
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
A topological transformation in evolutionary tree search methods
based on maximum likelihood combining p-ECR and neighbor
joining
Mao-Zu Guo, Jian-Fu Li* and Yang Liu

Address: Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, P.R. China

Email: Mao-Zu Guo - maozuguo@hit.edu.cn; Jian-Fu Li* - lijianfu@hit.edu.cn; Yang Liu - yliu@jdl.ac.cn

* Corresponding author

Abstract
Background: Inference of evolutionary trees using the maximum likelihood principle is NP-hard.
Therefore, all practical methods rely on heuristics. The topological transformations often used in
heuristics are Nearest Neighbor Interchange (NNI), Subtree Prune and Regraft (SPR) and Tree
Bisection and Reconnection (TBR). However, these topological transformations often fall easily
into local optima, since there are not many trees accessible in one step from any given tree.
Another more exhaustive topological transformation is p-Edge Contraction and Refinement (p-
ECR). However, due to its high computation complexity, p-ECR has rarely been used in practice.

Results: To make the p-ECR move more efficient, this paper proposes a new method named p-
ECRNJ. The main idea of p-ECRNJ is to use neighbor joining (NJ) to refine the unresolved nodes
produced in p-ECR.

Conclusion: Experiments with real datasets show that p-ECRNJ can find better trees than the
best known maximum likelihood methods so far and can efficiently improve local topological
transforms in reasonable time.

Background
The inference of evolutionary trees with computational
methods has many important applications in medical and
biological research, such as drug discovery and conserva-
tion biology. A rich variety of tree reconstruction methods
based on sequences have been developed, which fall into
three categories, (a) maximum parsimony methods, (b)
distance based methods and (c) approaches applying the
maximum likelihood principle. The latter two are the

most popular. Distance based methods calculate pair-wise
distances between the sequences with each other, and
support the tree that best fits these observed distances. The
prominent distance based method is Neighbor joining
(NJ) [1], in which partial trees are iteratively combined to
form a larger tree in a bottom-up manner. Due to low
computational time complexity and demonstrated topo-
logical accuracy for small data sets, NJ and its variants
have been widely used.

from Symposium of Computations in Bioinformatics and Bioscience (SCBB07)
Iowa City, Iowa, USA. 13–15 August 2007

Published: 28 May 2008

BMC Bioinformatics 2008, 9(Suppl 6):S4 doi:10.1186/1471-2105-9-S6-S4

<supplement> <title> <p>Symposium of Computations in Bioinformatics and Bioscience (SCBB07)</p> </title> <editor>Guoqing Lu, Jun Ni, Thomas L Casavant and Brian Athey</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/9/S6/S4

© 2008 Guo et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/S6/S4
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9(Suppl 6):S4 http://www.biomedcentral.com/1471-2105/9/S6/S4
Maximum likelihood methods aim to find the tree that
gains the maximum likelihood value to have produced
the underlying data. A number of studies [2,3] have
shown that maximum likelihood programs can recover
the correct tree from simulated datasets more frequently
than other methods, which supports numerous observa-
tions from real data and explains their popularity.

However, the main disadvantage of maximum likelihood
methods is that they require much computational effort.
Maximum likelihood reconstruction consists of two tasks.
The first task involves edge length estimation: Given the
topology of a tree, find edge lengths to maximize the like-
lihood function. This task is accomplished by iterative
methods such as expectation maximization or using New-
ton-Raphson optimization. Each iteration of these meth-
ods requires computations that take on the order of the
number of sequences times the number of sequence posi-
tions. The second, more challenging, task is to find a tree
topology that maximizes the likelihood. The number of
potential topologies grows exponentially with the
number of sequences n, e.g. for n = 50 sequences there
already exist 2.84*1076 alternative topologies; a number
almost as large as the number of atoms in the universe
(≈1080). In fact, it has already been demonstrated that
finding the optimal tree under the maximum likelihood
criterion is NP-hard [4]. Consequently, the introduction
of heuristics to reduce the search space in terms of poten-
tial topologies evaluated becomes inevitable, such as, the
hill climbing based reconstruction algorithms [5-7]; the
genetic algorithm based ones [8,9], etc.

