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Abstract

Background: The traditional (unweighted) k-means is one of the most popular clustering methods
for analyzing gene expression data. However, it suffers three major shortcomings. It is sensitive to
initial partitions, its result is prone to the local minima, and it is only applicable to data with
spherical-shape clusters. The last shortcoming means that we must assume that gene expression
data at the different conditions follow the independent distribution with the same variances.
Nevertheless, this assumption is not true in practice.

Results: In this paper, we propose a genetic weighted K-means algorithm (denoted by GWKMA),
which solves the first two problems and partially remedies the third one. GWKMA is a
hybridization of a genetic algorithm (GA) and a weighted K-means algorithm (WKMA). In
GWKMA, each individual is encoded by a partitioning table which uniquely determines a clustering,
and three genetic operators (selection, crossover, mutation) and a WKM operator derived from
WKMA are employed. The superiority of the GWKMA over the k-means is illustrated on a
synthetic and two real-life gene expression datasets.

Conclusion: The proposed algorithm has general application to clustering large-scale biological
data such as gene expression data and peptide mass spectral data.

Background

Clustering is defined as a process of partitioning a set of
objects (patterns) into a set of disjoined groups (clusters).
Its goal is to reduce the amount of data by categorizing or
grouping similar data items together and obtain useful
information. Clustering methods can be divided into two
basic types: hierarchical and partitional clustering [1].
Within each type there exists a wealth of subtypes and dif-
ferent algorithms. Hierarchical clustering proceeds succes-

sively either by merging smaller clusters into larger ones
(bottom-up), or by splitting larger clusters into smaller
clusters (top-down). The hierarchical clustering methods
differ in the rules used to decide which two small clusters
are merged or which large cluster is split. The final result
of the algorithm is a binary tree of clusters called a den-
drogram, which shows how the clusters are related to each
other. By cutting the dendrogram at a desired level, a clus-
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tering of objects in a dataset into disjoint groups is
obtained.

On the other hand, partitional clustering - k-means, for
example - attempts to directly divide a dataset into a
number of disjoint groups. All partitional clustering algo-
rithms need as input the number of clusters and a cost
(criterion) function to define the quality of a partition.
The partitional clustering method aims at optimizing the
cost function to minimize the dissimilarity of the objects
within each cluster, while maximizing the dissimilarity of
different clusters. In general, the partitional clustering
algorithms are iterative and hill-climbing, and thus they
are sensitive to the choice of the initial partition. Further-
more, since the associated cost functions are nonlinear
and multimodal, usually these algorithms converge to a
local minimum. The algorithms based on combinatorial
optimization such as integer programming, dynamic pro-
gramming and, branch-bound methods are too expensive
since the number of partitions of n objects into k clusters
is O(kn).

Genetic algorithms (GA) [2], inspired by natural evolu-
tion of genes, offer heuristic solutions to some optimiza-
tion problems. The algorithm typically starts with a set of
solutions (randomly generated) called the population
and creates successive, new generations of the population
by genetic operations such as natural selection, crossover,
and mutation. Natural selection is performed based on
the fitness (related to the cost function) of an individual.
For an individual, the better its fitness, the more chances
it has to survive in the next generation. Crossover is per-
formed by certain crossover rule and mutation aims at
changing an individual by a user-specified mutation pro-
bility. The intuition underlying the approach is that each
new population will be better than the previous one. Actu-
ally it has been proved [3] that a canonical GA converges
to the global optimum with probability 1.

A GA is highly dependent on the coding of the solutions
(individuals). In the context of weighted k-means, a natu-
ral representation of a solution is a pair of variables (par-
titional string, cluster centroids). The partitional string
describes for each object the index of cluster which it
belongs to. The cluster centroids are representative objects
of the clusters and their attributes are found by averaging
the corresponding attributes among the objects in a par-
ticular cluster. These two variables depend on each other
such that if one of them is given, the other one can be
uniquely constructed. Since the cluster centroids generally
are real numbers, it might be very difficult to encode
them. On the other hand, a direct encoding for partitional
strings is a simple problem.

http://www.biomedcentral.com/1471-2105/9/S6/S12

Genetic algorithms have been previously considered for
clustering problems [4-11]. Often genetic algorithms are
not hybridized with k-means algorithms [5,6,9,11] and
thus their rates of convergence were very slow. On the
other hand, when GA are hybridized with k-means algo-
rithms [7,8,10], the resultant algorithms inherit some
drawbacks of unweighted k-means algorithms, for exam-
ple, that the resultant clusters are spherical-shape. Further,
if the inherent structure of the clusters in the data is not
spherical shaped, such algorithms can not give the correct
results

In this paper, we propose a genetic weighted k-means
algorithm (GWKMA). This is a hybrid approach to com-
bining a GA with the weighted k-means algorithm
(WKMA) [12,13] and partially remedies drawbacks of
other attempts [4-11]. The GWKMA encode the solutions
by partitional strings and employs three genetic opera-
tions - natural selection, crossover and mutation - and
one WKM operation derived from the weighted k-means
algorithm (WKMA).

