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Abstract

Background: The function of RNA is strongly dependent on its structure, so an appropriate recognition of this
structure, on every level of organization, is of great importance. One particular concern is the assessment of base-
base interactions, described as the secondary structure, the knowledge of which greatly facilitates an interpretation
of RNA function and allows for structure analysis on the tertiary level. The RNA secondary structure can be
predicted from a sequence using in silico methods often adjusted with experimental data, or assessed from 3D
structure atom coordinates. Computational approaches typically consider only canonical, Watson-Crick and wobble
base pairs. Handling of non-canonical interactions, important for a full description of RNA structure, is still very
difficult.

Results: We introduce our novel approach to assessing an extended RNA secondary structure, which characterizes
both canonical and non-canonical base pairs, along with their type classification. It is based on predicting the RNA
3D structure from a user-provided sequence or a secondary structure that only describes canonical base pairs, and
then deriving the extended secondary structure from atom coordinates. In our example implementation, this was
achieved by integrating the functionality of two fully automated, high fidelity methods in a computational pipeline:
RNAComposer for the 3D RNA structure prediction and RNApdbee for base-pair annotation.

Conclusions: The presented methodology ties together existing applications for RNA 3D structure prediction and
base-pair annotation. The example performance, applying RNAComposer and RNApdbee, reveals better accuracy in

non-canonical base pair assessment than the compared methods that directly predict RNA secondary structure.
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Background

RNA molecules play an important role in many cellular
processes, not only serving as the carriers of genetic in-
formation but participating in the regulation of gene ex-
pression and acting as catalysts in many biological
pathways [1]. These functions result from the sequence
and the three-dimensional (3D) shape assumed by the
molecule [2]. Thus, any investigation into RNA-involving
processes usually requires the study of structural features.
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The primary sequence of RNA defines its secondary
structure, which in turn designates the 3D fold of the
molecule [3]. An analysis of the secondary structure is a
crucial step in functional characterization of RNA and
its tertiary structure prediction. A classical approxima-
tion of the secondary structure considers Watson-Crick
AU and GC base pairs, as well as wobble pairs. These
three types, regarded as canonical, are the stabilizing fac-
tors in the RNA folding process. However, a deep inves-
tigation into RNA tertiary interactions, made possible
due to the growing number of known RNA 3D struc-
tures, revealed a great diversity of other base-base inter-
actions. They are referred to as non-canonical and often
defined as neither Watson-Crick (non W-C) nor wobble
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(not GU or UG). It has been discovered that about 40 %
of all bases in structured RNAs take part in non-
canonical interactions [4]. Moreover, the secondary
structure containing only canonical base pairs proved in-
sufficient for a correct determination of the RNA’s 3D
structure and for aligning homologous sequences [5].
Thus, obtaining and describing an extended secondary
structure that determines both canonical and non-
canonical base pairs is an important issue in RNA struc-
ture study.

Various conventions can be applied to describe canon-
ical and non-canonical RNA interactions. One of the
first proposals was Saenger nomenclature [3], which dis-
tinguished 28 different base-pair classes by their sym-
metry, base types, and optimization of hydrogen
bonding rather than geometry [4]. The other approach,
most often used, is Leontis and Westhof’s classification
that takes into account the base edges involved in the
interaction (Watson-Crick, Hoogsteen or sugar edge),
and the orientation of the glycosidic bond with respect
to the hydrogen bond (cis and trans) [4, 6]. This ap-
proach gave rise to a definition of 12 basic geometric
base-pair families that have been observed in experimen-
tally solved crystal RNA structures [4]. It then led to the
development of the graphical convention for displaying
non-Watson-Crick interactions within secondary struc-
ture diagrams, commonly referred to as Leontis-
Westhof (LW) representation [4].

