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Abstract

Background: Protein identification is one of the most challenging problems in proteomics.
Tandem mass spectrometry provides an important tool to handle the protein identification

problem.

Results: We developed a work-efficient parallel algorithm for the peptide sequence tag problem.
The algorithm runs on the concurrent-read, exclusive-write PRAM in O(n) time using log n
processors, where n is the number of mass peaks in the spectrum. The algorithm is able to find all
the sequence tags having score greater than a parameter or all the sequence tags of maximum
length. Our tests on 1507 spectra in the Open Proteomics Database shown that our algorithm is
efficient and effective since achieves comparable results to other methods.

Conclusions: The proposed algorithm can be used to speed up the database searching or to
identify post-translational modifications, comparing the homology of the sequence tags found with

the sequences in the biological database.

Background

Protein identification is one of the most important goals
of drug discovery research and in proteomics. Nowadays,
the leading technique to identify a protein or a peptide is
the tandem mass spectrometry (MS/MS). The basic idea of
the identification of a peptide using tandem mass spec-
trometry is simple: a peptide is ionized and broken, at the
peptide bond, in charge fragments (ions). The mass/
charge ratio of the resulted fragments are visualized in a
graphic called tandem mass spectrum or ms/ms spectrum
(Figure 1). A ms/ms spectrum contains: the mass of the
whole peptide, and a pattern of fragments that can be

associated to a given sequence. Each fragment is character-
ized by mass/charge ratio and intensity: we refer to this
pair as peak. A good quality spectrum should contain the
complete series of y-ions (the fragment ions containing
the carboxyl terminal), and the complete series of the b-
ions (the fragment ions containing the amino terminus)
(Figure 2). In this case it is very easy to reconstruct the
amino acidic sequence for the peptide, since it is sufficient
to compute the mass differences between two adjacent
peaks in each of the two series. Unfortunately, in practice,
many factors contribute to complicate the problem.
Indeed, many b-ion or y-ion peaks might be absent from
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the spectrum, or it might be an imperfect fragmentation
that causes a different types of ions, or the sample might
be contaminated, or it might be present post-translational
modifications or many other type of peaks might unex-
pected appear in the spectrum. There are three different
computational approaches motivated by peptide
sequencing: the peptide identification searching in a data-
base, the de novo peptide sequencing, and the peptide
sequence tag. The first method finds the best matching
peptide from a sequence database using a scoring function
based on the likelihood that an identified peptide is actu-
ally the peptide of the spectrum [1,2]. This method is the
mostly used but it is able only to identify peptide stored
in a database. On the contrary the de novo method allows
to identify a peptide using only the spectrum without any
other previous knowledge and hence even if the peptide is
not in a database. Many algorithms using this approach
have been developed [3-10] having different time com-
plexity, but the accuracy of them depends on the quality
of the input spectrum: usually these algorithms cannot
find the complete sequence due to missing peaks and
hence the applicability of them is limited in practice. The
peptide sequence tag approach combines the two previ-
ous methods: first the de novo method is applied to find a
partial solution, so called sequence tag, and then a data-
base search is applied to identify the complete sequence.
The idea of using peptide sequence tags is not novel
[11,12] and it is recently re-proposed to increase the speed
of the database searching [13,14] or to find post-transla-
tion modifications [15]. Most of these algorithms are
using a previous developed de novo approach and their
time complexity to find the optimal solution according to
any scoring function is at least O(n?), where n is the
number of the mass spectrum peaks. A simple scoring
function can be defined as the sum of the correspondent
mass peak abundances found in the spectrum [3] or it can
be based on the ion-type, favouring the b and y ions over
the other types [7,10]. In this paper we propose a parallel
algorithm to determine all the peptide sequence tags
longer than an input number of amino acids or all those
scoring more than an input number, according to any
scoring function. The parallel approach is motivated by
demand of efficiency, since the interpretation of mass
spectra is a high throughput process. The algorithm is
work-efficient running in O(n) time on a concurrent-read,
exclusive-write (CREW) PRAM [16] with log n processors,
and it is a variation of the algorithm proposed in [5] to
find peptide sequence tags. We simulate the parallelism
by an implementation in Java on threads using barriers for
synchronization. Our tests on 1507 spectra in the Open
Proteomics Database shown that our algorithm is efficient
and effective since achieves comparable results to other
approaches.

http://www.biomedcentral.com/1471-2105/9/S4/S11

Methods

Let an experimental spectrum be given related to an
unknown peptide P of mass m,. A peptide sequence tag is
a short string of amino acid mass differences deduced
from the fragment spectrum. Let any scoring function and
any number 8 be given. Our task is to determine all the
sequence tags scoring at least 5. If the score reduces to
count the length of the string, the output consists in the
sequence tags of lengths at least 5. We refer to this prob-
lem as the peptide sequence tag problem.