Although using different search strategies, the heuristics
are all to try to improve a starting tree/starting trees by a
series of elementary topological rearrangements, until
local optima is found. It is obvious that the performance
of the heuristics depends on the degree of exhaustiveness
of the topological rearrangements on some extent. The
three often used topological rearrangements include
Nearest Neighbor Interchange (NNI), Subtree Prune and
Regraft (SPR) and Tree Bisection and Reconnection (TBR).

The NNI move swaps one rooted subtree or leave on one
side of an internal edge e with another on the other side.
For every internal edge, a NNI move can produce two dif-
ferent topologies as shown in Figure 1. For a tree contain-
ing n sequences, the size of the neighborhood induced by
NNI is O(n). The neighborhood of an evolutionary tree T
under a topological rearrangement move is defined as be
the set of all trees that can be obtained from T by one
move.

A SPR move on a tree T is defined as cutting any edge and
thereby pruning a subtree t, and then regrafting the sub-
tree by the same cut edge to a new vertex obtained by sub-
dividing a pre-existing edge in T-t. For a tree containing n
sequences, the size of the neighborhood induced by SPR
is O(n2).

In a TBR move an edge is removed from T, creating sub-
trees t and T-t, and then a new edge is added between the
midpoints of any two edges in t and T-t, creating a new
tree. For a tree containing n sequences, the size of the
neighborhood induced by TBR is O(n3). See Figure 2 for
schematic representation of SPR and TBR.

As shown above, the neighborhood size produced by
NNI, SPR and TBR acting on an evolutionary tree T com-
prising of n sequences is O(n), O(n2)and O(n3) respec-
tively. Thus, TBR are the most exhaustive. Even TBR
searches, however, can often get trapped in local optima,
since there are not many trees accessible in one step from
any given tree, which motivates the introduction of p-

SPR and TBRFigure 2
SPR and TBR.

SPR

a

b
c d e

f

ghi
a

b
c d e

f

ghi

TBR

a

b
cd e

f

ghi

NNIFigure 1
NNI.

NNI
A

C

B

D

e

T1

A

B

C

D

e

T

A

D

C

B

e

T2

NNI
Page 2 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S4 http://www.biomedcentral.com/1471-2105/9/S6/S4
Edge Contraction and Refinement (p-ECR) [10]. A p-ECR
move means to contract p edges all at once, creating unre-
solved nodes in the process, then refine these unresolved
nodes to give back a binary tree. A contraction collapses
an edge in the tree and identifies its two end points, while
a refinement expands an unresolved node into two nodes
connected by an edge. For example, the trees T1 and T5 in
Figure 3 are separated by one 2-ECR move. From the def-
inition of p-ECR, NNI is the special case of p-ECR when p
equals to 1.

Let Su be the number of unresolved nodes produced in p-

ECR and di the degree of the unresolved node i, since the

number of trees produced by n sequences is (2n-5)!!,
refining the unresolved nodes can produce

 different trees. When p(>1) edges are

deleted from a tree, the location relationship between the
deleted edges determines the number of unresolved nodes
produced and the degrees of the unresolved nodes. Now
two extreme special cases are analyzed.

The first extreme special case is when all the p edges are
adjacent. In this case, only one unresolved node with
degree-(2p) is produced. Then the number of trees pro-
duced by one p-ECR is (4p-5)!!. Another extreme special
case is when all the p edges disjoin. In this case, p unre-
solved nodes with degree-4 are produced. Then the

number of trees produced by one p-ECR is ((2 × 4–5)!!)p,
that is 3p.

In other cases, the number of possible trees produced is
intermediate of the two special cases. Observe that there

are ways of selecting p edges to contract, there are

Ω(nn3p) trees produced by p-ECR. Thus, although an every
sequence of p NNI moves on a tree is a p-ECR move on
that tree, there are p-ECR moves that can not be per-
formed by a sequence of p NNI move(the neighborhood
size produced by p NNI moves is O(np)). With such a
wide search space, getting trapped in bad local optima can
often be avoided, resulting in an exhaustive local search.
Moreover, the exhaustiveness degree of a p-ECR move is
dependent on the value of p, that is, a larger p means a
larger search space for the correct tree, which could be
potentially useful in selecting a suitable range of p.

