
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
A practical comparison of two K-Means clustering algorithms
Gregory A Wilkin1 and Xiuzhen Huang*2

Address: 1601 North 12th Street, Paragould, Arkansas 72450, USA and 2Department of Computer Science, Arkansas State University, State
University, Arkansas 72467, USA

Email: Gregory A Wilkin - awilkin@csm.astate.edu; Xiuzhen Huang* - xzhuang@csm.astate.edu

* Corresponding author

Abstract
Background: Data clustering is a powerful technique for identifying data with similar
characteristics, such as genes with similar expression patterns. However, not all implementations
of clustering algorithms yield the same performance or the same clusters.

Results: In this paper, we study two implementations of a general method for data clustering: k-
means clustering. Our experimentation compares the running times and distance efficiency of
Lloyd's K-means Clustering and the Progressive Greedy K-means Clustering.

Conclusion: Based on our implementation, not just in processing time, but also in terms of mean
squared-difference (MSD), Lloyd's K-means Clustering algorithm is more efficient. This analysis was
performed using both a gene expression level sample and on randomly-generated datasets in three-
dimensional space. However, other circumstances may dictate a different choice in some situations.

Background
Researchers are inundated with data with little obvious
information readily accessible; this is especially true in the
many disciplines of the life sciences. These data may be
very confusing and perplexing to biologists when viewed
as a whole. To make these data more meaningful and to
derive important biological understanding from these
data, researchers have access to many different data
processing techniques. One popular and meaningful
approach is to cluster data into groups, where each group
aggregates data with similar biological characteristics.

Data clustering is a very powerful technique in many
application areas. Not only may the clusters have meaning

themselves, but clustering allows for efficient data man-
agement techniques in that data that is grouped in the
same manner will usually be accessed together. Access to
data within a cluster may predict that other data in that
cluster will be accessed soon; this can lead to optimized
storage strategies which perform much better than if the
data were randomly stored.

An easy abstraction for clustering data is based on multi-
dimensional proximity relationships. While there may be
other relationships among the data items, we focus on a
distance relationship between data so that a meaningful
and simple analytical conclusion can be made from sim-
pler comparisons. Using proximity relationships, data is

from Symposium of Computations in Bioinformatics and Bioscience (SCBB07)
Iowa City, Iowa, USA. 13–15 August 2007

Published: 28 May 2008

BMC Bioinformatics 2008, 9(Suppl 6):S19 doi:10.1186/1471-2105-9-S6-S19

<supplement> <title> <p>Symposium of Computations in Bioinformatics and Bioscience (SCBB07)</p> </title> <editor>Guoqing Lu, Jun Ni, Thomas L Casavant and Brian Athey</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/9/S6/S19

© 2008 Wilkin and Huang; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 5
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/S6/S19
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9(Suppl 6):S19 http://www.biomedcentral.com/1471-2105/9/S6/S19
clustered in such a way that the squared-error distortion is
minimized both globally and locally. The effectiveness of
the algorithms analyzed are measured against this crite-
rion. The mean squared-error distortion is defined as

d(V, X) = (d(v1, X)2 + d(v2, X)2 + ... + d(vi, X)2 + ... + d(vn,
X)2)/n

where X = {x1, x2,..., xk} is the closest cluster center to a
point in V = {v1, v2,..., vn} and n is the total number of
points [1].

There are various algorithms that exist to implement clus-
tering in terms of proximity measures. Depending on the
quality of the cluster, the implementation speed of these
algorithms can vary. In this article, we focus on two widely
used k-means clustering algorithms. A k-means clustering
algorithm can be formally defined as a function that
receives as input a set of points in multi-dimensional
space and a number, k, of desired centers or cluster repre-
sentatives; one area of active research is the issue of opti-
mally "seeding" the algorithm with the proper value of k
and the starting locations of the k cluster centers. With this
input, the algorithm produces an output set of point sets
such that each point set has a defined center that mini-
mizes the cumulative distance to the center of all points in
that set, for all the possible choices of each set.

We have implemented two versions of the k-means clus-
tering algorithm: Lloyd's K-means Clustering and Progres-
sive Greedy K-means Clustering. The former is a relatively
faster algorithm and is fairly straightforward. The latter is
a more conservative approach and can run for a much
longer time but can sometimes yield better results in
terms of distance measures.

We first describe these algorithms, then we examine these
algorithms and discuss some experimental results. These
results are analyzed based on the running time for the
algorithms and the mean squared-error distortion and are
compared in terms of complexity and efficiency.

Methods
Algorithm description: Lloyd's K-means Clustering
algorithm
Lloyd's K-means Clustering algorithm was designed by S.
P. Lloyd [2]. Given a number k, separate all data in a given
partition into k separate clusters, each with a center that
acts as a representative. There are iterations that reset these
centers then reassign each point to the closest center. Then
the next iteration repeats until the centers do not move.
The algorithm is as follows [1]:

1. Assign each data point to the cluster Ci corresponding to the
closest cluster representative xi(1 ≤ i ≤ k)

2. After the assignments of all n data points, compute new clus-
ter representatives according to the center of gravity of each
cluster.

