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Abstract
Background: Significance analysis at single gene level may suffer from the limited number of
samples and experimental noise that can severely limit the power of the chosen statistical test. This
problem is typically approached by applying post hoc corrections to control the false discovery
rate, without taking into account prior biological knowledge. Pathway or gene ontology analysis can
provide an alternative way to relax the significance threshold applied to single genes and may lead
to a better biological interpretation.

Results: Here we propose a new analysis method based on the study of networks of pathways.
These networks are reconstructed considering both the significance of single pathways (network
nodes) and the intersection between them (links).

We apply this method for the reconstruction of networks of pathways to two gene expression
datasets: the first one obtained from a c-Myc rat fibroblast cell line expressing a conditional Myc-
estrogen receptor oncoprotein; the second one obtained from the comparison of Acute Myeloid
Leukemia and Acute Lymphoblastic Leukemia derived from bone marrow samples.

Conclusion: Our method extends statistical models that have been recently adopted for the
significance analysis of functional groups of genes to infer links between these groups. We show
that groups of genes at the interface between different pathways can be considered as relevant even
if the pathways they belong to are not significant by themselves.
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Background
High-throughput gene expression analysis has become
one of the methods of choice in the exploratory phase of
cellular molecular biology and medical research studies.
Although microarray technology has improved measure-
ment accuracy, and new statistical algorithms for better
signal estimation have been developed [1-3], reproduci-
bility remains an issue [4]. A way to overcome this diffi-
culty is to move the analysis from the gene level to a
higher level where genes are grouped into functional cate-
gories. This approach has been shown to be more robust
and reproducible [5,6], and leads to an easier biological
interpretation of the experimental observations.

Gene Ontology (GO) [7] and pathways are the two main
gene-grouping schemes in use. GO organizes genes
according to a hierarchy of terms divided into three cate-
gories: “cellular component”, “biological process”, and
“molecular function”. Genes appear in more than one
level in each of the three categories, but no relation
between genes is described (apart from them being in the
same group). KEGG [8] is one of the most popular path-
way databases; it groups genes into pathways of interact-
ing genes and substrates, and contains specific links
between genes and substrates that interact directly. Both
databases are manually curated but incomplete. The GO
database is also redundant, as it contains several terms in
the top of the hierarchy that are too broad in their mean-
ing and include thousands of genes. KEGG provides a
more detailed organization of the genes but contains
information on fewer genes than GO.

Different approaches have been proposed to identify sig-
nificant gene groups based on lists of differentially
expressed genes. Several methods have been implemented
that can be directly applied to existing gene-grouping
schemes. GOstat [9] compares the occurrences of each GO
term in a given list of genes (tested group) with its occur-
rence in a reference group (typically all the genes on the
array) assigning a p value to each term. In the context of
pathway analysis, a similar approach is used by Pathway
Miner [10], which ranks pathways by p values obtained
via a one-sided Fisher exact test. Other methods allow
investigators the possibility to define their own gene-
grouping schemes. For example, Global Test package [11]
applies a generalized linear model to determine if a user-
defined group of genes is significantly related to a clinical
outcome. With the Gene Set Enrichment Analysis (GSEA)
[12,5] an investigator can test if the members of a gene set
tend to occur towards the top or the bottom of a ranked
gene list obtained from the differential expression analy-
sis, and therefore are correlated with the phenotypic class
distinction.

In this paper, we extend the significance analysis of gene
pathways to higher order structures, i.e. networks of path-
ways whose intersections contain a significant number of
differentially expressed genes. Network structure can
reveal the degree of coordination of different biological
functions as a consequence of the treatment, as well as the
presence of “focal areas” in which groups of genes play
central roles. We show examples in which some biological
functions (related to specific pathways) are biologically
relevant for the studied process, due to their position
inside the pathway network. This analysis can be extended
to groups of genes at the “interface” between pathways,
whose imbalance can affect more than one biological
function.

Our approach is aimed at understanding how external
perturbations, such as gene activation or tumor induction,
can induce in various types of cells, cell lines or derived
tissues, behaviours that can generate, integrate, and
respond to dynamic informational cues.