However, how to quickly select the best one from so many
possible evolutionary trees is a hard problem facing the p-
ECR move, since there are so many potential topologies to
evaluate and it is very time-consuming to compute the
likelihood of a given topology as mentioned above. The
straight answer is to simply evaluate every potential tree
and select the best. Even for medium size of p, the answer
is apparently impossible. Until now, there is no an effi-
cient and general implementation of p-ECR. Conse-
quently, people often yield up the exhaustive p-ECR and

2 5
1

dii

Su −()()=∏ !!

Cn
p

The illustration of a 2-ECR processFigure 3
The illustration of a 2-ECR process.

e

d a

b

c

a

c

d e

b

T3

c

e3 e4

a

d e

b

T5T4

Refine e3

c
e

d

e1
e2

a

b e

d

e2

a

b

c e

d a

b

c
T 1

T2 T3

Contract

e1

Contract

e2

Refine
Page 3 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S4 http://www.biomedcentral.com/1471-2105/9/S6/S4
turn to some simpler one, such as NNI. In order to make
p-ECR efficient, a method called p-ECRNJ motivated by
NJ is presented in this paper. The main idea of p-ECRNJ is
to use NJ to refine the unresolved nodes produced in p-
ECR. In this paper, we use NJ to refine the unresolved
nodes to improve p-ECR.

NJ
NJ is a greedy algorithm, which attempts to minimize the
sum of all branch-lengths on the constructed tree. Con-
ceptually, it starts out with a star-formed tree where each
leaf corresponds to a sequence, and iteratively picks two
nodes adjacent to the root and joins them by inserting a
new node between the root and the two selected nodes.
When joining nodes, the method selects the pair of nodes
i, j that minimizes

Qij = (r - 2)dij - (Ri + Rj)

where dij is the distance between node i and j(assumed
symmetric, i.e., dij = dji), Rk is the sum over row k of the dis-
tance matrix: Rk = ∑xdkx (where x ranges over all nodes
adjacent to the root node), and r is the remaining number
of nodes adjacent to the root. Once the pair i, j to agglom-
erate is selected, a new node C which represents the root
of the new cluster is created. Then the length of branches
(C, i) and (C, j) is estimated by the following Eq. (2)

Finally the distance matrix is reduced by replacing the dis-
tances relative to sequence i and sequence j by those
between the new node C and any other node k using

This formulation of NJ gives rise to a canonical algorithm
that performs a search for mini, jQij, using time O(r2), and

joins i and j, using time O(r) to update d. The search and
joining is continued until only there three nodes are adja-
cent to the root. The total time complexity becomes O(n3),
and the space complexity becomes O(n2) (for represent-
ing the distance matrix d). An example of NJ is illustrated
in Figure 4.

With a running time of O(n3) on n sequences, NJ is fast
and widely used. Moreover, empirical work shows it to be
quite accurate, at least for small data sets. St. John et al.
[11] even suggest it as a standard against which new phy-
logeny reconstruction methods should be evaluated. In
this paper, we use NJ to refine the unresolved nodes to
improve p-ECR.

Results
In order to test p-ECRNJ, we conducted experiments on
real datasets to compare the heuristic ECRML and
ECRML+PHYML with four most popular reconstruction
methods, including BioNJ [12] (a variant of NJ), PHYML
version 2.0.1 [6] (a maximum likelihood algorithm com-
bining hill climbing and NNI moves), RAxML-III[7] (a
maximum likelihood algorithm combining hill climbing
and SPR moves) and fastDNAml version 1.2.2 [5] (a max-
imum likelihood algorithm combining the stepwise addi-
tion algorithm and SPR moves). ECRML is the heuristic
base on p-ECRNJ and hill climbing as shown in Methods.
ECRML+PHYML is the heuristic based on the combina-
tion of the p-ECRNJ move with NNI, where rounds of
NNI and p-ECRNJ are alternated as follows. ECRML is
called once each time the PHYML is stuck on a local opti-
mum. If the ECRML is able to improve the tree and get out
of the local optimum, the PHYML is applied again until it
is trapped in another local optimum, etc. When a pre-
defined times is reached or ECRML cannot find an
improvement anymore either, the program terminates.
The real datasets include the ones used in [7,15], in partic-
ular, MouseLemurs, 4DAT, 3DAT, 42, Rbcl55, 101_SC,
132, 150_SC, 150_ARB, 218_RDPII, 250_ARB and
500_ZILLA. Table 1 shows the number of sequences and
the number of sites for each dataset.

d d
Ri R j

r
d d

R j Ri
rCi ij Cj ij= +

−
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = +

−
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
2 2

1
2 2

,

d d d dCk ik jk ij= + −()1
2

The illustration of NJFigure 4
The illustration of NJ.