Methods

WKMA

In a general sense, a k-partitioning algorithm takes as
inputaset D = {x;, x,U, x,} of n objects and an integer K,
and outputs a partition of D into exactly K disjoint subsets
D,,U, Dy. Denote such a partition by A. Each of the sub-
sets is a cluster, with objects in the same cluster being
somehow more similar to each other than they are to all
subjects in other different clusters. One way to make the
determination of A into a well-defined problem is to
define a cost function which measures the clustering qual-
ity of any partitions of a dataset.

In this paper, each attribute of an object (gene) is
expressed as a real number and thus each object may be
described by a real number row vector of dimension d,
where d is the number of attributes of an object. Assume
that all objects in the dataset have the same number of
attributes, i.e. no missing data. Let (x;, i = 1,U, n) be a data-
set of n objects. Let x;; denote the jth attribute of object x;.
X = (x;) is called an attribute matrix of object set D. For the
predefined number K of clusters, the cost function for a
weighted k-means clustering technique may be defined by

K
Jo@) =Y Y (5 -m)Glx - ) (1)

k=1 x;€D,

where

_ 1
i = Y 2)

Page 2 of 10

(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 6):S12

n, and m,, are the mean and the number of objects in D,,
respectively, and G is a weighted matrix which is a sym-
metrical positive. The objective of a weighted k-means
algorithm is to find an optimal partition expressed by A*
and a symmetrical positive matrix G* satisfying equation
(3) such that

J - (87) = min{J . (4)} 3)

Obviously, given a partition A, the value of J;(A) change
with the multiplication of a weighted matrix G. Therefore
the weighted matrix must be normalized. In this study the
determinant of G is set to be 1, i.e.

(det(G)) = 1 (4)

For fixed G = I in equation (1), condition (4) is satisfied
automatically, and equations (1) and (3) become the cost
function and optimal objective of a traditional k-means
algorithm, respectively.

For a fixed partition, we wish to determine G such that the
cost function (1) is optimized under the normalization
condition (4). To do that, we form the Lagrangian func-
tion

K
LG )= Y (3= iy )Glx; = y) — 1(det(G)) ~1)

k=1 x;eD,
(5)

and calculate its derivatives with respect to G

K
LG =Y, Y (=) (- ) - 167 (de(G)

k=1 x;eD,
(6)

Equating the derivative to zero and using the auxiliary
condition (4) lead to

W = AG1(det(G)) = AG!
K
where W = ZWk and W, = z (x; —my) (x; —my,) 1is
k=1 x;€D,,
the within-group variance of cluster k ((k = 1,U, K), and
A= (det(W))1/d
Finally, we have

G = W-i(det(W))1/d (7)
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Note that W is dependent on partition A. To avoid ambig-
uousness, denote W induced by A as W(A). Substituting
(7) into (1) leads to J(A) = d(det(W(A)))/4. As d is a con-
stant for a given dataset, the cost function of a weighted k-
mean clustering is reduced to

J(A,) = (det(W(A)))4 (8)

Thus the objective of a weighted k-mean algorithm is sim-
plified as finding an optimal partition expressed by A,
which minimizes

J(A,) = min(det(W(4)))"/¢ 9)

There are O(k") different partitions of n objects into
exactly k clusters [1]. It is impractical to using an exhaus-
tive search for the solution to clustering a large-size gene
expression dataset. To overcome this problem, a heuristic
approach is usually considered. The basic idea in the heu-
ristic approach is to randomly select an initial partition
and then move objects between groups if such moves
make J significantly smaller.

