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Abstract
Background: Most existing transcriptional databases like Comprehensive Systems-Biology
Database (CSB.DB) and Arabidopsis Microarray Database and Analysis Toolbox
(GENEVESTIGATOR) help to seek a shared biological role (similar pathways and biosynthetic
cycles) based on correlation. These utilize conventional methods like Pearson correlation and
Spearman rank correlation to calculate correlation among genes. However, not all are genes
expressed in all the conditions and this leads to their exclusion in these transcriptional databases
that consist of experiments performed in varied conditions. This leads to incomplete studies of co-
regulation among groups of genes that might be linked to the same or related biosynthetic pathway.

Results: We have implemented an alternate method based on graph theory that takes into
consideration the biological assumption – conditional co-regulation is needed to mine a large
transcriptional data bank and properties of microarray data. The algorithm calculates relationships
among genes by converting discretized signals from the time series microarray data
(AtGenExpress) to output strings. A 'score' is generated by using a similarity index against all the
other genes by matching stored strings for any gene queried against our database.

Taking carbohydrate metabolism as a test case, we observed that those genes known to be involved
in similar functions and pathways generate a high 'score' with the queried gene. We were also able
to recognize most of the randomly selected correlated pairs from Pearson correlation in CSB.DB
and generate a higher number of relationships that might be biologically important. One advantage
of our method over previously described approaches is that it includes all genes regardless of its
expression values thereby highlighting important relationships absent in other contemporary
databases.

Conclusion: Based on promising results, we understand that incorporating conditional co-
regulation to study large expression data helps us identify novel relationships among genes. The
other advantage of our approach is that mining expression data from various experiments, the
genes that do not express in all the conditions or have low expression values are not excluded,
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thereby giving a better overall picture. This results in addressing known limitations of clustering
methods in which genes that are expressed in only a subset of conditions are omitted.

Based on further scope to extract information, ASIDB implementing above described approach has 
been initiated as a model database. ASIDB is available at http://www.asidb.com.

Background
It has been established that co-regulated genes exhibit
similar expression patterns as a norm and not as an excep-
tion [1]. Microarray allows sensitive, detection of small
differences in transcript abundance [2], therefore it is uti-
lized extensively to study co-regulation of genes. The gene
expression imprinted in the microarray is the manifesta-
tion of the pathway activity undergone by the organism,
and every gene performs its obligatory function in various
pathways [3]. The genes do not co-express with the same
set of genes all the time, but under various conditions will
be expressed with different sets of genes termed as condi-
tional coregulation [3,4]. Each gene is estimated to inter-
act with four to eight other genes and associated with 10
biological functions [5]. The DNA microarray therefore
assists in measuring the difference in transcriptional activ-
ity by comparing their mRNA levels under different exper-
imental conditions like developmental stages, stress, or
osmotic shock [6]. Various approaches exist for interpre-
tation of relative gene expression. One of the basic strate-
gies is to set the expression level to three states, i.e.
underexpression, baseline and overexpression using a fold
change cutoff like two times fold change against the con-
trol [7]. Other strategies include setting thresholds repre-
senting significant changes between subsequent
timepoints and storing in bins [8], an adaptive procedure
that takes gene-specific variation into consideration to
derive the gene expression in different states [7]. Further,
microarray data consists of variations generally termed as
interesting variations, which are biologically important,
and are superimposed by "obscuring variation" or system-
atic variation [9].

We have developed an alternate algorithm based on graph
theory that takes a discretized expression matrix as input
and emits output string. Not all genes are expressed all the
time and are required at different developmental and mat-
uration phases of plant [10]. We therefore categorized
each differentially expressed gene as "ON/OFF" from
every experiment against its control in three states: overex-
pression (+1), underexpression (-1) and no expression
(0). We utilized the regularized t-test to derive differen-
tially expressed genes to overcome low replicates and
extract meaningful biological variances [11]. We derived a
discretized expression matrix for all the genes for various
time series experimental conditions from differentially
expressed genes. The similarity between two (or more)
discretized vectors can be calculated through various dis-

tance measures such as number of positions the vector has
similar values excluding 0 [2]. Our implementation
results in the output string that is the representation of the
pattern the genes have undergone during transition from
one state to another. Any gene can be queried against all
the other genes by matching stored output strings in the
database, and a 'score' is generated representing the simi-
larity index between any given set of genes.