Y

1

2

3

4

5

6

Y

1

2 3

4

5

6

Y

1

2 3

4

5

6

Y

1

2

3

4

5

6

Page 4 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S4 http://www.biomedcentral.com/1471-2105/9/S6/S4
All the programs are run with default options. In addition,
the parameter p in ECRML and ECRML+PHYML is set as 4
and iteration times as 20. Computing time is measured on
a PC Pentium IV 2.99 GHz running with Windows XP.

Since the BioNJ cannot compute the likelihood values of
final trees and there is a difference between all the maxi-
mum likelihood algorithms in the way of likelihood com-
putation, all final trees found by BioNJ, PHYML, RAxML
and fastDNAml are re-evaluated using ECRML to enable a
direct comparison. The main results are shown in Table 2,
Table 3 and Table 4. In addition, Stars in Table 2 and
Table 4 indicate entries where the algorithm was deemed
to be too slow to bother with that test.

Table 2 shows the maximum likelihood values of the evo-
lutionary trees reconstructed by BioNJ, PHYML, RAxML,
fastDNAml and ECRML on different datasets. Every of the
former four algorithms include two columns: the first col-
umn lists the maximum likelihood values of the evolu-
tionary trees reconstructed by the algorithm on different

datasets; the second column lists the difference of the like-
lihood value between the algorithm and ECRML on corre-
sponding dataset. A difference that is smaller than 0
means that ECRML can find an evolutionary tree with
higher likelihood value than the algorithm on corre-
sponding dataset and vice versa. ECRML only include one
column, where lists the likelihood values of ECRML on
different datasets. From Table 2, we can see that on every
dataset, the values in the second column of BioNJ,
PHYML, RAxML and fastDNAml are all smaller than 0.
This means that ECRML can find better trees than these
four algorithms on all datasets and in further proves that
p-ECRNJ has a wider search space.

Table 3 shows the likelihood values of the evolutionary
trees reconstructed by PHYML, ECRML and ECRML+
PHYML on different datasets. Similar to Table 2, every of
PHYML and ECRML includes two columns: the first col-
umn lists the likelihood values of the evolutionary trees
reconstructed by the algorithm on different datasets; the
second column lists the difference of the likelihood value
between the algorithm and ECRML+ PHYML on corre-
sponding dataset. A difference that is smaller than 0
means ECRML + PHYML can find an evolutionary tree
with higher likelihood value than the algorithm on corre-
sponding dataset and vice versa. ECRML + PHYML only
include one column, where lists the likelihood values of
ECRML + PHYML on different datasets. From Table 3, we
can see that on every dataset, the values in the second col-
umn of PHYML are all smaller than 0. This support that p-
ECRNJ can find better trees than other local rearrange-
ments such as NNI and can further efficiently improve
them. At the same time, we can also see from Table 3 that
there are 10 values smaller than 0, one equal to 0 and one
larger than 0 in the second column of ECRML. This means
that ECRML + PHYML can often get better trees than
ECRML, although they all include a p-ECRNJ search. This

Table 2: Likelihood values of BioNJ, PHYML, RaxML, fastDNAml and ECRML on different real datasets

BioNJ PHYML RAxML fastDNAml ECRML

likelihood Δ likelihood Δ likelihood Δ likelihood Δ

1 -10753 -6902 -5119 -1268 -4959 -1108 -4019 -168 -3851
2 -1082 -1 -1089 -8 -1093 -12 -1082 -1 -1081
3 -2861 -26 -2843 -8 -2842 -7 -2942 -107 -2835
4 -7866 -783 -7250 -167 -7281 -198 -7310 -227 -7083
5 -22552 -299 -22561 -308 -22382 -129 -22603 -350 -22253
6 -67480 -1311 -66695 -526 -66576 -407 -66481 -312 -66169
7 -46930 -3293 -43924 -287 -43641 -4 -43773 -136 -43637
8 -41090 -623 -40520 -53 -40660 -193 -40495 -28 -40467
9 -72423 -1329 -71100 -6 -71159 -65 -71178 -84 -71094
10 -138942 -2035 -137074 -167 -136921 -161 -136998 -91 -136907
11 -120315 -2627 -117869 -181 -118035 -347 **** **** -117688
12 -21917 -588 -22380 -1051 -21879 -550 **** **** -21329