The broad question that we are trying to answer is how a
cell converts perturbations to signalling activity into a
binary decision resulting from the appearance of a given
phenotype. Thus the signalling activity has to be diffused
within the cell between and within pathways. A signaling
pathway is not a rigid unit, but is made of modules with
different functions (e.g. the communication with other
pathways) that may be captured by selecting those ele-
ments belonging to the interface between pathways.

Methods
Data set
The first dataset we consider consist of time course gene
expression arrays based on reconstituted c-myc-/- rat
fibroblast cell lines with the conditionally active,
tamoxifen-specific c-Myc-estrogen receptor fusion pro-
tein. Binding of Tamoxifen to the estrogen receptor
domain elicits a conformational change that allows the
fusion protein to migrate to the nucleus and to act as a
transcription factor.

This data set (MYC data set) contains the gene expression
data collected after the addition of Tamoxifen. Samples
were harvested at five time points after the addition of
Tamoxifen to the culture medium: 0, 2, 4, 8, and 16 h. The
entire experiment was repeated on three separate occa-
sions, providing three biological replicates for each gene
and time point. Expression profiling was done by using
the Affymetrix platform and U34A Gene Chips [13].

The second dataset we consider consists of the gene
expression measurements described in [14]. This data set
contains bone marrow samples obtained from acute leu-
kaemia patients, that can be classified as Acute Lymphob-
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lastic Leukemia (ALL) and Acute Myeloid Leukemia
(AML). The mRNA prepared from bone marrow mononu-
clear cells was hybridized with Affymetrix Hgu6800 con-
taining probes for 6817 human genes. The experimental
design is a comparison between ALL and AML (one factor)
on the basis of 6817 probes. The dataset (AML/ALL data-
set) contains 72 samples, 47 obtained from ALL patients
and 25 obtained from AML patients.

Gene selection and pathway grouping
For the MYC dataset, one-way ANOVA was applied to
each of the 8799 probe sets to identify those that signifi-
cantly changed expression level over time. A p value of
0.05 was chosen as the cut-off significance level. No post-
hoc correction for multiple testing (i.e. Benjamini-Hock-
berg, FDR) was applied, since post-hoc validation is pro-
vided by pathway analysis: 765 genes resulted significant,
251 of which are annotated in KEGG and belonged to 142
pathways.

The AML/ALL dataset was analysed with a linear model
with an empirical Bayes method to shrink gene variances
(limma, R package) and 1924 genes were found as signif-
icantly differentially expressed between the AML and the
ALL groups (p <0.05). Among the differentially expressed
genes, 801 genes were annotated in the KEGG database.

Pathway significance and pathway network
In order to reconstruct a network, we need to specify both
its nodes and links. From a biological point of view, nodes
can be defined as groups of genes (such as pathways or
ontologies) coding for proteins/peptides with similar
functional properties (e.g. ion channels, kinases, phos-
phatases, and transcription factors), performing similar
tasks or involved in the same biological function. The
links between nodes can be drawn in various ways and
their definition may also depend on the particular type of
experimental design (e.g. temporal correlation or physical
interactions of proteins) [15,16].

We choose to define network nodes as groups of genes
belonging to the same pathway as described in the KEGG
database. To each node we associate a feature correspond-
ing to the state of the pathway, which can be significantly
involved (overrepresented), significantly not involved
(underrepresented) or not significant in the experimental
context [17]. The same classification is used for the links
between nodes by analyzing the ratio of significant genes
at the intersection between the corresponding pathways.

Significance of nodes and links can be assessed within the
framework of 2×2 contingency tables (Table 1) where:

α = number of significant genes ∈ G

β = number of not significant genes ∈ G.

γ = number of significant genes ∉ G.

δ = number of not significant ∉ G.

S= α +γ = number of significant genes in the array

 = number of not significant genes in the array

NG = α + β = number of genes ∈ G

 = number of genes ∉ G

N = total number of measured genes

Given a subset G of the N measured genes with NG genes,
α will be differentially expressed while β = NG - α will not.
We compare α and β to the number of differentially
expressed genes γ and not differentially expressed genes δ
not belonging to G. The statistical significance of the con-
tingency table can be computed in different ways: Fisher
exact test, binomial and χ2 distribution-based tests [17].
We chose to apply the Fisher exact test because the com-
putation of the hypergeometric distribution is straightfor-
ward for tables with both small numbers (arising when
testing intersections, see below) and large numbers (aris-
ing when testing pathways). The Fisher exact test first
computes the probability p* of the observed 2×2 table by
using the hypergeometric distribution with parameters
(S,NG,N):

S= +β δ

N
G
= +γ δ

Table 1: 2X2 Contingency table. 