Although a spectrum may contain a few different types of
ions, for simplicity, we consider b-ions and y-ions only.
Therefore we assume M = {m,, m,,...,m,} to represent a
spectrum where the real numbers m; correspond to the m/
z ratios of the peaks in the spectrum augmented with the
numbers 1, 19, mp—17, and mp+1 that represent the
“empty” b-ion, the “empty” y-ion, the weightiest b-ion,
and the weightiest y-ion, respectively. Let us denote the set
of the masses of the twenty amino acids by A. The peptide
sequence tag problem can be reformulated in terms of
paths in a graph. We build a labelled directed acyclic
graph G = (V,E) such that

M every node v, is associated toam; € M (1 <i<n);
B (v, v;) e Eifand only if (m;—m;) e A (1 <i<j<n).

The peptide sequence tag problem consists in determining
any path between two nodes in the graph G with score
greater than 8. The introduction of any scoring function
corresponds to assign weights to the edges of the graph:
the score of a path is the sum of the scores of the edges on
the path.

The algorithm

The elements of A and M are stored in two sorted arrays in
the shared global memory of the PRAM. We divide M into
groups of log n consecutive elements, and we assign a
“responsible” processor to each mass in each group so
that the ith processor is responsible for the ith mass inside
the group. We divide the algorithm in three procedures:

M pre-computation procedure
B propagation procedure
B determination procedure.

We repeat each procedure for every group of log n ele-
ments, from the first one to the last one, and in reverse
order. The procedures presented in this section are CREW
since they require concurrent access to A and M in reading,
but only exclusive access to the global memory in writing.
In order to simplify the description that follows we give
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A ms/ms spectrum. In the x-axe we have the mass/charge ratio of each fragment and in the y-axe the abundance of it.

value one to the weight of each edge. This assumption cor-
responds to determine the longest feasible path for the de
novo peptide sequencing problem or feasible paths longer
than any given value as solutions for the peptide sequenc-
ing tag problem. In the next paragraph we describe the
three procedures.

Pre-computation procedure

The first procedure consists in building the graph. Consid-
ering each group of log n masses, we associate a node to
each mass, and so the ith processor is responsible for the
ith node v, in the group. Processor i, for each element in
A, checks if there exists a node v; in M that differs from it
to the mass of the element in A. In this case we put an edge
between v; and v; in the graph. We store this edge in two
different adjacency lists, the so called predecessor (pred)
and successor (succ) list:

pred; [k] = j, & M[i] - M[j] = A[k],
succ, [k] = j, & M[j]-M[i]= A[k].
Note that any node can have at most twenty predecessors

or successors, or none. Since M is a sorted array, using a
binary search algorithm to determine the predecessors

and successors, the pre-computation takes O(log n) time
for each group and hence O(n) totally.

Propagation procedure

The second procedure of the algorithm permits, for each
node, to compute the maximum length path passing
through it. This goal is reached by iterating the search of
the predecessor (successor) of every node using the
pointer jumping technique [16] in every group. In order
to handle the propagation, processor i stores and updates
the current predecessor in the start_path pointer:

start_path[i] = h € {1, ..., n} < at least one path from v;
to vj, exists.

Note that all the predecessors of v; belong to the v;'s group
or to any group that precedes it, being M sorted. Hence all
the start_path pointers of the predecessors of v; are known,
when v,'s group is processed, due to the order in which
groups are handled. The same is done to update the cur-
rent successor in end_path. We also calculate the distances
d, and d, from any node v; to the v, node pointed by
start_path[i] and end_path[i] pointers. At the end of the
propagation procedure these two pointers, related to each
node v;, will point to the termini nodes of the longer path
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A peptide fragmentation. In a mass spectrometer a whole peptide (below) is broken into two fragments, one of them
charged. Usually the breaking point is the peptide bond: in this case we could obtain a b-ion that maintains the amino termini or

a y-ion that maintains the carboxyl termini.

passing through v,. Algorithm “Propagation” (Figure 3)
describes only the computation of d, and start_path for any
group, while d, and end_path can be obtained by replacing
pred and start_path with succ and end_path, respectively. At
first, for each node i, we initialize the start_path[i] pointer:

a) if i has only one predecessor j, then start_path|i] = j and
dJi] = 1 (Fig. 3, stat. 3-5);

b) otherwise, start_path[i] = i and d[i] = 0 (Fig. 3, stat. 6-
8).