Now consider how the cost function J changes when an
object x currently in cluster D, is tentatively moved to a dif-
ferent cluster D;. Let A = (Dy,U, D), A" = (DU,
D)\{x},UD,), and A" = (D;,U, D)\{x},U, D;u {x},U, D)
(i #j). Obviously the condition for successfully moving x
from D;into D;is

det(W(A")) < det(W(A)) (10)
From the definitions, it follows that
W(A) =W(@A)+ T (x-X) (x-%)  (11)
mj—1
WA =W(AY+ I (x-F)(x-F,) (12)

m j+1
Condition (10) is reduced to

BV =5 < e LGOI ICEEDY

(13)

since det(A + fy'y) = det(A)(1 + pyAly') for any d x d
invertible matrix A, any d - dimensional row vector y, and
any number £.

If reassignment is profitable, the greatest decrease in the
cost function is obtained by selecting the cluster for which
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mj

w1 (x— Ej)[W(A’)]’l(x —Xx;)" is minimal. This leads to
the iteratively optimal weighted k-means algorithm
(WKMA) shown in Figure 1.

GWKMA

As the WKMA is sensitive to initial partitions and its result
is prone to the local minima, this paper proposes a genetic
weighted k-means algorithm (GWKMA), shown in Figure
2. The GWKMA is a hybridization of GA and WKMA,
including the three genetic operators in general GA and a
WKM operator derived from WKMA. In the following we
specify in details the encoding, selection, crossover, muta-
tion, and WKM operators.

http://www.biomedcentral.com/1471-2105/9/S6/S12

Encoding

In the literature [5,6,8], solutions (individuals) are
encoded by the centers of clusters. Note that the centers of
clusters are real numbers for general cluster tasks and the
encoding of the real number in GA algorithms is hard and
may degrade the accuracy of the solutions.

We use a partitional string to express a solution to a clus-
tering. A partitional string is an integer string over the set
{1,U, K}, on which each position corresponds to an
object and the number in a position represents the cluster
to which the corresponding object is assigned. Thus, the
search space consists of all integer strings s, with length n
over the set {1,U, K}. A population is expressed by a set of
partitional strings representing its individuals (solutions),

Weighted K-means algorithm (WKMA)
[A,,J(A,)]=WKMA(A, X, K)
Input: an initial partition, A ; the attribute matrix, X ; the number of clusters, K
Output: a best partition, A, and its cost function value, J(A,)
1. Compute m, using formula (2) and J(A) using formula (8) for an initial partition A.
2. repeat
3. for i=1to n
4 k « the index of the cluster where x, belongs
5. if n, #1 then compute
m’l"’ﬂ(x—;?,)[W(A')]1 (x-%), l#k
e m, = -1 =\
i (x=x)WA)] (x=Xx,), =k
6. if p, = min p, < p, then move x, to D,, adjust A, and re-compute J,m ,m,
7. end for
8. until no significant change in J in » consecutive attempts
13. return A, and J(A,)

Figure |
Iterative optimal k-means algorithm.
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Genetic Weighted K-means Algorithm (GWKMA)

Input: Attribute Matrix, X ; Number of clusters, K; Mutation probability, Pm;
Population size, N ; Number of generation, GEN .

Output: the resultant partition A, and the value of its cost function J(A,) .

1. Initialize the population A" with the size N
/* A" is a set of partition string of a population */

2. [A,J(A)]=WKM(A,X,K,N)

3. Re-order individuals such that the first individual is the optimal one in population

,andset A, =A,, JE(O)=J(A,),and g=1

3. While (g < GEN)

4, A= Selection(A”, X,K,N)

5. A = Crossover(z* ,N)

6. A" = Mutation(A”, Pm, K, N)

7. [A", J(A )] = WKM (A", X,K,N)

8. Find the optimal individual in population A", and denote it by A
9. If J(A,)>J(A),
then A, = A, and set JE(g)=J(A)
else JE(g)=JE(g-1);
/* where JE(g) stands for the value of the cost function of the best partition up to
the gth generation from the beginning of the algorithm */
10. Re-order individuals such that A, = A ;
11. g=g+1;
12. End while

13. Return JE(GEN)=J(A,) and the resultant partition A, .

Figure 2
Genetic weighted k-means algorithm (GKMA).
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denoted by A* or A*. One may set some additional con-
ditions to refine the search space. For example, to avoid a
singular clustering, one may impose the constraint that
each element in the set {1,U, K} appears at least once in

Sa-

The advantage of encoding the centers of clusters is that
the resultant clusters from GA clustering are convex.
GWKMA encodes the solutions (individuals) by integer
strings (partitional strings). This simplifies the encoding
of GA and does not degrade the accuracy of the solutions.
Since GWKMA includes the weighted k-means operator,
the resultant clusters from GWKMA are still convex.