Differentially expressed Not differentially expressed

∈ α  β  NG

∉G γ  δ

S  N

α = number of significant genes ∈ G, β = number of not significant 
genes∈ G, γ = number of significant genes ∉ G, δ = number of not 
significant ∉ G, S = α + γ = number of significant genes in the array 

 = number of not significant genes in the array, NG = α + 

β = number of genes ∈ G,  = number of genes ∉ G, N 

= total number of measured genes

NG

S

S= +β δ
N

G
= +γ δ
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The p value to reject the null hypothesis (independence of
rows and columns in the contingency table) is given by
the sum of the probabilities of all the tables with a proba-
bility lower than p* and with the same marginal totals,
that is:

This procedure gives a probability for a two-tailed Fisher
test. Distinction between over- or under-representation of
the selected group of genes G can then be obtained by
comparing the proportion α/ NG of differentially
expressed genes in G with the proportion of differentially
expressed genes S/N on the array. A group G is considered
significant if p ≤ 0.05.

We apply a similar framework to evaluate the significance
of all non-empty intersections between two pathways:

The only difference is the definition of the total number
of genes N, which is taken to be equal to the total number
of genes in the two groups. More precisely, for the group
intersection significance analysis, the significant genes in
the intersection SI and the total number of genes NI in the
intersection are compared to the total number of genes
found in the union of the two groups and the number of
significant ones, NG1∪G2

 and SG1∪G2
 respectively. The rea-

son for this choice is as follows. Suppose we have two
groups with 100 genes each and with 50 genes in com-
mon. Suppose 60 genes are significant in each group, 30
of which are in the intersection. If 60% call rate is signifi-
cant for the two sets, it is likely that it will also be for the
intersection. However if we take a random subset of 50
genes from 150 genes in the union of the two groups, we
can expect on average a 60% call rate. Hence a random
subset with the same numbers of genes as the original
intersection would be likely to be significant. By using the
union of the two groups as a background, we increase the
requirement for the intersection to be considered as sig-
nificant and reduce the above problem. Intersections are
considered significant if their p value is lower than 0.05,

in which case a link is drawn between the two pathways
either red if it is “significantly involved” or blue if it is “sig-
nificantly not involved”, while if p >0.05 no link is drawn.

All the gene groups that we consider are biological path-
ways defined according to the KEGG annotation, and the
mapping between probes and pathways is accomplished
by querying the KEGG Database via R software
(KEGGSOAP package).

Once the significant links and nodes are established, we
perform a meta-analysis on the obtained network struc-
ture. The aim of this analysis is twofold: first, the network
structure (e.g. the presence of sub-networks, clusters, com-
munities) can reveal important biological features. Sec-
ond, each network element (node or link) can be ranked
not only on the basis of its statistical significance (the p
value obtained by the above method) but also consider-
ing its centrality in the network. We consider as a centrality
measure the Betweenness Centrality (BC) for each vertex,
a parameter that characterizes the degree of “trafficking”
through a network element [18]. For a given vertex, BC is
proportional to the sum of the shortest paths passing
through it:

For a graph G with n nodes, the Betweenness Centrality
BC (v) for node v is

Where σst is the number of shortest paths from node s to
t, and σst(v) is the number of shortest paths from s to t that
pass through a node v.