Affymetrix™ provides a calculation of absolute signal val-
ues for each gene for a given set of experiments, which can
be viewed as points in n-dimensional space (where n is
the number of experiments) [12]. Similarity between
point representations of genes can be calculated using var-
ious metrics like Pearson correlation or Euclidean dis-
tance using various clustering algorithms [13]. Most
databases (e.g. Comprehensive Systems-Biology Database
(CSB.DB) [14] and the Arabidopsis Microarray Database
and Analysis Toolbox (GENEVESTIGATOR) [15] help to
seek shared biological roles based on correlation. These
databases utilize existing methods like Pearson correla-
tion and Spearman rank correlation to measure coregula-
tion. These clustering methods provide reliable
information for performing internal comparison of experi-
mental conditions. But the usage of these for cross compar-
isons of various groups/clusters obtained through
clustering various experimental conditions tends to
obscure information important for identification of
coregulated genes [8]. This implies that the clustering
methods, which have shortcomings in identifying all the
relationships existing in microarray expressions and dif-
ferent algorithms, will identify unique relationships
thereby limiting them to the constraints of conditional
coregulation [8,5]. Fuzzy k-means clustering implementa-
tion recognizes the concept of conditional coregulation
and assigns 'membership' to each gene belonging to vari-
ous clusters/groups [3].

We tried to incorporate the conditional coregulation for
calculating relationships among genes by mining tran-
scriptional data consisting of experiments in various con-
ditions from AtGenExpress. For each condition in a
temporal microarray experiment, the state of the gene at a
particular time point is defined by alphabet according to
the algorithm. The individual output string comprising of
concatenated alphabets is stored on a per gene, per condi-
tion basis, meaning the length of the string equal to the
number of time points for a particular experimental con-
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dition. Therefore, the number of alphabets and the com-
plexity of a generated string for the given temporal
experiment increases with an increase in number of time-
points. This implies that the algorithm performs better
and produces more reliable results as the number of time-
points increase in the experiment. We tried to further
reduce random matching of similar alphabets (at the
same timepoint) by introducing an option to award extra
increments if the preceding alphabet is matched.

Methods
Microarray datasets
The dataset consists of a total of 18 groups of experiments
which were already preprocessed in MAS5.0 http://
www.affymetrix.com taken from aboveground samples of
the abiotic stress series of microarray experiments con-
ducted by AtGenExpress http://www.weigelworld.org/
resources/microarray/AtGenExpress/.

Test data
The data consists of two sets of enzymes, i.e. nucleotide
sugar interconversion enzymes [16] and glycosyltrans-
ferases http://www.CAZY.org, hypothesized to be
involved in cell wall biosynthesis which consists of 493
genes for analyzing results.

The overview of the entire analysis and database construc-
tion is shown in Figure 1.

Setting up database
Storage of preprocessed data
We utilized Cyber-T http://CYBERt.microarray.ics.uci.edu
to measure the confidence value associated with fold
change for each gene. The Cyber-T analysis (Control ver-
sus Experiment) uses Bayesian probabilistic framework to
calculate a background variance for each of the genes
under analysis. By combining the empirical variance with
the local background variance associated with neighbor-
ing genes, it calculates the confidence associated with the
differential expression [17,11]. This is supposed to com-
pensate for the limited number of replicates by giving
proper estimates of variances (which might be biologi-
cally relevant).

Generation of string
The input matrices f1f2f3fn for fold change and p1p2p3pn
for confidence value are generated from the analysis of
Cyber-T, for each Control + Experiment. The fold change
is the ratio of expression value between experiment and
control, and negative fold change indicates lower expres-
sion in the experiment and vice versa. Discretization is uti-
lized to reduce the variables in sample space resembling
"lossy compression method for the data" [8]. Relative gene
expression of every gene in each column (control plus
experiment) is discretized into three distinct levels of dif-
ferential expression – overexpressed, underexpressed and
not expressed. These levels of differential expression are
validated by the following rules:

Overview of the database constructionFigure 1
Overview of the database construction. E1, E2, E3, En is the representation of the time points in temporal experiments. G1, 
G2, G3, Gn is the representation of the gene. Confidence values and fold change for relative gene expression generated from 
Cyber-T.
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i. An upregulated gene with a fold change (ExpressionExper-

iment/ExpressionControl) greater than +1 and p value less
than the threshold is deemed as overexpressed and repre-
sented as positive state.

ii. A downregulated gene with a fold change (Expression-

Control/ExpressionExperiment) less than -1 and p value less
than the threshold is categorized as underexpressed and
represented as negative state.

iii. A gene with p value above the threshold is categorized
as not expressed and represented as neutral state (0).

