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Abstract

http.//www.geneorder.org/server.php.

Background: The rapid accumulation of whole-genome data has renewed interest in the study of using gene-order
data for phylogenetic analyses and ancestral reconstruction. Current software and web servers typically do not
support duplication and loss events along with rearrangements.

Results: MLGO (Maximum Likelihood for Gene-Order Analysis) is a web tool for the reconstruction of phylogeny
and/or ancestral genomes from gene-order data. MLGO is based on likelihood computation and shows advantages
over existing methods in terms of accuracy, scalability and flexibility.

Conclusions: To the best of our knowledge, it is the first web tool for analysis of large-scale genomic changes
including not only rearrangements but also gene insertions, deletions and duplications. The web tool is available from
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Background

As whole genomes are sequenced at increasing rates,
using gene-order data® for phylogenetic analyses and
ancestral reconstruction is attracting increasing interest.
Comparative genomics, evolutionary biology, and can-
cer research all require tools to elucidate the history and
consequences of the large-scale genomic changes, such
as rearrangements, duplications, losses. However, using
gene-order data has proved far more challenging than
using sequence data and numerous problems plague exist-
ing methods: oversimplified models, poor accuracy, poor
scaling, lack of robustness, lack of statistical assessment,
etc.

Genome rearrangement operations change the order-
ing of genes on chromosomes. An inversion operation
(also called reversal) reverses both the order and orienta-
tion of a segment of a chromosome. A traunsposition is an
operation that swaps two adjacent segments of a chromo-
some. In case of multiple chromosomes, a translocation
breaks a chromosome and reattaches a part to another
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chromosome, while a fusion joins two chromosomes and
a fission splits one chromosome into two. Yancopoulos
et al. [1] proposed a universal double-cut-and-join (DCJ)
operation that accounts for all rearrangements used to
date. None of these operations alter the gene content of
genomes, whereas deletions (or losses) delete segments
of (one or more) contiguous genes from a chromosome,
while insertions introduce a segment of (one or more)
contiguous genes from external sources into a chromo-
some. and duplications copies an existing segment within
the genome and inserts into a chromosome. Finally, whole
genome duplication (WGD) creates an additional copy of
the entire genome of a species.

As phylogenies play a central role in biological research,
over the past decade many methods were developed
to reconstruct phylogenies from gene-order data. The
first algorithm for phylogeny inference from gene-order
data was BPAnalysis based on breakpoint distances [2].
Moret et al. [3] later extended this approach with
GRAPPA by using inversion distances. While these meth-
ods were limited to unichromosomal genomes, Bourque
and Pevzner [4] developed MGR to handle multichromo-
somal genomes. These approaches are parsimony-based:
they solve the so-called Big Parsimony Problem (BPP)
and all suffer from serious scalability issues. In contrast
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with parsimony-based methods, distance-based meth-
ods run in time polynomial in the number and size of
genomes. Lin et al. [5] have demonstrated the accuracy
and scalability of a distance-based method that uses NJ
[6] and FastME [7] with an accurate distance estima-
tor [8]. Instead of working directly with the evolution-
ary events of the model, one can also transform the
problem into the familiar sequence-based reconstruction
problem. Wang et al. [9] first proposed a parsimony-
based approach, MPBE (Maximum Parsimony on Binary
Encoding). Recently Hu et al. [10] developed MLBE, later
refined by Lin et al. [11] with MLWD, both of which
demonstrate that using maximum-likelihood approaches
is the decisive factor in improving the modest accuracy
of MPBE.

If the tree is fixed, then computing its parsimony score is
known as the Small Parsimony Problem (SPP). Ancestral
reconstruction has been studied through several opti-
mization schemes for SPP on gene-order data—using
adjacencies [12-15], using conserved intervals (Roci—
Reconstruction of Conserved Intervals [16]), using multi-
ple breakpoint graphs (MGRA [17]) and supporting whole-
genome duplications [18,19], where continuous regions or
complete ancestral genomes have been inferred.