Selection operator

A* = Selection(A*, X, K, N). For convenience of the manip-
ulation, GWKMA always assigns the best individual found
over time in the population to individual 1 and copies it

to the next population. Operator A* = Selection(A*, X, K,
N) selects (N-1)/2 individuals from the previous popula-
tion according to the probability distribution given by

N
Py(si) = F(SAi)/ Y F(sai)
i=1
where N (odd positive integer) is the number of individu-
als in a population, s,; is the partitional string of individ-
ual i, and F(s,;) represents the fitness value of individual i
in the current population. Fitness here is defined as

(14)

F(84) =TT -J(s4) (15)

where J(s,) is calculated by (8), and TJ is calculated by the
following formula

TJ = det(S) = det(z (x — i) (x — 1))

xeD

(16)

and where m = % 25 x . It is evident that TJ > J(s,) for any
Xe

5, in the problem. Note that there are (N-1)/2+1 individ-

. Xk
ualsin A",

Crossover operator

A* = Crossover(A*, N). The intention of the crossover
operation is to create new (and hopefully better) individ-
uals from two selected parent individuals. In GWKMA, of
two parent individuals, one always is the first individual
that is the optimal individual found over time, and
another is one of the selected (N-1)/2 individuals from
the parent population other than the first individual. In

http://www.biomedcentral.com/1471-2105/9/S6/S12

this paper, the crossover operator adopts the single-point
crossover method for simplicity. Note that after the cross-
over operation population A* has N individuals.

Mutation operator

A* = Mutation(A*, Pm, K, N). Each position in a coding
string is randomly selected with a user-set mutation prob-
ability Pm, and the number in the selected position is uni-
formly randomly replaced by another integer from the set
{1,U K}. In other work [ 14], such a mutation depends on
the distance of the corresponding object from the cluster
centoids. Actually such a complex strategy is not necessary
because the WKM operator will be used. To avoid any sin-
gular partition (containing an empty cluster), the muta-
tion operator also randomly assigns one object to a cluster
which is empty after all genetic operations.

WKM operator

[A*, J(A*)] = WKM(A*, X, K, N): The WKM operator is
obtained by calling WKMA for each individual s, in pop-
ulation A*. It is sufficient to run the repeat loop in AKMA
for several times. Note that J(A*) is an N-dimensional vec-
tor, each component of which corresponds to the value of
the cost function of an individual in population A*. In
other works [7-9], several different k-means operators
were employed, and their functions are similar to that of
WKMA. However, those k-means algorithms are neither
iteratively optimal nor weighted.

Evaluation

The term "evaluation of a clustering method" usually
refers to the ability of a given method to recover true clus-
ters in a dataset. There have been several attempts to eval-
uate a clustering method on theoretical grounds [14,15].
Since a clustering result can be considered as a partition of
objects into a number of groups, for evaluating a cluster-
ing method it is necessary to define a measure of agree-
ment between two partitions of the same dataset. In the
clustering literature, measures of agreement between par-
titions are referred to as external indices. Several such indi-
ces have been described [15,16]. This paper adopts the
adjusted Rand index (ARI).

Consider two partitions of N objects: the r-cluster parti-
tion U = {u;,U u,} and the s-cluster partition V = {v,,U,
v,}. One may construct a contingency table (Table 1),

where entry n; is the number of objects that are both in

S
clusters y;and v, i = 1,U, 1, j = 1,U, 5. Let n; = Z"ij and
j=1

.
n;= thnif denote the sum of row i{i = 1,U, r}and the
=

sum of column j (j = 1,U, s) in the contingency table,
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Table I: Contingency table for two partitions of n objects

Vi V2 Vs Total
Ui m P! u s n.
u My nn u s ny,
uy Ny np U Ny n,
Total n, n, ) ng n.=n
r S P
respectively, and let Z= Z Z nj and

N
V=(2 J=N(N—1)/2 (the number of pairs of N

objects). Based on the contingency matrix of two parti-
tions, the ARI is defined as [16,17]:

ros(ni) 1L (ng)S n.j)

DD =2 by

i=li=l( 2 }Vi=l( 2 l’:l[ 2
1| 7 (n; s (nj ] 1 r(ni'ls nj
- Z 2 -— 2 2
z{izl( 2 J+i:1[ 2 J Vizi{ 2 Ji=1{ 2

(17)

The ARI is an adjusted Rand index [18] in that its expected
value is 1 when they matched perfect and 0 when the two
partitions are selected at random. Accordingly, the large
value of ARI indicates the two partitions are highly in
agreement. To investigate the sensitivity of the partition
clustering methods to initial partitions, the clustering
method is run with numerous different initial partitions.
Then the average ARI (AARI) of all pair-wise resultant clus-
terings is calculated. This AARI indicates the sensitivity of
the clustering method to initial partitions. The larger the
value of AARI, the more insensitive (better) the clustering
method is to initial partitions.