Table 1: Real datasets

dataset number of sequences number of sites

1 MouseLemurs 35 115
2 4DAT 35 452
3 3DAT 39 1116
4 42 42 1167
5 Rbcl55 55 1315
6 101_SC 101 1858
7 132 132 1881
8 150_SC 150 1269
9 150_ARB 150 3188
10 218_RDPII 218 4182
11 250_ARB 250 3638
12 500_ZILLA 500 759
Page 5 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S4 http://www.biomedcentral.com/1471-2105/9/S6/S4
is mainly due to that in p-ECRNJ, p edges are randomly
deleted; then there is randomicity in p-ECRNJ, which can
be eliminated by much iteration. However, when there is
no enough iteration, the resulting trees may show some of
the defects of starting trees. ECRML is start from a tree
reconstructed by NJ and ECRML+PHYML is start from a
tree reconstructed by PHYML in each iteration. PHYML
can often get better trees than NJ as shown in Table 2. This
explains that ECRML+PHYML can often get better trees
than ECRML in Table 3.

Table 4 shows the computing time of various tree building
algorithms on different real datasets. From table 4, we can
see that on every datasets, BioNJ is the fastest. This is in
accordance with conclusions that distance based recon-
struction methods are often faster than maximum likeli-
hood ones. For the five maximum likelihood methods,
fastDNAml, ECRML+PHYML and ECRML are, as a whole,

lower than PHYML and RAxML. Currently, PHYML is rec-
ognized as the fasted maximum likelihood. The efficiency
of PHYML is obtained by simultaneously optimizing tree
topology and edge lengths. The efficiency of RAxML
comes to a large extent from a very efficient implementa-
tion for storing trees and calculating likelihoods. There are
no special skills in fastDNAml, ECRML and
ECRML+PHYML. Moreover, the computing time of
ECRML and ECRML+PHYML is the total of 20 iterations.
After each iteration, branches length and likelihood of the
current tree is updated; this occupies the majority of the
computation time. In terms of coding efficiency, BioNJ,
PHYML, RAxML and fastDNAml have been highly
brushed up, while the current version of ECRML and
ECRML+PHYML is still an experimental program. The
computing time for ECRML/ECRML+PHYML is actually
the sum of the computing time of the ECRML/
ECRML+PHYML subprograms.

At the same time, we can also see from Table 4 that
although slower than the two fastest maximum likelihood
methods PHYM and RAxML, ECRML and
ECRML+PHYML are faster than fastDNAml, especially for
large datasets.

Conclusion
We have proposed the p-ECRNJ move, which can be used
as a topological transformation in heuristics on evolution-
ary tree reconstruction algorithms by itself or can be used
to improve local topological transforms. The p-ECRNJ
move first randomly select the p edges to contract from
the current tree, and then refine the contracted tree to give
back a binary tree according to the fast NJ algorithm.
Experiments on real datasets show that the p-ECRNJ in
limited iterations can find better trees than the best-
known maximum likelihood methods so far and can effi-
ciently improve local topological transforms without
much time cost. Therefore, the p-ECRNJ is an efficient
implementation of p-ECR.

