the hash
table are the hash values of the label-paths. Collisions are
resolved by chaining. This hash table is referred as the fin-
gerprint of the database. Each entry in a column is the
number of occurrences of a label-path in that graph (see
Figure 7).

Data storage

Since several paths may contain the same label sequence,
the id-paths of all the paths representing a label sequence
are grouped into a label-path-set. GraphFind uses Berke-
ley DB [15] as the underlying database to store data graph
representation and index. GraphFind stores each finger-
print as a dynamic Berkeley DB hash table of linked lists
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Querying is comparable. GraphFind outperforms GraphGrep and GFrowns.
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Comparisons on a single graph database. Preprocessing and Querying performances of GraphFind, GraphGrep and
GFrowns on a single graph database. The graph is a Irregular 3D with 10000 nodes and 5 labels [21]. Index Size refers to the
fingerprint database matrix and the graph representation. N is the number of nodes in the query. The query time is the average
obtained by 10 different runs. gindex is not reported since it does not treat graphs with thousands of nodes.

(whose keys and values are described above). Each graph
is stored in a set of Berkeley DB tables each corresponding
to a label-path-set (see Figure 7).

Queries

A query is an undirected labeled graph. Approximate que-
ries are special subgraphs that may contain: (a) nodes
labeled with a special wildcard symbol “?”, which can
match any label; (b) approximate paths (represented by a
wildcard symbol “*”) which are paths of any length that
can connect two nodes.

Database filtering

The database is filtered by comparing the fingerprint of
the query with the fingerprints of the graph in the data-
base. A database graph, for which at least one value in its fin-
gerprint is less than the corresponding value in the fingerprint
of the query, is filtered out. The remaining graphs are candi-
dates for matching (see Figure 7 (Filtered Database(1))).
Next, parts of the candidate graphs are filtered out as fol-
lows: (i) decompose the query into patterns and (ii) select
only those id-path sets associated with patterns in the query (see
Figure 7 (Filtered Database(2))). The selected id-path sets

Approximate Query (o Q2

Q3 Q4

Cl ?
|
N\
N ?
N~ C C—?—N
Matching 8.01 0.56 1.02 0.49
Time (secs)
Number of 678 678 27 68
Candidate Graphs
Number of 292231 5708 5372 294
Matches

Figure 5

Running time of approximate queries on a molecules database. The database contains 8000 molecules, it is available

«wy

at [13]. Nodes labeled with a special wildcard symbol

can match any label; a wavy segment indicates an approximate path of

any length (here the wildcard “*’ representing an approximate path has been substituted with a wavy segment only for a graph-
ical purpose). Query Q, searches for a node (atom) C and a node N connected through a path. Query Q, searches for a node
(atom) C and a node N connected through a single node. As expected, the number of occurrences of Q, is greater than those
of Q,. In each graph, a query may have a large number of occurrences (in 27 candidate graphs, Q3 has 5372 matches).
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Database Size (KB) Ratio % | Size (KB) | Ratio %

(GraphFind) | (GraphFind) | (gIndex) | (gIndex)
Molecular (G:8000 L:5 N:10-20) 0625 62.5 1204 30.4
Regular 2D (G:500 L:5 N:10-20) 839 56.4 6480 76.6
Irregular 2D (G:500 L:5 N:10-20) 2167 56.9 10409 52.9
Valence (G:500 L:5 N:10-20) 3429 48.0 2823 9.4
Irregular Valence (G:500 L:5 N:10-20) 3421 48.0 2832 7.9
Random (G:200 L:3 N:6) 362 43.4 791 70.5

Figure 6

Index size compression. Index size compression ratio obtained by applying the Min-Hashing technique on GraphFind and
gIndex using real and synthetic databases of graphs. Size indicates the dimension of fingerprint before applying Min-Hashing
algorithm. G = number of graphs; L = number of different node labels per graph; N = number of nodes per graph. A descrip-

tion of the synthetic graphs used here is given in [21].

correspond to one or several subgraphs of candidate
graphs. Those subgraphs are the only ones that may match
the query.