Results
The list of pathways obtained from the Fisher test shows
the most significant overrepresented and underrepre-
sented pathways in the MYC (Table 2) and AML/ALL data-
sets (Table 3). In the MYC dataset three pathways are
significantly underrepresented: neuroactive ligand recep-
tor interaction, Cytokine-Cytokine receptor interaction,
and Jak-STAT signalling pathway. Among the overrepre-
sented pathways are RNA and DNA polymerase, Cell cycle
and some metabolic and bio-synthetic pathways (Pyrimi-
dine, fatty acid and Ether lipid metabolism, folate and
Glycan structures Biosynthesis). In the case of AML/ALL
dataset two pathways are found to be underrepresented
(Ribosome and Neuroactive ligand receptor interaction);
among the overrepresented pathway are Cell Cycle, many
metabolic pathways (Glycerophospholipid, Galactose,
Pyrimidine and Purine metabolism among other) and a
signaling pathway (B cell receptor signaling pathway).
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In our case studies (see Figures 1, 2) the networks are very
small, due to the sparseness of the significant links and
nodes, thus very few network elements have nontrivial
values of BC. Anyway, the analysis of the MYC network
shows the emergence of four main sub-networks (Figure
1). These sub-networks are related to different biological
functions: the first sub-network is composed by pathways
involved in signalling processes (MAP Kinases Signalling
Pathway, VEGF Signalling Pathway, Gonadotropin-releas-
ing hormone (GnRH) Signalling Pathway) and pathways
that are related to the communication between cells and
the external environment (Regulation of actin cytoskele-
ton and Gap junction). Another interesting sub-network
connects the Metabolism with the Signalling system,

showing links between PPAR Signalling Pathway, Adi-
pocytokine Signalling Pathway and Fatty Acid Metabo-
lism. A further sub-network is related to nucleic acids
precursors synthesis and nucleic acids polymerisation
(Pyrimidine metabolism, RNA polymerase and Purine
metabolism). Another interesting sub-network contains
some basic metabolic pathways (Aminophosphonate,
Tryptophan and Tyrosine metabolism androgen and
estrogen metabolism among them).

For the AML/ALL dataset, the pathways network showed
in Figure 2 evidences a sub-network connecting signalling
and metabolism (Insulin Signalling pathway, Glycolysis/
Gluconeogenesis, Galactose Metabolism, Fructose and

Table 2: MYC dataset: statistically significant pathways. The table shows the significantly over- or under-represented pathways (p < 
0.05) for the MYC dataset. For each pathway the p value, the total number of genes, the number of significant genes and the over or 
under-representation status are shown.

Pathway p value genes Significantgenes Under/Over representation

Neuroactive ligand-receptor interaction 1.02E-05 223 11 under
RNA polymerase 0.000354 4 4 over
Cytokine-cytokine receptor interaction 0.002103 87 3 under
Pyrimidine metabolism 0.002192 23 9 over
DNA polymerase 0.003769 9 5 over
Aminophosphonate metabolism 0.009321 4 3 over
Cell cycle 0.014101 44 12 over
N-Glycan biosynthesis 0.016643 12 5 over
Jak-STAT signaling pathway 0.019052 69 3 under
Folate biosynthesis 0.025244 9 4 over
Fatty acid metabolism 0.027632 37 10 over
Ether lipid metabolism 0.044526 15 5 over
Glycan structures - biosynthesis 1 0.046622 20 6 over

Table 3: AML/ALL dataset: statistically significant pathways. The table shows the significantly over- or under-represented pathways (p 
< 0.05) for the AML/ALL dataset. For each pathway the p value, the total number of genes, the number of significant genes and the 
over or under-representation status are shown.

Pathway p value genes Significant genes Under/Over representation

Ribosome 6.70E-05 78 10 under
Cell cycle 0.00152 80 40 over
Glycerophospholipid metabolism 0.003631 28 17 over
Neuroactive ligand-receptor interaction 0.004484 211 51 under
Galactose metabolism 0.008409 21 13 over
B cell receptor signaling pathway 0.008725 49 25 over
Aminoacyl-tRNA biosynthesis 0.015056 20 12 over
Pyrimidine metabolism 0.016126 51 25 over
Purine metabolism 0.02202 90 40 over
Glycerolipid metabolism 0.024062 39 20 over
Leukocyte transendothelial migration 0.0245 75 34 over
Histidine metabolism 0.033768 26 14 over
Nitrobenzene degradation 0.03577 3 3 over
Proteasome 0.040852 27 14 over
Reductive carboxylate cycle (CO2 fixation) 0.043013 7 5 over
Protein export 0.043013 7 5 over
Aminophosphonate metabolism 0.043363 5 4 over
Nucleotide sugars metabolism 0.043363 5 4 over
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Mannose Metabolism and mTOR Signalling Pathway that
shows an underrepresented intersection with Insulin Sig-
nalling Pathway). Another interesting sub-network con-
tains some basic metabolic pathways (Aminophosphonate,
Tryptophan and Tyrosine metabolism androgen and estro-
gen metabolism, etc.). The presence of a sub-network
involving Calcium and Phosphatidylinositol signalling,
Huntington disease, Glioma and olfactory transduction
can be noticed.