Table 4: Computing time(seconds) of various tree building algorithms on different real datasets

dataset BioNJ PHYML RAxML fastDNAml ECRML ECRML + HYML

MouseLemurs 3 14 7 187 142 276
4DAT 1 2 2 362 35 55
3DAT 1 7 5 1582 135 205

42 2 31 16 666 449 833
Rbcl55 4 40 89 1586 1340 1733
101_SC 10 155 622 26287 4421 5926

132 8 205 1255 20012 10623 13171
150_sc 24 163 399 26408 7206 9163

150_ARB 24 319 187 54788 25217 28857
218_RDPII 42 429 6779 102388 14236 19897
250_ARB 74 799 1103 **** 20788 29804

500_ZILLA 92 2456 29975 **** 24528 30016

Table 3: Likelihood values of various tree building algorithms on
different real datasets

PHYML ECRML ECRML + PHYML

likelihood Δ likelihood Δ

1 -5119 -1275 -3851 -7 -3844
2 -1089 -8 -1081 0 -1081
3 -2843 -13 -2835 -5 -2830
4 -7250 -222 -7083 -55 -7028
5 -22561 -677 -22253 -369 -21884
6 -66695 -511 -66169 15 -66184
7 -43924 -292 -43637 -5 -43632
8 -40520 -80 -40467 -27 -40440
9 -71100 -76 -71094 -18 -71076
10 -137074 -207 -136907 -40 136867
11 -117869 -260 -117688 -79 -117609
12 -22380 -2059 -21329 -1008 -20321
Page 6 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S4 http://www.biomedcentral.com/1471-2105/9/S6/S4
Methods
In order to make p-ECR efficient, a method p-ECRNJ com-
bining the exhaustiveness of the p-ECR move and the effi-
ciency of NJ is presented in this paper and detailed here.
Before p-ECRNJ, several concepts are introduced at first.
An evolutionary tree is an unrooted or rooted tree whose
leaves have degree one, and all of whose internal nodes
have degree at least three. An internal node with degree
more than three is called unresolved. A supernode α in a
tree T is a degree-1 non leaf vertex, denoting some col-
lapsed subtree.

The main idea of the p-ECRNJ is to randomly contract p
edges from an evolutionary tree T, and the consequent
refinement of the unresolved nodes is accomplished by
NJ. As show in Figure 4, only one unresolved node Y is
successively resolved in NJ. Generally, contracted tree T*
in p-ECRNJ contains c (1 ≤ c ≤ p) unresolved nodes. Then,
a collapsing procedure is needed before the refinement
using NJ. That is, to select an unresolved node to refine
and to root the tree at the node, then to collapse every sub-
tree rooted at the node adjacent to the root node into a
supernode respectively. This collapsing procedure pro-
duces a tree containing only one unresolved node; conse-
quently, the unresolved node is refined according to NJ.
The refinement process is continued until there is no
unresolved node in T*.

A p-ECRNJ move on an evolutionary tree T is described in
detail as follows.

(1) Contraction stage: to randomly select p edges to con-
tract all at once and the unresolved tree T* is resulted;

(2) Refinement stage:

The refinement stage includes the following two steps:

Step 1: Collapsing step:

Select an unresolved node to refine and root T* at the
unresolved node, collapse every subtree rooted at the
internal node adjacent to the root node into a supernode
respectively;

Step 2: NJ step:

1 Build the distance matrix M of the nodes or supernodes
in the collapsed tree T*. The distance between two nodes
is the distance between the two sequences corresponding
the two nodes, respectively. The distance between two
supernodes is more sophisticated and computed as fol-
lows. Let a and β denote two supernodes respectively. It is
assumed that a and β respectively represents a subtree
containing x leaves αi (i = 0,..., x-1) and a subtree contain-
ing y leaves βi (i = 0,..., y-1). Then the distance between α
and β is estimated using Eq. (4). The distance between a
single node and a supernode is a special case where x = 1
or y = 1.

d
xy

d d d
i j i i i ij

j y

i

x

i

x

i

x

ab a b a a b b= − −
=

= −

=

−

=

−

=

−∑∑ ∑+ +

1
0

1

0

1

0

1

0

1

1 1, ∑∑⎛
⎝⎜

⎞
⎠⎟

The illustration of a 2-ECRNJ, where the black nodes denote supernodes, white nodes denote leaves or internal nodes, solid and dashed lines represent branches, dashed lines denotes branch to be deleted and the nodes in dashed cycles denote the ones to be refinedFigure 5
The illustration of a 2-ECRNJ, where the black nodes denote supernodes, white nodes denote leaves or internal nodes, solid
and dashed lines represent branches, dashed lines denotes branch to be deleted and the nodes in dashed cycles denote the
ones to be refined.
Page 7 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S4 http://www.biomedcentral.com/1471-2105/9/S6/S4

Page 8 of 10
(page number not for citation purposes)

The heuristic ECRML which is based on p-ECRNJ and hill climbingFigure 6
The heuristic ECRML which is based on p-ECRNJ and hill climbing.