Then, for each node i, we repeat the following steps until
there are no changes in any start_path of the group (that is
start_path[i] = start_path[start_path|i]], for all i in the
group):

a) if start_path[i] points to a node different from i and dif-
ferent from start_path|[start_path[i]], then we assign d [i] =
dJ[i] + d/[start_path[i]] as the new distance of the node, and
start_path[i] = start_path|start_path]|i]| for the pointer (Fig-
ure 43a; Figure 3 stat. 14-16);

b) otherwise, if i has all the predecessors with start_path
pointers pointing to themselves or predecessors with
start_path pointing to the same node j, then we assign
start_path[i] =j. d [i] becomes the maximum distance d; of

predecessors pointing to j, plus 1 (Figure 4b; Figure 3, stat.
18-22);

) otherwise, if all the predecessors of i have the start_path
pointers cycling on themselves or start_path pointing to a
node without predecessors, we consider the predecessor j
having the maximum d, distance and we assign
start_path[i] =jand d [i] = 1 + d,[j] (Figure 4c; Figure 3, stat.
24-29);

d) otherwise, the node waits for some changes in the
start_path pointers of its predecessors.

At the end of the propagation procedures, each node i
knows the maximum distance d,[i] + d,[i] of a path passing
through it, the starting node start_path[i], and the ending
node end_path[i] of this path. The computational com-
plexity of this procedure is O(log n) time for each group.
Indeed, in the worst condition only one node at time is
unlocked and it can upload the start_path. At the begin-
ning, we have a set of pointer trees. We are interested in
the sum of their heights. This sum is obviously less than
log n. Pointer jumping and merging operations decrease
the total height since a tree of height h is transformed into
a star by applying pointer jumping in O(log(h)) steps, and
the root of a star “hooks” to the parent of any of the root's
predecessor in G. Therefore, in the worst case, if h,,,,, is the
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Algorithm PROPAGATION
1: for each processor v, in parallel do
2 i=r-th node i the current group
3:  if there exists exactly one j such that pred;[;] #NIL then
4 start_path[i] = pred;[j]
5 dgfi] =1
6. else
7 start_pathli] =2
8 (JS[.‘] =1
9:  end if

10: end for
11: repeat
12:  for each processor r, in parallel do

13: i=r-th node in the current group

14: if (start_path[i] # i) A (start_path[start_path|i]] # start_path[i]) then

15: d,[?] = d,[i] + d,[start_path[i]]

16: start_path|i| = start_path[start_path]i]]

17: else

18: let H = {h : predi[h] #NILA((start_path|pred;|h]] # predi[h] A start_path[pred;|h]] #

start_path[start_path[pred;[h]||) V (start_path[pred;[h]] = pred;[h] A 3k predpped, () [k] #NIL) )}

19:
20: let j = start_path|pred;[h]] for any h € H
21: start_path[i] = j
22: ds[i] = 1 + maxpen ds[pred;[h]]
23: else
24:
(“vl ”’pr{'dai‘ar't_path[prcd,iw]][h] =NH—-H}
25: if (W = {p: pred;[p] #NIL}) then
26: let j" =argmax,cwds[pred;[w]]
27 let j = pred;[j’]
28: start_path[i] = j
20: (."s[i] =1+d, [J]
30: end if
a1 end if
32: end if

33: end for

if H # 0 A start_path[pred;|h]| = start_path|pred;[h’]| for all h, A’ in H then

let W = {w : pred;[w] #NILA((start_path[pred;[w]] = pred;[w| A V¥ kpredpred, jw)[k] =NIL) V

34: until for all ¢ in the current group, start_path(i| = start_path[start_path[z]|

Figure 3

Algorithm of the Propagation procedure. Propagation procedure permits, for each node, to compute the maximum
length path passing through it. Pseudo-code is presented for the computation of start_path and d; for any group, while d . and
end_path can be obtained by replacing pred and start_path with succ and end_path, respectively.

maximum height of the initial set of, say k, pointer trees,
all these trees degenerate into stars in O(log(h,,,,)) time,
and finally they are merged in a list ranking of roots, and
the algorithm stops in O(k) time. Since h,,,,, k < log n in
every group, and we apply Algorithm “Propagation” to all
the n/log n groups, the time complexity is O(n).