The algorithm utilizes an assumption that genes in a time
series do not occupy discrete, independent expression
devoid of any relationship with their previous experi-
ments in a temporal series. In fact, the present state of
each gene is dependent on its immediate preceding state or
vector for magnitude and therefore generates an output
string utilizing the graph theory [18] to depict a pattern.
The algorithm uses these three levels of discretization to
set the present state of each gene based on present and
previous states.

The implementation of the algorithm is discussed as
pseudo code below. The initial vector (state) of the gene is
set by the above rules of discretization, which states the
direction is positive or negative based on the level of
expression and magnitude, is equal to the number of
timepoint experiments as in line 6. Lines 10 to 21 of the
algorithm describe the transition of genes in a timepoint
experiment with resulting variable 'out'. The out variable
in the algorithm is based on both the direction and mag-
nitude of its previous state and present state as in lines 12,
14, 17 and 19. Each 'out' variable can be considered as an
alphabet representing the state of the gene and stored in
the matrix on a per gene, per experiment basis.

Implementation of the algorithm
a) i is the number of the gene in the row

b) j is the number of the column (experiment)

c) |len| is the initial output assigned to the output string
equal to number of time points for time series experi-
ments

d) state is level of differential expression, i.e. overexpres-
sion, underexpression or no expression for a gene at a
timepoint

e) out is the output alphabet for the transition of each
gene i in jth column

f) PV(i, j) is the matrix of confidence value(Bayes P) of i
gene in jth column

g) FC(i, j) is the matrix of Fold Change of i gene in jth col-
umn

h) DM(i, j) is the matrix storing the output alphabet (out)
as string

i) threshold is the user defined Bayes P value cutoff which
has been taken as 5% arbitrarily

1. iterate for each gene: 0 to i {

2. iterate for each time series experiment: 0 to j {

3. if (PV(i, j) <= threshold) {

4. if (previous state !exists) { # true for first column

5. if (present state = (overexpressed | underexpressed)) {

6. out = ± len; DM(i, j) = out; } #+ overexpression, - under-
expression

7. else if (present state = (not expressed)) {

8. out = 0; DM(i, j) = out; } }

9. else if (previous state exists) {

10. if (present state = previous state) {

11. if (FC(i, j) > FC(i, j-1) {

12. increment out; DM(i, j) = ± out; } #direction (±) based
on present state

13. else {

14. decrement out; DM(i, j) = ± out; } }

15. else if (present state != previous state) {

16. if (FC(i, j) > FC(i, j-1) {

17. increment out; DM(i, j) = +out; }

18. else {

19. decrement out; DM(i, j) = -out; } }

20. } # 9 ends

21. } # 3 ends
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22. else {

23. out = 0; DM(i, j) = out; }

24. } } # 1 ends

Note: # is the comment

The total number of alphabets generated for a time series
n is 3+4(n-1), and the number of strings (complexity)
resultant from these alphabets for a time series n greater
than 1 is 3(n-1)+2(2n-1). For each individual experiment, a
seperate string is generated with length equal to the time-
point of each experiment. These input values produce
sequences of transition of a gene resulting in an output
string o1o2o3...on representing the expressional changes a
gene has undergone that are stored in the database.

Storage of generated string
The strings generated from the algorithm, for the time
series experiment under different experimental conditions
are stored in a RDBMS database. Each individual string is
generated for a particular gene in a particular time series
experiment and is stored separately.

Generating a score through querying
The score is generated by matching strings of query gene
with all the other genes in the database. For each experi-
ment, the string of query gene is compared with strings of
other genes, per experiment. The comparison is per-
formed for all the experiments and aggregate score is com-
puted. The string matching comprises of two
determinants as follows:

Match
An alphabet of query string matching with alphabet of
other genes at same temporal point of a time series exper-
iment is awarded a unit.