Relatively few of these tools are offered through web
servers. Lin et al. [20] had developed a web-server version
of MGR with new heuristics to speed up the original MGR
algorithm, but the site is no longer accessible. Both Roci
and MGRA (for ancestral reconstruction only) are offered
through web servers, but none can handle complex events
such as gene insertions, deletions and duplications.

We present a new tool MLGO for the reconstruction
of phylogeny and/or ancestral genomes from gene-order
data. MLGO relies on two methods we have developed:
MLWD [11] for phylogenetic reconstruction and PMAG+
[21] for ancestral genome reconstruction. Our tool takes
the advantage of binary encoding on gene-order data,
supports a fairly general model of genomic evolution
(rearrangements plus duplications, insertions, and losses
of genomic regions), and successfully accommodates itself
into the framework of maximized likelihood. The results
of extensive testing on both simulated and real data
show that both MLWD and PMAG+ can achieve great per-
formance, scalability and flexibility, suggesting MLGO a
suitable tool for large-scale analysis of high-resolution
data. Furthermore, MLGO is deployed as a web ser-
vice, providing the first web tool that is suitable for
large scale genomic analysis with a general model of
evolution.

Implementation

MLGO preprocesses the gene-order data, configures the
transition model, reconstructs a phylogeny, and finally
solves the SPP on that phylogeny.
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Terminology

Given a set of n genes labeled as {1,2, - - - , n}, gene-order
data for a genome consists of lists of genes in the order in
which they are placed along one or more chromosomes.
Each gene is assigned with an orientation that is either
positive, written i, or negative, written —i. Two genes i and
j form an adjacency (i, j) if i is immediately followed by j,
or, equivalently, —j is immediately followed by —i. If gene
k lies at one end of a linear chromosome, we let k be adja-
cent to an extremity o to mark the beginning or ending
of the chromosome, written as (o, k) or (k, 0), and called
telomere.

Phylogeny reconstruction

The data preprocessing and the configuration of the tran-
sition model follow the approach of MLWD [11]. Each
adjacency that appears at least once in the collection of
input genomes corresponds to a unique character posi-
tion in the sequence and the presence or absence of any
of these adjacencies in a given genomes is coded by a
1 (presence) or a 0 (absence). Since our encodings are
binary sequences, the parameters of the model are simply
the transition probability from presence (1) to absence (0)
and that from absence (0) to presence (1). Lin et al. [11]
gave the following derivation for these parameters. A DC]
operation selects uniformly at random two adjacencies (or
telomeres) and replaces them by two new adjacencies (or
telomeres). Since a genome with # genes and O(1) chro-
mosomes has # + O(1) adjacencies and telomeres, the
transition probability from 1 to 0 is %0(1) under one DC]J
operation; and since there are up to (2"2+ 2) possible adja-
cencies and telomeres, the transition probability from 0 to
lis #O(n)‘ Thus the transition from 0 to 1 is roughly 2n
times less likely than that from 1 to 0. Despite the restric-
tive assumption that all DC]J operations are equally likely,
this result is in line with the observed bias in transitions
of adjacencies given by Sankoff and Blanchette [22]: the
probability of breaking a given ancestral adjacency is high
while that of creating a particular adjacency along several
lineages is low (a version of homoplasy for adjacencies).
Finally, the encoding adds characters and a transition
probability for the presence or absence of each unique
gene. Due to duplicated genes, there is no one-to-one cor-
respondence between genomes and the final encodings of
multisets of genes, adjacencies, and telomeres. Once we
have the binary sequences and transition parameters, we
can reconstruct a phylogeny using maximum likelihood.
Of the many implementations of this method, we chose
RAxML [23] for its speed and its dedicated handling of
binary sequences.