As far as BC is concerned, the most central pathway for the
MYC dataset is Regulation of Actin Cytoskeleton followed
by Gap Junction and GnRH signalling pathway (Table 4).
For the AML/ALL dataset, the most central pathway is the
Androgen and Estrogen metabolism followed by Hunt-
ington disease and Insulin signalling pathway (Table 5).

The existence of important genes belonging to the inter-
face among pathways for the MYC dataset is clearly evi-
denced in (Figure 3) where the distribution of pathway
membership (the number of pathways that a gene
belongs to) is showed for all the genes obtained from Rat-

tus norvegicus KEGG database, for the genes on the rat
Affymetrix U34A Gene Chip and for the significant genes
arising from c-Myc activation. All the three histograms
show the same heavy-tailed distribution, meaning that
the majority of genes belong to few pathways whereas few
genes (the hubs) belong to several pathways.

In (Figure 4) the pathway membership distributions for
the AML/ALL dataset are shown and similar results are
obtained. Histograms from Homo sapiens KEGG data-
base, for the whole Affymetrix Hgu6800 array genes and
for the selected genes, are of the heavy-tailed type, high-
lighting the presence of hub genes.

The bipartite graphs highlight the central role of hub
genes emerging from the pathway networks. In the MYC
dataset (Figure 5) the Signalling sub-network is strongly
connected and presumably coordinated by a small
number of genes such as MAP Kinase III (Mapk3), neurob-
lastoma ras oncogene (Nras), v-raf-1 murine leukemia
viral oncogene homolog 1 (Raf1), platelet derived growth
factor receptor alpha polypeptide (Pdgfra) and cell divi-

Network of pathways for MYC datasetFigure 1
Network of pathways for MYC dataset. Gray circles indicate not significant pathways, red and blue circles indicate signifi-
cant pathways that are respectively overrepresented and underrepresented. Red links indicate pathways interconnections that 
resulted statistically significant and overrepresented. The largest pathway sub-networks are clearly related to Metabolism, 
Genetic Information Processing and Signalling biological functions.
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sion cycle 42 homolog (Cdc42). The sub-network contain-
ing the basic metabolic pathways (Aminophosphonate,
Tryptophan and Tyrosine metabolism, androgen and

estrogen metabolism, etc.) shows at its intersections genes
belonging to the family of protein arginine methyltrans-

Network of pathways for the AML/ALL datasetFigure 2
Network of pathways for the AML/ALL dataset. Gray circles indicate not significant pathways, red and blue circles indi-
cate significant pathways that are respectively overrepresented and underrepresented. Red lines indicate pathways intercon-
nections (links) that resulted statistically significant and overrepresented, whereas blue lines indicate significant pathways 
interconnections that are underrepresented.

Table 4: Pathways ranked according to BC for the MYC dataset. List of pathways showing highest values of BC for the MYC dataset: 
connectivity degree and node BC are shown for each pathway.

Pathway Connectivity degree Node BC

Regulation of actin cytoskeleton 5 29
Gap junction 3 15
GnRH signaling pathway 3 8
Melanogenesis 2 8
Seleno aminoacid metabolism 5 1.833
Androgen and estrogen metabolism 5 1.833
Aminophosphonate metabolism 4 0.333
Page 7 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 4):S9 http://www.biomedcentral.com/1471-2105/9/S4/S9
ferases (Hrmt1l2, Hrmt1l3) that are involved in histone
modification and chromatin remodelling.

As far as the AML/ALL dataset (Figure 6) is concerned, in
the sub-network connecting Signalling and Metabolism,
especially at the intersection between insulin and mTOR
signalling pathways, some crucial genes emerge (PIK3CA,
PIK3CB, PIK3R2 and AKT1).