Algorithm: p-ECRNJ()

Begin

1. like=-1000000000.0(a very small real number);

2. While(k>0)

2.1 Randomly select p edges in T to contract all at once and produce unresolved tree

T*;

(a) 2.2 While (su>0)

2.2.1 Select one unresolved node x in T* ;

2.2.2 Root T* at x;

2.2.3 Collapse very subtree rooted at the sons of x into a supernode

respectively;

 2.2.4 Estimate the initial the distances dij between nodes or supernode in

T* according to the formula (4);

2.2.5 Initialize r as the remaining nodes in T*;

2.2.6 While (r > 2)

i. Compute matrix Q by formula (1);

ii. Agglomerate i, j with ; min , Qi j ij

iii. Create the new node C;

iv. Estimate the length of (C, i) and (C, j) according to formula (2);

v. Replace i and j with C, r=r-1;

vi. Estimate for each remaining node k according to (3); dCk

(b) 2.3 Optimize the branches in T* and compute the likelihood f(T*) of T*;

 2.4 If (f(T*)> like) then

 Tp�T*;

 like�f(T*);

 2.5 k�k-1;

3. Return Tp.

End

BMC Bioinformatics 2008, 9(Suppl 6):S4 http://www.biomedcentral.com/1471-2105/9/S6/S4
2 According to M, compute matrix Q according to Eq. (1);

3 Select the pair i, j such that mini, jQij to agglomerate;

4 Create a new node C which represents the root of the
new cluster. Then estimate the length of branches (C, i)
and (C, j) using Eq. (2);

5 Reduce the distance matrix by replacing the distances
relative to i and j by those between the new node C and
any other node k using Eq. (3).

The process of 2, 3, 4 and 5 is repeated until r = 2. The
process of collapsing – NJ is repeated until there is no
unresolved node in the tree, that is, the number of unre-
solved nodes Su is 0. The whole p-ECRNJ process is illus-
trated in Figure 5.

Due to that p edges are randomly selected, p-ECRNJ is per-
formed repeatedly a pre-defined times k to perform in

actual application instead of considering all ways of

selecting p edges to contract. The value of k depends on
the time allowed, if there is enough time, k can be set to

. A simple heuristic named ECRML based on p-ECRNJ

and hill climbing is shown in Figure 6.

As shown in Figure 6, for every unresolved node, the NJ
method is run one time. The time complexity of the NJ
method on n sequences is O(n3). So, the total time com-

plexity of a p-ECRNJ move is , where Su is the

number of unresolved nodes and di is the degree of the

unresolved node. As mentioned above, when p edges are
deleted from a tree, the location relationship between the
deleted edges determines the number of unresolved nodes
produced and the degrees of the unresolved nodes. When
all the p edges are adjacent, only one unresolved node
with degree-(2p) is produced. Then the time complexity
of p-ECRNJ is O(8p3), that is O(p3); when all the p edges
disjoin, p unresolved nodes with degree-4 are produced.
Then the time complexity of p-ECRNJ is O(43 p), that is
O(p). In other cases, the time complexity is intermediate
of the two special cases. Consequently, it takes at most
O(p3) to refine unresolved nodes in every run of p-
ECRNJ(step a). After every p-ECRNJ, it need to optimize
the branches and re-compute the likelihood of the current
tree(Step b). The time complexity in this step is O(lmn),
where l is the iteration times in the optimization of
branches, m and n is the number of sites and number of

sequences respectively. So, the total time complexity of
ECRML is O(k*(p3+ lmn)).

In an actual tree search, besides used as a topological
transformation operation as shown in Figure 6, the p-
ECRNJ move can be combined with a local topological
transforms, such as NNI, where rounds of NNI and p-
ECRNJ are alternated. For example, ECRML+PHYML in
Results is based on the combination of p-ECRNJ and NNI.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
JL conceived, designed and performed the study under the
supervision of MG and YL. All authors read and approved
the final manuscript.