Weight
Discretization leads to generalization of entire data. To
overcome this aspect, any random similarity of the output
alphabet is checked by further awarding an extra unit to
any matching output alphabet having a preceding match.
Weight provides an additional thrust to seek for genes
undergoing similar patterns by separating them from
genes with random similarity.

T: is the number of time series experiments

E: is the number of experiments conducted in various con-
ditions

Gn: is the value calculated in relation to a gene against a
query gene using match and weight factors.

The web interface ASIDB at present defaults match and
weight as a unit. The standalone java interface with a local
database has a more dynamic interface allowing the user
to enter these variables.

Results and discussion
Genes represented in the ATH1-1250 chip can be queried
based on Affymetrix™ Probeid or AGICode [1]. We uti-
lised carbohydrate biosynthesis genes as a test case and at
present, the database (hosted at http://www.asidb.com)
refers to 493 genes annotated as glycosyltransferases and
nucleotide sugar interconversion enzymes for Arabidopsis
thaliana. The 'scores' generated by querying the database
are retrieved in descending order of 'score' which we refer
as 'rank' and used synonymously with 'score' for discus-
sion. We have classified the results into two sections:

A. Comparison of results with correlation coefficients 
derived from CSB.DB
Single gene query
We queried QUA1 (At3g25140) from our database and
listed the top 15 genes (Table 1). We merged our results
with CSB.DB by utilizing parametric Pearson's linear
product moment correlation coefficient and the output
using positive co-responding genes with probability <
0.05 by performing single gene query for QUA1 for
atge0200 dataset. We found that many genes which gen-
erate high scores in ASIDB also have high confidence and
high pearson in CSB.DB. Also, our results do not exclude
genes unlike CSB.DB for the same dataset giving a more
comprehensive picture for better analysis.

Subgroup (five UGE isoforms) comparison
Performing co-response analysis for UGE isoforms by
comparing fluctuation of transcript abundance between
CSB.DB (Spearman correlation) and ASIDB revealed
UGE1 and -3 behaved differently than UGE2, -4, -5 [19].

Random comparison of genes from CSB.DB
We randomly selected around 10% of the genes (~52
genes) from our database and compared them with Pear-
son correlation generated from CSB.DB. The correlation
coefficient measures the relationship between two varia-
bles ranging between +1 and -1 where +0.7 to +1.0 is con-
sidered strong positive association, +0.3 to +0.7 as weak
positive association and +0.3 to 0 as no association [20].
Comparing 1326 correlated pairs generated from CSB.DB
and ASIDB, we found that at high pearson correlation, i.e.
.8, out of 14 correlated pairs generated by CSB.DB, 10
were identified by ASIDB at rank cutoff of 10 genes (top10
genes) and 13 correlated pairs at rank cutoff of 20 (Figure
2). Similarly for pearson correlation cutoff at .7, we were

Score = ∑∑ Gn
TE

11
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able to identify half (21) of the correlated pairs at rank
cutoff of 10 and 30 at rank cutoff of 20. We observe the
trend that ASIDB identifies most of the correlated pairs at
high pearson value and identification reduces with declin-
ing pearson for the same genes. ASIDB also generates a
higher number of relationships that are not identified by
pearson correlation and might hold biological impor-
tance. The comparison file can be downloaded from http:/
/www.asidb.com/fDownloads.html.

B. Biological validity of the results
We utilized genes hypothesized to be involved in cell wall
biosynthesis (glcosyltranferases and nucleotide intercon-

version enzyme) as test data. Out of these, around 420
genes that are present in carbohydrate active enzymes
http://www.cazy.org are glycosyltransferases while the
remaining genes are linked with nucleotide sugar inter-
conversion enzymes. The glycosyltransferases are specific
for both the donor sugar nucleotide and the acceptor mol-
ecule, which might be another sugar or aglycones. One
glycosyltransferase usually catalzses the formation of only
one glycosidic linkage. As a result, though many glycosyl-
transferases catalyze chemically similar reactions, they
display remarkable diversity in their donor, acceptor and
product specificity and thereby generate a potentially infi-
nite number of glycoconjugates, oligosaccharides and
polysaccharides [21]. The high specificity of glycosyltrans-
ferases results in difficulty in assessing the biochemical
function of the enzymes encoded by these genes [22]. Fur-
thermore, the application of clustering or any other tech-
nique has not yielded a precise donor, acceptor or product
specificity of glycosyltransferases [23].