Similarly to the MYC dataset, the sub-network that con-
tains some basic metabolic pathways (Aminophospho-
nate, Tryptophan and Tyrosine metabolism, androgen
and estrogen metabolism, etc.) shows at their intersection
genes belonging to the family of protein arginine methyl-
transferases (PRMT1 that is homologue to the rat counter-
part Hrmt112 seen in the MYC dataset, PRMT2 and
PRMT5).

It is worth noticing that in the sub-network involving
both Calcium and Phosphatidylinositol signalling it is
possible to evidence some crucial genes, for example cal-
modulin and the well known tumor protein p53 (TP53).

Discussion
A global picture of gene expression is greatly enhanced by
the use of genes categorization and pathway analysis, but
there can be several cases where this approach is not com-
pletely satisfactory. It may fail to capture the relationship

between the categories and it may discard some important
pathways or genes, because it does not take into account
their relevance based on their central position. A typical
case is that of genes that are at the interface among path-
ways (as in the case of hubs). With our method we try to
overcome these limitations assigning more relevance to
the position occupied by a group of genes in a higher level
structure (i.e. the pathway network) in addition to their
statistical significance alone.

The comparison between the pathways listed in Table 2
and Table 3 with the corresponding networks of Figure 1
and Figure 2 shows how the lists alone can not grasp the
complexity of pathway activation induced by gene expres-
sion changes, remarkably most of the pathways in these
networks are not listed in Table 2 and 3.

For the MYC dataset, the biggest sub-network comprises
pathways that are involved in signalling processes (MAP
Kinases Signalling Pathway, VEGF Signalling Pathway,
GnRH Signalling Pathway), and in structural reorganiza-
tion, communication and connections (Regulation of
actin cytoskeleton and Gap junction). The bipartite graph
shows how this sub-network is strongly connected and
coordinated by a small number of hub genes (Mapk3,
Nras, Raf1, Pdgfra, Cdc42). All these genes are well-known
proto-oncogenes involved in proliferation, regulation of
growth, cell cycle progression control and structural reor-

Table 5: Pathways ranked according to BC for the AML/ALL dataset. List of pathways showing highest values of BC for the AML/ALL 
dataset: connectivity degree and node BC are shown for each pathway.

Pathway Connectivity degree Node BC

Androgen and estrogen metabolism 5 9
Huntington disease 4 5
Insulin signaling pathway 3 5
Galactose metabolism 2 3
Cytokine-cytokine receptor interaction 2 1

Distribution of gene pathway membership for MYC datasetFigure 3
Distribution of gene pathway membership for MYC dataset. The y axis is the gene frequency and the x axis is the 
number of pathways that genes belong to. The majority of genes belong to few pathways whereas few genes (hubs) belong to 
several pathways (scale free distribution). A) Histogram obtained from the KEGG database for the Rattus norvegicus organism. 
B) Histogram obtained from the genes on rat Affymetrix U34A Gene Chip. 3) Histogram obtained from the significant genes 
for MYC dataset.
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ganization of the cell. They are major c-Myc downstream
effectors and they are responsible of the profound effects
that c-Myc exerts in cellular physiology: the down-regula-
tion of the connections among cells and the connections
between cells and the extracellular matrix, cytoskeleton
reorganization, and the induction of cell growth and pro-
liferation [19]. The MYC network evidences also a
strongly connected component related to basic metabo-
lism, comprising both biosynthetic and catabolic path-
ways and a small sub-network related to the synthesis of
nucleic acids, which are known to be major targets of c-
Myc that upregulates both energy metabolism and biosyn-
thesis needed for growth and proliferation [13,19].

For the AML/ALL dataset, the pathways network showed
in Figure 2 evidences a sub-network connecting signalling
and metabolism that underlines how the regulation of
energy metabolism may play a key role in the discrimina-
tion between the two types of leukaemia. It is interesting
to note that Insulin and mTOR signalling pathways are
known to be involved in AML [20,21], in particular the
crucial genes (PIK3CA, PIK3CB, PIK3R2 and AKT1, Fig 6)
in the intersection between these two pathways have been
recently pointed out as promising novel targets for AML
therapy [22].

Among the relevant genes extracted by our method we can
notice the well known tumor protein p53 (TP53),
involved in a wide variety of cancers, found in the sub-net-
work involving Calcium and Phosphatidylinositol signal-
ling systems.