Acknowledgements
The work was supported by the Natural Science Foundation of China
under Grant No.60741001, No.60671011 and No.60761001, the Science
Fund for Distinguished Young Scholars of Heilongjiang Province in China
under Grant No. JC200611, the Natural Science Foundation of Heilongjiang
Province in China under Grant No. ZJG0705, the Science and Technology
Fund for Returnee of Heilongjiang Province in China, and Foundation of
Harbin Institute of Technology under Grant No. HIT.2003.53.

This article has been published as part of BMC Bioinformatics Volume 9 Sup-
plement 6, 2008: Symposium of Computations in Bioinformatics and Bio-
science (SCBB07). The full contents of the supplement are available online
at http://www.biomedcentral.com/1471-2105/9?issue=S6.

References
1. Saitou N, Nei M: The neighbor-joining method: a new method

for reconstructing phylogenetic Trees. Mol Biol Evol 1987,
4:406-425.

2. Vincent Ranwez, Olivier Gascuel: Improvement of distance-
based phylogenetic methods by a local maximum likelihood
approach using triplets. Mol Biol Evol 2002, 19:1952-1963.

3. Rosenberg M, Kumar S: Traditional Phylogenetic Reconstruc-
tion Methods Reconstruct Shallow and Deep Evolutionary
Relationship equally well. Mol Biol Evol 2001, 18:1823-1827.

4. Sebastien Roch: A short proof that phylogenetic tree recon-
struction by maximum likelihood is hard. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics 2006, 3:92-94.

5. Olsen GJ, Matsuda H, Hagstrom R, Overbeek R: fastDNAml: a tool
for construction of phylogenetic trees of DNA sequences
using maximum likelihood. Comput Appl Biosci 1994, 10:41-48.

6. Stephane Guindon, Olivier Gascuel: A simple, fast and accurate
algorithm to estimate large phylogenies by maximum likeli-
hood. Syst Biol 2003, 52:696-704.

7. Stamatakis A, Ludwig T, Meier H: RAxML-III: a fast program for
maximum likelihood-based inference of large phylogenetic
trees. Bioinformatics 2005, 21:456-463.

8. Lewis P: A Genetic Algorithm for Maximum Likelihood Phyl-
ogeny Inference Using Nucleotide Sequence Data. Mol Biol
Evol 1998, 15:277-283.

9. Zwickl DJ: Genetic algorithm approaches for the phylogenetic
analysis of large biological sequence datasets under the max-
imum likelihood criterion, PhD dissertation. Dept. of Computer
science, The University of Texas, Austin; 2006.

10. Ganapathy G, Vijaya Ramachandran, Tandy Warnow: On contract-
and-refine transformations between phylogenetic Trees. In
Proceedings of the Fifteenth ACM-SIAM Symposium on Discrete Algorithms
ACM Press; 2004:893-902.

Cn
p

Cn
p

O dii

Su 3
1=∑()
Page 9 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9?issue=S6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12411604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12411604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12411604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11504861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11504861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11504861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8193955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8193955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8193955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9501494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9501494

BMC Bioinformatics 2008, 9(Suppl 6):S4 http://www.biomedcentral.com/1471-2105/9/S6/S4
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

11. St John K, Warnow T, Moretand B, Vawter L: Performance study
of phylogenetic methods: (unweighted) quartet methods
and neighbor-joining. Algorithms 2003, 48:173-193.

12. Gascuel O: BioNJ: an improved version of the NJ algorithm
based on a simple model of sequence data. Mol Biol Evol 1997,
14:685-695.

13. Mary Kuhner K, Felsenstein J: A simulation comparison of phyl-
ogeny algorithms under equal and unequal evolutionary
rates. Mol Biol Evol 1994, 11:459-468.

14. Rambaut A, Grassly NC: Seq-Gen: an application for the Monte
Carlo Simulation of DNA sequence evolution along phyloge-
netic trees. Computer Application in Biosciences 1997, 13:235-238.

15. Wim Hordijk, Olivier Gascuel: Improving the efficiency of SPR
moves in phylogenetic tree search methods based on maxi-
mum likelihood. Bioinformatics 2005, 21:4338-4347.
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8015439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8015439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8015439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16234323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16234323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16234323
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Conclusion
	Methods
	Competing interests
	Authors' contributions
	Acknowledgements
	References