While the Lloyd's algorithm often converges to a local
minimum of the squared error distortion rather than the
global minimum [1], it is the faster of the two algorithms
discussed in this paper.

We used C as the programming language to implement
this algorithm using two primary structures for the points:
an array of points that is dynamically declared when the
user specifies the input points and arrays for each of k
centers. These latter arrays for each center themselves have
arrays within them – one for each dimensional in a multi-
dimensional space – for the points that are assigned to
that particular center (for our analysis, we have used three-
dimensional points).

Algorithm description: Progressive Greedy K-means
Clustering algorithm
The Progressive Greedy K-means Clustering algorithm is
similar to Lloyd's in that it searches for the best center of
gravity for each point, but it assigns points to a center
based on a different technique. In each iteration, Lloyd's
algorithm reassigns a point to a new center and then read-
justs the centers accordingly. The Progressive Greedy
approach does not act upon every point in each iteration;
rather the point which would most benefit moving to
another cluster is reassigned. Every iteration in the Pro-
gressive Greedy algorithm calculates the "cost" of every
point in terms of a Euclidean distance (in three-dimen-
sional space), i.e.,

√[(x1 - x2)2 + (y1 - y2)2 + (z1 - z2)2]

Each point p = (xp, yp, zp) has a cost associated with it in
terms of the current center Ci = (xi, yi, zi) to which it
belongs. The point is a candidate to be moved if the Ecu-
lidean distance cost can be reduced by moving that point
from one cluster Ci to another cluster Cj = (xj, yj, zj) with
that cluster having a closer center. In other words, a point
is a candidate to be moved from Ci to Cj if

√[(xi - xp)2 + (yi - yp)2 + (zi - zp)2] - √[(xj - xp)2 + (yj - yp)2 +
(zj - zp)2]

is greater than 0. Once all the candidates are calculated,
the point with the largest difference is then moved. If no
point has a difference value greater than 0, the algorithm
is finished.

Each iteration in the Progressive Greedy K-means Cluster-
ing algorithm does the following:
Page 2 of 5
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S19 http://www.biomedcentral.com/1471-2105/9/S6/S19
1. Calculate the cost of moving each point to each of the other
cluster centers as well as the cost of its current cluster center. For
every point, store the best change if less than the cost of its cur-
rent cluster center.

2. If there is a point with a best change, move it. If there is more
than one, pick the one point that when moved sees the greatest
improvement.

3. If nothing else can be done, finished.

The Progressive Greedy K-means Clustering is slower, but
the sacrifice is an attempt to minimize the squared-error
distortion mentioned earlier.

The implementation of Progressive K-means clustering
uses the same C data structures as was used for Lloyd's.

Results
Analysis of biological data
M. B. Eisen, et. al. [3] were one of the first groups to apply
the clustering approach to the analysis the gene expres-
sion data.

We applied both clustering algorithms to the analysis of
microarray data. The clustering algorithms classified gene
expression data into clusters such that functionally-related
genes are grouped together. In the following example [1],
the expression information of ten genes is recorded at
three different times (see Table 1). The distance matrix of
the ten genes was calculated based on the Euclidean dis-
tance in three-dimensional space. The clustering algo-
rithms grouped the gene expression data into clusters
satisfying the following two conditions [1]:

• within a cluster, any two genes should be highly similar
to each other (i.e., the distance between them should be
small; this condition is called homogeneity), and

• any two genes from different clusters should be very dif-
ferent from each other (i.e., the distance between them
should be large; this condition is called separation).

Both algorithms yielded the same three clusters of the ten
genes as follows: {g1, g6, g7}, {g3, g5, g8}, and {g2, g4, g9,
g10}. Tables 2 and 3, respectively, are the running time
comparisons and mean squared-distance comparisons of
the two clustering algorithms applied to these biological
data.

Analysis of a randomly-generated data set
We used computer-generated random points to test the
two clustering algorithms; presumably, this data repre-
sents few natural clusters which should present close to a
"worst case" for the clustering algorithms. Figures 1 to 4
show the running time comparisons of various runs using
different values of k and different numbers of points. Each
individual value in these Figures is a mean time of multi-
ple runs and is expressed in terms of seconds, though
what is important here is the relative size of these values.

A comparison of mean square differences are shown in
Tables 4 and 5 using different numbers of points and k
values of 5 and 10, respectively. In these Tables, the max-
imum and minimum local cluster mean squares are
shown alongside the general global average MSD.

Conclusion
The advantage of Lloyd's K-means Clustering algorithm
compared to the Progressive Greedy K-means Clustering
algorithm is clear from the above comparisons. Based on
our implementation, not just in processing time, but also
in terms of mean squared-difference, Lloyd's K-means
Clustering algorithm is more efficient. For very large data
sets, Lloyd's algorithm definitely works faster. When the
number of points exceeds 10000, the Progressive Greedy

Table 3: MSD comparisons for different k values (actual values).

k = 2 k = 3 k = 4 k = 5

Lloyd min MSD 0.75 0.69 0.00 0.69
Lloyd global avg. MSD 9.94 2.81 1.95 2.81

Lloyd max MSD 19.13 7.00 7.00 7.00
Progressive min MSD 0.75 0.75 0.13 0.69

Progressive global avg. MSD 9.94 5.13 2.69 3.81
Progressive max MSD 19.13 7.64 7.00 9.98

Table 1: Expression levels of ten genes at three different times.