Determination procedure

This procedure allows to retrieve the solutions of the pep-
tide sequence tag problem. Some change to the procedure
permits to compute all the feasible paths of maximum
length or all the feasible paths with length more than 5.
We describe the latter case. At the end of the previous sec-
tion, each node i having d[i] + d,[i] > & belongs to a solu-
tion of the peptide sequence tag problem. Moreover the
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Propagation. Propagation procedure after the initialization, updates the start_path pointers. pred edges are represented as
continued arrows, start_path pointers are represented as broken arrows.(a) If start_path[i] points to a node different from i
(e.g. a predecessor of i) and different from start_path[start_path[i]] = j, then we assign start_path[i] = j. (b) If i has all the prede-
cessors with start_path pointers pointing to themselves or predecessors with start_path pointing to the same node j, then we
assign start_path[i] = j. (c) If all the predecessors of i have the start_path pointers cycling on themselves or start_path pointing to
a node without predecessors, we consider the predecessor j having the maximum d  distance and we assign start_path[i]= j.

set of the nodes i such that start_path[i] =iand d,[i] > 5 are
the starting nodes of any solution. In order to print all the
solutions we can use a sequential procedure, taking at
most O(ns), where s is the number of the possible
sequence tags. Indeed, beginning from each starting node
i we print all the possible solutions visiting only the suc-
cessors j such that d[i]+1+d,]j] > 8, and so forth for the
successors of these nodes.

Results

In order to understand the performance of our algorithm
and to compare it with other existing software, we simu-
lated the processes by using the multithreading in Java,
addressing the synchronization by means of barriers. We
tested our program on a four 2 GHz dual-core Intel proc-
essors 8GB RAM machine.

Our first dataset consists in 1363 annotated Escherichia
Coli ion trap tandem mass spectra from the Open Pro-
teomics Database (OPD) [17] with different Xcorr (97
spectra with Xcorr > 2.5, 246 spectra with Xcorr > 2.0 and
1363 spectra Xcorr > 1.5), and our second dataset consists
of the 280 spectra of [13]. We tested the program over all
these spectra after running a data pre-processing to
remove tiny noise peaks as in Mascot (personal commu-
nication).

For the first dataset, the algorithm looks for peptide
sequence tags of maximum length. We evaluated the per-
centage of cases when the algorithm finds at least one cor-
rect sequence tag at different lengths k. We obtained the
following percentage:

W 99.6%, fork = 3;
W 96.1%, for k = 4;
W 96.1%, fork = 3;
W 59.5%, fork = 3.

The average running time required to generate the
sequence tags is 0.15 seconds. We compared our program
with the public available program PepNovo on the same
dataset of 280 spectra as in [13]. We evaluated the occur-
rence of at least one correct sequence tag in the generated
sequence tag of maximum length found by our algorithm.
Since in general the generated sequence tag is not unique,
we used the scoring function defined in [7] to assign a
score to the sequences. We evaluated the percentage of
cases where any correct tag is contained in the highest
scoring solution at different lengths. Additionally, we
reported on the occurrence of any correct tag in the set of
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Table I: Experimental results. Comparison of five tag generating methods on 280 spectra: for each tag length, algorithm and number
of solution tags, the table displays the proportion of test spectra with least one correct tag.

Tag length Algorithm Number of solutions

1 3
3 Local TagPepNovo Taglocal Tag +Guten TagPARPST 0.5290.8040.7250.4930.76 | 0.7640.9250.8550.7320.839
4 Local TagPepNovo Taglocal Tag +Guten TagPARPST 0.4640.7320.7000.4180.468 0.7140.8500.8110.6140.597
5 Local TagPepNovo Taglocal Tag +Guten TagPARPST 0.4100.6640.5710.3180.236 0.5930.7640.6960.4640.407
6 Local TagPepNovo Taglocal Tag +PARPST 0.3320.5790.5270.079 0.4890.6320.5460.125

size three of the top scoring solutions. The results are
listed in Table 1. We note that, since the percentages grow
substantially if we consider the occurrence of correct
sequence tags in the generated maximum length sequence
tags, selectivity of the scoring function is low. Therefore
better results could be obtained by using a different scor-
ing function.

The average running time required to generate the
sequence tags is 0.11 seconds.

Conclusions

The problem of identifying modified or variant peptide
sequences is a challenging one, especially when the spec-
trum for unmodified sequence is not present as a standard
for comparison. By joining the best partial sequences of
the de novo interpretation and the database search algo-
rithms, sequence tag can increase the speed and the effec-
tiveness of the identification, and the discovery of
unknown modifications, sequence variations and possi-
bly alternate splice sites in proteins. Here, we have pro-
posed a new work-efficient parallel algorithm to find
peptide sequence tags. Our tests shown that our algorithm
is efficient and accurate since achieves comparable results
to other methods. Therefore, at least in theory, the pro-
posed algorithm could be used to identify post-transla-
tional modifications, comparing the homology of the
sequence tags found with the sequences in the biological
database.

List of abbreviations used
CREW - concurrent read, exclusive write

MS/MS - tandem mass (or mass/mass)
OPD - Open Proteomics Database
PRAM - Parallel Random Access Memory

RAM - Random Access Memory
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