ARI =

To evaluate the quality of the clusters, we propose a meas-
ure of internal consistency based on the singular value
decomposition (SVD) of each cluster. To define internal
consistency, suppose we are given a partition of our n x m
dataset X into K disjoint clusters, where m is the number
of time points and n is the number of genes. For the jth

cluster (j = 1,U, K) we have a matrix X; of microarray meas-
urements, where the rows are genes and the columns are
time points, so that X; is a n; x m matrix, where n; is the
number of genes in the jth cluster. Using the SVD, we

decompose X; =U;S ]-V]»T , where U;and V;are orthogonal

matrices and §; is a diagonal matrix whose entries describe

http://www.biomedcentral.com/1471-2105/9/S6/S12

the importance of the columns of U; and V;. The matrix
X;V; = U;S; contains the projections of the rows (genes) of
X; onto the basis V;. The entries of S; (singular values) give
the relative importance of the rows of V;. If the first entry
of §;is much larger than the second entry then we know
that most of the information in the rows of X; is captured

by a single dimension. We thus define the internal consist-
ency of the jth cluster to be the ratio of the first and second
singular values in S;. The internal consistency provides a

measure of how well a single dimension can describe all
genes. We can evaluate the quality of a clustering with K
clusters by the average internal consistency (AICo) of the
K clusters. The high value of the AICo indicates the good
quality of the clusters

Results

This section uses a synthetic and two real-life gene expres-
sion datasets to investigate the performance of the
GWKMA in terns of AARI and AICo, while compared with
the widely used k-means.

Synthetic dataset (SYN)

A synthetic dataset is generated by the sine function mod-
eling cyclic behaviour of genes employed by Yeung, et al.
[19]. Let x;;be the simulated expression level of gene i and
time pointj in the dataset and be modeled by x;;= 4, * ¢(i,
(1 + ay), where ¢(i, j) = sin(27)/8 - wy;) + &;). 4;is the
amplitude control at time j, which is chosen according to
the standard normal distribution. ¢(i, j) models the cyclic
behaviour of genes. Each cycle is assumed to span 12 time
points. Different clusters are represented by different
phase shifts, and wy; represents a phase shift for gene i in
cluster k, which is chosen according to the uniform distri-
bution on interval [0, 27]. The random variable ¢&; repre-
sents the noise of gene synchronization, which is chosen
according to the normal distribution with the mean of
zero and the standard deviation of 0.3. ¢; represents the
error of gene i at time j, which is chosen according to the
normal distribution with the mean of zero and the stand-
ard deviation of 0.4. Using the model above, a synthetic
dataset is generated consisting of expression levels of 600
genes at 12 time points. These 600 genes belong to six
clusters, each of which contains 100 genes.

Two real-life datasets

The first real-life dataset is a subset of gene expression pro-
files over 11 time points collected during the process of
bacterial cell division [20], and contain 431 gene expres-
sion profiles with the standard deviation greater than 0.5
and no missing data points, denoted by BAC in this paper.
The second dataset is a subset of gene expression profiles
over 7 time points collected during the developmental
program of sporulation in budding [21], and contains
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529 gene expression profiles with the standard deviation
greater than 1.0, and no missing data points, denoted by
SPO. These two original datasets are publicly available
from the Stanford microarray database [22] at http://

genome-wwwb.stanford.edu/.

In the experiments conducted in this study, the number of
generations is set to be GEN = 15, the population size =
21, and the mutation probability Pm = 0.10. The Matlab™
software package was used to conduct our experiments.
Both AARI and AICo are computed over a variety of the
numbers of clusters and for a number of the running
results of both GWKMA and the traditional k-means.