Gene 1 hr 2 hr 3 hr

g1 10.0 8.0 10.0
g2 10.0 0.0 9.0
g3 4.0 8.5 3.0
g4 9.5 0.5 8.5
g5 4.5 8.5 2.5
g6 10.5 9.0 12.0
g7 5.0 8.5 11.0
g8 2.7 8.7 2.0
g9 9.7 2.0 9.0
g10 10.2 1.0 9.2

Table 2: Running time comparison in seconds for different k
values.

k = 2 k = 3 k = 4 k = 5

Lloyd's 0.465 0.470 0.480 0.620
Progressive 0.140 0.207 0.250 0.280
Page 3 of 5
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S19 http://www.biomedcentral.com/1471-2105/9/S6/S19

Page 4 of 5
(page number not for citation purposes)

Running time comparison when k = 5 (excludes the running times of Progressive Greedy algorithm when the number of points exceeds 10,000)Figure 3
Running time comparison when k = 5 (excludes the running
times of Progressive Greedy algorithm when the number of
points exceeds 10,000).

Running time comparison when k = 3Figure 1
Running time comparison when k = 3.

Running time comparison when k = 4Figure 2
Running time comparison when k = 4.

Running time comparison when k = 10 (excludes the running times of Progressive Greedy algorithm when the number of points exceeds 10,000)Figure 4
Running time comparison when k = 10 (excludes the running
times of Progressive Greedy algorithm when the number of
points exceeds 10,000).

Table 4: MSD comparisons with different number of points when k = 5 (in millions of actual values).

for k = 5 50 pts 100 pts 1000 pts 5000 pts 10000 pts

Lloyd min MSD 4.078 5.222 8.116 7.997 8.089
Lloyd global avg. MSD 7.142 7.423 9.604 9.915 9.804

Lloyd max MSD 9.622 9.250 11.439 11.259 10.875
Progressive min MSD 7.070 5.750 7.539 8.031 8.071

Progressive global avg. MSD 8.610 8.395 9.715 9.916 9.804
Progressive max MSD 10.442 10.240 11.761 11.247 10.859

Table 5: MSD comparisons with different number of points when k = 10 (in millions of actual values).

for k = 10 50 pts 100 pts 1000 pts 5000 pts 10000 pts

Lloyd min MSD 0.745 2.633 4.905 4.823 5.015
Lloyd global avg. MSD 4.355 4.845 5.519 5.538 5.588

Lloyd max MSD 7.350 6.916 6.497 5.983 6.097
Progressive min MSD 0.745 2.633 4.578 4.602 4.713

Progressive global avg. MSD 5.266 4.978 5.564 5.503 5.547
Progressive max MSD 9.721 6.970 6.222 6.106 6.149

BMC Bioinformatics 2008, 9(Suppl 6):S19 http://www.biomedcentral.com/1471-2105/9/S6/S19
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

K-means Clustering algorithm needs optimization to even
to be able to handle the very large floating point values
associated with finding the mean squared-difference.
Without optimization, Progressive Greedy K-means Clus-
tering would not even run without generating floating
point exception errors. We therefore conclude that Lloyd's
K-means Clustering algorithm seems to be the better algo-
rithm. However, other circumstances may dictate a differ-
ent choice in some situations.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
GAW carried out the k-means clustering algorithm design
and implementation. XH participated in the design and
applications of the algorithms. Both authors have read
and approved the final manuscript.

Acknowledgements
The authors would like to thank Steven F. Jennings for comments on the
preliminary version of this work. This publication was made possible in part
by NIH Grant #P20 RR-16460 from the IDeA Networks of Biomedical
Research Excellence (INBRE) Program of the National Center for Research
Resources.

This article has been published as part of BMC Bioinformatics Volume 9 Sup-
plement 6, 2008: Symposium of Computations in Bioinformatics and Bio-
science (SCBB07). The full contents of the supplement are available online
at http://www.biomedcentral.com/1471-2105/9?issue=S6.

References
1. Jones NC, Pevzner PA: An Introduction to Bioinformatics Algo-

rithms. The MIT Press; 2004.
2. Lloyd SP: Least squares quantization in PCM [Pulse-Code

Modulation.]. IEEE Transactions on Information Theory 1982,
28:129-137.

3. Eisten MB, Spellman PT, Brown PO, Bostein D: Cluster analysis
and display of genome-wide expression pattern. Proceedings of
the National Academy of Sciences of the United States of America 1998,
95:14863-14868.
Page 5 of 5
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9?issue=S6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Algorithm description: Lloyd's K-means Clustering algorithm
	Algorithm description: Progressive Greedy K-means
Clustering algorithm

	Results
	Analysis of biological data
	Analysis of a randomly-generated data set

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