The activated sugars, known as nucleotide sugars, form
the substrates for nucleotide sugar interconversion
enzymes dedicated to the generation of new sugar species
[24]. The biochemical and molecular aspects of sugar
nucleotide interconversion enzymes are fairly well under-
stood [25]. Also, nucleotide sugars are the substrates for
glycosyltransferases that catalyze the polymerization of
monosaccharides into glycosides, oligosaccharides, gly-
colipids, glycogen, starch, cellulose and a large variety of
extracellular complex carbohydrates [24,26]. An
improved description of the link between nucleotide
sugar interconversion genes and glycosyltransferases
might help in understanding the control of cell wall bio-
synthesis [16].

Table 1: Comparison of ASIDB score with CSB.DB for single gene. Descending order of score from ASIDB compared with the pearson 
correlation and the p value from CSB.DB for QUA1 for atge0200

Agicode pearson coeff. p value Rank Score Name Cazy Group

At5g60920 .6424 3.15e-08 1 126 COB -
At2g20370 .8077 6.44E-15 2 123 MUR3 GT47
At2g47650 .3248 .0113 3 116 AUD2 UXS4 -
At3g29360 .7636 0.00000000000129 4 116 UGD2 -
At5g15490 .4858 0.0000833 5 112 UGD3 -
At1g19360 ** - 6 112 - GT74
At4g22580 .3035 0.0184 7 111 - GT47
At1g80290 ** - 8 110 - GT64
At5g39320 .3551 0.00537 9 110 UGD1 -
At1g16900 .3636 0.0043 10 109 - GT22
At3g23820 .7862 9.88E-14 11 109 GAE6 -
At2g22900 .6505 0.0000000185 12 109 - GT34
At1g53500 .6859 0.00000000147 13 109 RHM2 -
At1g08660 ** - 14 105 - GT29
At1g06000 ** - 15 104 - GT1

** Genes not present in CSB.DB (atge0200 matrix)

Comparison of pearson correlation with ASIDB scoreFigure 2
Comparison of pearson correlation with ASIDB 
score. Graph depicts the number of correlated pairs at dif-
ferent pearson cutoff and the number of those same corre-
lated pairs identified by ASIDB at different rank cutoff.
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Relationship of UGE with glycosyltransferase
On querying five UGE isoforms (Table 2), we subgrouped
them into two groups based on their relationship with
each other and glcosyltransferases MUR3 (At2g20370),
GOLS2 (At1g56600) and ATGT18 (At5g62220).

i) UGE1, -3

UGE1 and UGE3 co-regulated with trehalose 6-phosphate
synthases [27] indicating their catabolic role [19,28].

ii) UGE2, -4, -5

We observed that UGE2,-4 and -5 co-regulated with
known galactosyltransferases like MUR3, GolS2, ATGT18
indicating biosynthesis role [19,28].

Relationship among cellulose synthases
The Arabidopsis genome encodes 10 isoforms of the cel-
lulose synthase catalytic subunit – CESA [29] and we have
broken down these groups of genes into two sets based on
the rank derived from Table 3.

i) AtCesa1, AtCesa3, AtCesa6, AtCesa5, AtCesa2

Cesa1,-3,-6 are responsible for cellulose production dur-
ing primary cell wall development in various tissues [30].
On querying ASIDB, we found that not only CESA2 which
have been earlier found to be highly co-regulated with
CESA1,-3,-6 came at higher rank [30], but CESA5 also
shows co-regulation with this set of genes indicating its
role in deposition of cellulose in the primary cell wall.

ii) AtCesa4, AtCesa 7, AtCesa 8

The irx1, irx3 and irx5 mutants are the members of CesA
gene family and AtCesA4 (IRX5), AtCesA7 (IRX3) and
AtCesA8 (IRX1) take part in the synthesis of the complex
that is required to synthesize cellulose in the secondary
cell wall [30,31]. Other genes, which have shown signifi-
cant relationship with these genes and have also been
mentioned in previous work, are At5g54690, At2g37090
[30].