The AICos with the cluster numbers from 2 to 10 are cal-
culated from the results of 5 runs of both the GWKMA
(solid lines) and the k-means (dash lines), and are
depicted in the upper panel of Figure 3. The values of
AlCo for the GWKMA are greater than 1.8 while those for
the k-means are less than 1.6. This indicates that the qual-
ity of clustering from the GWKMA is higher than that from
the k-means. The AARI with the cluster numbers from 2 to
10 are calculated form the results of 5 runs of both the
GWKMA (solid lines) and the k-means (dash lines), and
are depicted in the lower panel of Figure 3. The values of
AARI for the GWKMA are greater than those for the k-
means over all the clusterings except for the one with k =

2
\__/\
o 1.8} -
o
< 16} o
147° i ‘ ‘
2 4 6 8 10
number of clusters
1

AARI

number of clusters

Figure 3

Comparison of the GWKMA (solid lines) to the k-means
(dash lines) over a variety of the numbers of cluster on data-
set SYN.

http://www.biomedcentral.com/1471-2105/9/S6/S12

8. This result means that the GWKMA is more insensitive
to initial partitions than the k-means.

Figures 4 and 5 depict the comparisons of the GWKMA
and the k-means in terms of the AICo (the upper panels)
and AARI (the lower panels) for the two real-life gene
expression datasets. Before the clustering, two datasets are
normalized by shifting the median of each gene expres-
sion profile to zero. From Figures 4 and 5, the same results
are obtained from the real-life gene expression data as
those from the synthetic dataset. That is, the GWKMA is
better than the k-means in terns of AARI and AICo.

The superior quality of clustering from the GWKMA can
be explained as follows. The k-means method assumes
that 1) all attributes (data at time points) of objects
(genes) are independent and 2) the standard deviations of
all attributes over all objects are equal.

In practice, these two assumptions are not true. For exam-
ple, we calculate the sample covariance matrix of dataset
SPO shown in the matrix S in Figure 6. The elements on
the main diagonal of matrix S are not equal and instead
range from 0.23 to 4.44. This indicates that assumption 2)
for the k-means is invalid. Actually, in many data analysis
cases, gene expression data is normalized such that the
standard deviation of each attribute over all objects is 1. In
this case assumption 2) for the k-means is valid. However,
assumption 1) for the k-means is still invalid. For exam-

8 Paal
E 2 \\\ a”’ ~~----~‘~ 'l ”\\\ |
\\“f \\
1.8+ b
2 4 6 8 10
number of clusters
1
gz 08 \/\/\/
3
P e ———
06 28 \\\\-__.—raa‘-__— J
2 4 6 8 10
number of clusters
Figure 4

Comeparison of the GWKMA (solid lines) to the k-means
(dash lines) over a variety of the numbers of cluster on data-
set BAC.
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2.8 /\,\/\
2.6 1
Q 24: :
8]
< 22} 1
2} ’~\\ b
1 8/""“7—"'\\____, ‘ | Se==7
2 4 6 8 10
number of clusters
1 ‘ : :
0.8}

AARI

0.6 ’_———___~~~~,l,

2 4 6 8 10
number of clusters

Figure 5

Comparison of the GWKMA (solid lines) to the k-means
(dash lines) over a variety of the numbers of cluster on data-
set SPO.

ple, in the matrix S in Figure 6 most off-diagonal elements
are far from zero. This means most attributes in dataset
SPO are correlated and thus not independent.

Conclusion

In this study, a genetic weighted k-means algorithm
(GWKMA) is proposed which is a hybrid algorithm of the
weighted k-means algorithm and a genetic algorithm.
GWKMA was run on one synthetic and two real-life gene
expression datasets. The results of the computational
experiments show that the GWKMA performs better than
the k-means in terms of the cluster quality (AARI) and the
clustering sensitivity to initial partitions (AICo).

[4.44 273 223 -0.27 -1.91 -1.05 -1.24]
2.73 3.92 2.64 -0.17 -1.59 -1.29 -1.61
223 264 235 0.00 -1.28 -1.01 -1.36
§=[-0.27 -0.17 0.00 0.23 0.13 -0.01 -0.11
-1.91 -1.59 -1.28 0.13 1.63 1.12 1.28
-1.05 -1.29 -1.01 -0.01 1.12 1.20 1.26
|-1.24-1.61 -1.36 -0.11 1.28 126 195 |

Figure 6
The sample covariance matrix of dataset SPO.
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In real-life datasets, the assumptions for the k-means are
typically not satisfied. The weighted k-means does not
needs the assumptions for the k-means. However, like the
k-means, the weighted k-means is also sensitive to initial
partitions. The proposed GWKMA possesses the merits of
both genetic algorithm and the weighted k-mean algo-
rithm, and thus overcomes the disadvantages of the k-
means and the weighted k-means. In addition, the pro-
posed algorithm is generic and could have applications to
clustering large-scale biological data such as gene expres-
sion data and peptide mass spectral data.
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