Subgraph exact and approximate matching

After filtering, subgraph matching on the possible match-
ing candidates is performed by applying the VF2 algo-
rithm [11] to each candidate. This is a refinement of
Ullmann's subgraph isomorphism algorithm that uses
more selective feasibility rules to prune the state search
space. Approximate queries are handled by independently
processing, as described above, all maximal exact (com-
pletely specified) subqueries. The resulting subgraph
matchings are then “joined” by checking, for each pair of
query nodes connected by an approximate path, if there is
a path in the data graph (of length equal to the wildcards'
values) between the corresponding matched nodes. This
is performed by using depth-first search. As shown in [11],
the computational complexity in the worst case of the VF2
algorithm is ®(N/N), where N is the number of nodes in
the query.

Indexing by low support data mining techniques

Let M(m,n) be the fingerprint of a graph database. Rows
correspond to graphs, columns are patterns and each
entry is the number of occurrences of each pattern in that
graph. Two patterns are similar if a large number of graphs
have the same number of occurrences of it. More pre-
cisely, let the similarity Sim(C;, C;) of two columns be the
percentage of non null rows in which the two columns
have the same value. The aim of the Min-Hashing algo-
rithm [14] is to quickly find pairs of columns (indexed
patterns) that have a similarity greater than a given thresh-
old s*. It generates k random permutations, say p/ :
{1,...m} > {1,....m} forj=1,- - - k, of row indices of M.

p/ denotes the i-th element of the permutation pi. Let
A_d(k,n) be the corresponding signature matrix of M. Each
entry 1\_/1[i, ]] is the index ¢ of the first row in M in which
M[pf,j] #0. Formally, M(i,j] =t if and only if
M[pl,j]#0Vs<t, M[pl,j]=0. Let the similarity Sim(C,
(oNaYel

C)) of two columns C; and C; be defined as .

lc.uc||

[14] the authors show that the similarity of two columns
is well approximated by the similarity of the correspond-
ing columns in the signature matrix. Consequently, find-
ing similar columns in the matrix becomes a lightweight
computation. This allows deletion of columns which are
similar to others. Such a technique can be applied to any
indexing system. In GraphFind it is applied to the trans-
posed database fingerprint matrix (see Figure 7). Moreo-
ver, in GraphFind s* is not a user parameter. The system is
designed to find pairs of columns (patterns) with similar-
ity s* = 100% in the fingerprint database. Therefore, two
patterns that have the same occurrence in each graph will
be represented in the matrix using only one column
indexed by both patterns. Notice that, by reducing the
similarity threshold s*, correctness is maintained and the
compression ratio may be higher. However, this implies a
loss in filtering efficiency and therefore greater searching
time. Figure 6 reports the compression ratio of index size
in both GraphFind and gindex after Min-Hashing.

List of abbreviations used
3D: Three-Dimensional

DB: Database
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GraphFind system. Preprocessing (Step |): Store each graph in the database in a set of Berkeley DB tables each corre-
sponding to a label-path-set; that is the set of the id-paths (e.g. (3,0), (3,2) in g,) of all the paths representing a label sequence
(e.g. CB in g)). For each graph only some label-path-sets are shown. The maximum length (number of edges) of a label-path is
I,=3. The fingerprint (index) of a database is a Berkeley DB hash table where each entry in a column is the number of occur-
rences of a label-path in that graph. Querying: Construct the query fingerprint (I,=3)(Step 2). Compare the fingerprint of the
query with the database fingerprint (Step 3): a database graph, for which at least one value in its fingerprint is less than the cor-
responding value in the fingerprint of the query, is filtered out (Step 4). g, and g; are not selected as candidates since they do
not contain the path ABCA. Decompose the query into patterns (Step 5) (I,=3). From each candidate graph, select the label-
path-sets corresponding to the patterns in the query (Step 6) and combine the id-paths of such tables following the query
decomposition criteria. In the patterns (CB, A*BCA*), only labels with equal marks (e.g. _, *) represent the same node occur-
rences. For example, (1,0,3,1) can not be combined with (3,0) because the nodes labeled B must be different (same motivation
applies to (1,2,3,1) and (3,2)). The subgraph obtained by combining (1,2,3,1) and (3,0) is shown in “Filtered Database (2)”. They
are the only subgraphs that may match the query. Subgraph matching will be performed by applying the VF2 algorithm [I 1] to
those subgraphs instead of to the entire graphs.

G : Number of Graphs GFrowns: Graph Frowns, Implementation of Frowns for
General Graph

GB: Gigabyte
L : Number of Different Node Labels

GraphFindy;: GraphFind Fingerprint
1, Length of Label Path
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