Bootstrap support
A distinct advantage of using sequence encoding is
the ability to use the bootstrap method to assess the
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Figure 1 The screen shot of the web interface for MLGO.

robustness of the inferred phylogeny. Doing so with gene-  with 2” x n! possible states (the first term is for the
order data is not possible, because a chromosome with n  strandedness of each gene and the second for the possi-
distinct genes presents a single character (the ordering)  ble permutations in the ordering). This single character
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Figure 2 The consensus phylogeny of 12 drosophila genomes with bootstrap support values from 100 replicates.

is equivalent to an alignment with a single column, albeit
one where each character can take any of a huge num-
ber of states—we cannot meaningfully resample a sin-
gle character. The binary encoding effectively maps this
single character into a high-dimensional binary vector,
so that the standard phylogenetic bootstrap [24] can be
used. While the evolution of a specific adjacency depends
directly on several others, independence can be assumed
if, once an adjacency is broken during evolution, it is not
formed again—an analog of Dollo parsimony, but one that
is very likely in rearrangement data due to the enormous
state space [25].

Ancestral inference

Using the phylogeny thus computed, we then proceed
to solve the SPP, now following the approach of Hu
et al. [21]. The first step involves the estimation of ances-
tral gene contents from the contents of the input genomes.
Our inference of ancestral contents relies on viewing
genes and adjacencies as independent binary characters,
as described for the encoding. Whether or not an ances-
tral genome contains a gene or an adjacency is determined
by the conditional probability of the presence state of
the gene or the adjacency, computed by the marginal
probabilistic reconstruction method suggested by Yang
et al. [26]. If such probability is larger than 50%, we con-
clude that the gene belongs to the genome. We extend
this approach to compute the probability of observing
each adjacency. We then reduce the adjacency assembly
problem for any given ancestral genome to an instance of
the Travelling Salesperson Problem (TSP), by represent-
ing genes as vertices and adjacencies as edges, and finally
solve the TSP by using Concorde [27].

Results and discussion

MLGO is written in C++ and Perl as a web tool. Figure 1
shows the screen shot of the web interface for MLGO. The
input format of the dataset is that used by GRAPPA and
MGR: FASTA-like headers for the names of the genomes

(> followed by an alphanumeric sequence followed by a
newline), each chromosome represented by a signed per-
mutation of integers ending with a $ symbol and a new-
line character. Phylogenies are output as trees in Newick
format.

We used the genomes of 12 fully sequenced drosophila
species to demonstrate the performance of MLGO. Figure 2
shows the consensus phylogeny reconstructed by MLGO
with the bootstrap support values obtained using 100
replicates. Compared to the study using sequence data
published by Clark et al. [28], all major groups in those 12
drosophila genomes were correctly identified with strong
support (bootstrap value > 90), except for one median
support at the bipartition between D. simulans, D. sechel-
lia and the rest. The total running time for reconstructing
the phylogeny of 12 drosophila species is less than 1
minute, while ancestral reconstruction adds less than 30
minutes. We also tested the performance of MLGO on
15 Metazoan genomes from the eGOB (Eukaryotic Gene
Order Browser) database [29], and the reconstructed phy-
logeny tree shown in Figure 3 is perfectly supported from
existing studies [30,31].

Conclusion

As whole genomes are sequenced at increasing rates,
using gene-order data for phylogenetic analyses and
ancestral reconstruction is attracting increasing interest,
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Figure 3 The reconstructed phylogeny of 15 Metazoan genomes.
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especially coupled with the recent advances in identifying
conserved synteny blocks among multiple species [32-34].

MLGO (Maximum Likelihood for Gene-Order Analy-
sis) is the first web tool for likelihood-based inference of
both the phylogeny and ancestral genomes. It provides fast
and scalable analyses with bootstrap support of large-scale
genomic changes including not only rearrangements but
also gene insertions, deletions and duplications.

Availability and requirements

The web tool is available from http://www.geneorder.org/
server.php.

Project name: MLGO

Project home page: http://www.geneorder.org/server.

php

Operating system(s): Platform independent
Programming language: Perl

Other requirements: None

License: GNU

Restrictions for use by non-academics: None

Endnote

*We use the term “gene” as this is in fact a common
form of syntenic blocks, but other kinds of markers could
be used.
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