Conclusion
We tried to incorporate the conditional co-regulation for
calculating the relationship among genes by addressing
the limitation of clustering methods in which genes that
are expressed in most of the measurements are high-

Table 2: Comparison of ASIDB ranking with pearson correlation for UGE homologs. The ranking of genes depicting relationship 
between UGE homologs and glycosyltransferases with pearson correlation is in parenthesis.

RANK MUR3 AtGT18 UGE4 UGE2 UGE5 UGE1 UGE3

UGE1 477 (.4408) 460 (.2894) 478 (.2306) 473 (.3102) 374 (NA) - 10 (.6303)
UGE2 14 (.5818) 42 (.2842) 97 (.1159) - 9 (NA) 473 (.3102) 340 (.6475)
UGE3 474 (-.424) 461 (.2785) 404 (.1084) 340 (.6475) 402 (NA) 4 (.6303) -
UGE4 1 (.0748) 291 (.3508) - 131 (.1159) 43 (NA) 483 (.2306) 431 (.1084)
UGE5 22 (NA) 57 (NA) 52 (NA) 13 (NA) - 365 (NA) 409 (NA)
MUR3 - 63 (.3995) 13 (.0748) 46 (.5818) 66 (NA) 484 (.4408) 482 (-.424)
QUA 2 (.8077) 159 (.1981) 35 (.1153) 118 (.5349) 226 (NA) 447 (.3241) 486 (.3395)
GOLS2 34 (NA) 46 (NA) 51 (NA) 1 (NA) 8 (NA) 465 (NA) 324 (NA)

*NA represents genes omitted in the CSB.DB (atge0200 matrix)

Table 3: Comparison of ASIDB ranking with pearson correlation for CESA homologs. The ranking of genes depicting relationship 
between CESA subgroup derived from the score with the pearson correlation in parenthesis.

RANK CESA1 CESA2 CESA3 CESA5 CESA6 CESA4 CESA7 CESA8

CESA1 - 53 (.4319) 1 (.8554) 25 (.4822) 2 (.7231) 155 (.3368) 152 (.2495) 439 (.3224)
CESA3 2 (.8554) 9 (.5283) - 7 (.5252) 5 (.7179) 312 (.1678) 219 (.1093) 350 (.1853)
CESA6 3 (.7231) 14 (.5684) 17 (.7179) 1 (.6678) - 240 (.1605) 125 (-.0458) 365 (-.033)
CESA4 165 (.3368) 453 (-.2676) 368 (.1678) 287 (.022) 231 (.1605) - 1 (.6776) 8 (.5777)
CESA7 118 (.2495) 376 (-.4548) 242 (.1093) 282 (-.0267) 73 1 (.6776) - 2 (.7249)
CESA8 448 (.3224) 193 (-.186) 397 (.1853) 382 (.046) 323 (-.033) 4 (.5777) 1 (.7249) -

*NA is genes omitted in the CSB.DB (atge0200 matrix)
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lighted while genes that are co-expressed in the subset of
conditions are omitted. Our implementation leads to the
inclusion of every gene regardless of its expression values
thereby highlighting an important relationship absent in
other contemporary databases. We found that our
approach not only recognizes most of the randomly
selected correlated pairs from pearson correlation in
CSB.DB, but also generates new relationships. This has
resulted in highlighting subtle relationships for example
UGE isoforms [19,28].

Taking carbohydrate metabolism as a test case, we
observed that those genes known to be involved in similar
functions and pathways generate a high 'score' with the
queried gene. The 'score' is therefore computed for all the
genes present in the database and reflects the magnitude
of co-regulation existing with the queried gene. The higher
the intersection of expressional patterns under varying
conditions, the higher the score generated for the gene cal-
culated by the algorithm (Figure 3) and ranked in
descending order of 'score'. Interpretation of the results is
done by considering genes as nodes linked with each
other through the edges [32]. Edges represent interactions
between the connected genes, with higher rank/score
depicting higher functional similarity (Figure 4). We can
utilize the interaction of edges and nodes for the construc-
tion of the networks.

After implementing the carbohydrate biosynthesis cycle,
we intend to incorporate other cycles like amino acid,
nucleotide, and lipid. We have recently added ARACYC
http://www.arabidopsis.org annotation to our database.
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