In both datasets the sub-networks containing basic meta-
bolic pathways (Aminophosphonate, Tryptophan and
Tyrosine metabolism, androgen and estrogen metabo-
lism, etc.) show at their intersections genes belonging to
the family of protein arginine methyltransferases that are
involved in histone modification and chromatin remod-
elling. They have been recently pointed out to have a

major role in lymphoid tumours, leukaemia and more
generally in cancer [23,24].

The role of epigenetic modification in cancer induction
and differentiation, is gaining several experimental evi-
dences and is giving new perspectives on cellular complex
processes: our results can also suggest another mechanism
for MYC in promoting oncogenesis through chromatin
remodelling.

Conclusion
Our results show that it is possible to combine high-
throughput experimental procedures and advanced data
processing as a general Systems Biology approach to dis-
cover pathway network changes following variation of cel-
lular phenotypes. The use of known pathways, such as
those described in the KEGG database, is motivated by the
clarity of their biological interpretation, but our method
can be applied also to custom defined pathways or to
group of genes obtained from other methods. This
approach can be further generalized by considering differ-
ent statistical methods for assessing single gene signifi-
cance, or the significance of single network modules.

This approach leads to an increased biological insight of
the results by adding topological information (Between-
ness Centrality) to a list of pathways obtained by signifi-
cance test. It may improve the comparability of
microarray studies, both between different cell types and
different perturbations by considering changes in path-
way networks instead of single genes.

Moreover, this network-based method highlights the
existence of “focal areas” or hub genes that are more likely
found in the intersection between pathways. In this way it
is possible to reconsider genes on the basis of their central
role in the network and not only for their statistical signif-
icance. This can be of great importance also considering
that the most central genes typically are subjected to very

Distribution of gene pathways membership for AML/ALL datasetFigure 4
Distribution of gene pathways membership for AML/ALL dataset. The y axis is the gene frequency and the x axis is 
the number of pathways, as in Fig 3. A) Histogram obtained from the Homo sapiens KEGG database. B) Histogram obtained 
from the genes on Affymetrix Hgu6800 array. 3) Histogram obtained from the significant genes from AML/ALL dataset.
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small changes that could be hardly detectable by any sin-
gle gene statistical analysis, but can anyway exert great
biological effects due to their central role in pathway inter-
connections and communication. Recently other authors
are developing methods trying to extract from the data
genes that can be biologically relevant even if they are not
top-ranking in terms of statistical significance [25].

The problem of assessing pathway relevance is issued in a
different way by Draghici [26]. In his paper the biological
relevance of each pathway is scored both on the basis of a
statistical significance test (pathway enrichment analysis)
and on other parameters referred to the position of single

genes in the pathway. Our method for pathway relevance
can be seen as a top-down approach (from a KEGG-based
network to single pathways and genes), as much as the
method by Draghici is a bottom-up one (from genes to
pathways).

List of abbreviations used
GO: gene ontology, KEGG Kyoto Encyclopedia of Genes
and Genomes, GSEA: Gene Set Enrichment Analysis, ALL:
Acute Lymphoid Leukemia, AML: Acute Myeloid Leuke-
mia, FDR: False Discovery Rate, ANOVA: Analysis of Vari-
ance, BC: Betweenness Centrality.

Bipartite graph of pathways and genes for the MYC datasetFigure 5
Bipartite graph of pathways and genes for the MYC dataset. Pathways are represented by squares and genes by cir-
cles. The isolated pathways have been removed so that the graph contains only the connected components of Figure 1, evi-
dencing only the significant genes of the significant intersections. Red and blue squares indicate respectively significantly 
overrepresented and underrepresented pathways whereas the gray indicates not significant pathways. The green tone indicates 
the degree of pathways membership: from light green (connected to few pathways) to dark green (the hubs).
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Bipartite graph of pathways and genes for the AML/ALL datasetFigure 6
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dencing only the significant genes of the significant intersections. Red and blue squares indicate respectively significantly over-
represented and underrepresented pathways whereas the gray indicates not significant pathways. The green tone indicates the 
degree of pathways membership: from light green (connected to few pathways) to dark green (the hubs).
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