In silico methods to obtain RNA secondary structure
apply either sequence-based prediction or 3D structure-
based assessment routines. To our knowledge, over 50
methods have been developed in the former category.
Among them, only three can predict the secondary struc-
ture in the extended form: MC-Fold [5], MC-Fold-DP [7]
and RNAwolf [7]. MC-Fold [5] is part of the pipeline dedi-
cated to de novo prediction of RNA tertiary structure. Due
to the exponential computational complexity, it is useful
for processing sequences only up to 100 nucleotides (nts).
This limit is overcome by the MC-Fold-DP version [7]
that applies a dynamic programming algorithm. Finally,
RNAwolf [7] adopts an enhanced Nussinov algorithm to
predict extended RNA secondary structures. As far as
non-canonical base pairs are concerned, only MC-Fold
provides their complete classification, consistent with LW
nomenclature. MC-Fold-DP, while predicting both canon-
ical and non-canonical base pairs, does not distinguish be-
tween them in the output. RNAwolf offers the general LW
classification of interactions but does not inform about
base-pair assignment to a particular isosteric subset within
a given geometric family. A common disadvantage of the
described applications is that they allow us to predict none
(MC-Fold, MC-Fold-DP) or only a small fraction (RNA-
wolf) of the multi-pairings (eg base triplets) frequently
found in RNA structural motifs.
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Access to information about non-canonical interac-
tions and multi-pairings is easier when the secondary
structure is derived from atom coordinates. RNAView
[8], MC-Annotate [9], 3DNA/DSSR [10] and our re-
cently published RNApdbee [11] are tools used for iden-
tifying and classifying RNA base pairs, on structural data
encoded in PDB files. All of these programs provide
base-pair classification according to LW nomenclature
and can detect triplets and higher-order base associa-
tions. RNApdbee also supports Saenger notation.

Here, we introduce a novel approach to assess the ex-
tended RNA secondary structure. The idea is based on
predicting the tertiary structure from a user-provided se-
quence or a secondary structure containing canonical
base pairs only, and then back-calculating the extended
secondary structure from atom coordinate data. The ap-
proach is generic and any method can be used to predict
the 3D structure of RNA (eg FARFAR [12], DMD [13],
Vfold [14], MC-Fold [5], 3dRNA [15], RNAComposer
[16]) or to back-calculate its secondary structure
(eg RNAView [8], MC-Annotate [9], 3DNA/DSSR [10],
RNApdbee [11]). However, in the case of this applica-
tion, selecting a fully automated and fast method for 3D
structure prediction is preferred, for user convenience.
In our proposal, we implement the idea by integrating
RNAComposer [16] and RNApdbee [11] functionality in
a computational pipeline. RNAComposer, designed as a
fast and efficient modeling tool, is employed for auto-
mated, high-quality 3D structure prediction of RNA
from either a sequence or secondary structure. RNApd-
bee is used to extract and describe RNA secondary
structure from atom coordinate data, taking into ac-
count canonical and non-canonical base pairs and multi-
pairings. The proposed pipeline supports two usage
scenarios. The first and basic one is the prediction of the
extended RNA secondary structure from the primary
sequence. The second is the extension of an input sec-
ondary structure containing canonical base pairs only,
by adding information about non-canonical interactions.

We demonstrate that our approach is characterized by
computational efficiency, ability to predict and classify a
variety of non-canonical base pairs, and the capacity to
process RNAs with pseudoknots as well as those with
longer sequences, up to 500 nts. It provides easy access
to detailed information about canonical and non-
canonical interactions that define extended secondary
structure of RNA.

Methods

From RNA sequence to tertiary structure

There are several methods for homology or de novo pre-
diction of RNA tertiary structure from a sequence and/
or a secondary structure. For the purpose of our re-
search we have selected RNAComposer [16] — a web
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server tool for fast, fully automated, high-throughput
modeling of large RNA 3D structures. It operates on the
RNA FRABASE database [17], acting as a dictionary that
relates the RNA secondary and tertiary structure ele-
ments. The output RNA model is composed by assem-
bling the 3D fragments, which carry the knowledge
about canonical and non-canonical interactions, and the
secondary structure topology. RNAComposer works in
two modes — interactive and batch — that generally differ
in the number of possible input sequences and output
models, as well as in the modeling process description de-
tails. It allows the user to input a single sequence or sec-
ondary structure (interactive mode), or a set of secondary
structures (batch mode). If just the sequence is provided,
the canonical secondary structure is predicted by RNAs-
tructure [18] (default), RNAfold [19] or CONTRAfold
[20] (on user selection). All these tools have been incorpo-
rated into the RNAComposer system. Once the RNA sec-
ondary structure is available, an in silico synthesis of the
molecule is completed by composing its 3D model (up to
10 models can be generated for a sequence).

In the RC/Rp pipeline and sequence-based prediction,
we decided to use RNAComposer with the default set-
tings: for each input sequence the secondary structure
was predicted by RNAstructure and a single output
model was generated. The secondary structure-based
prediction was run without providing any additional
input.

Extended RNA secondary structure retrieval from atom
coordinates

In our proposed pipeline, a computational routine to re-
trieve an extended secondary structure of RNA from a
user-provided PDB file is driven by RNApdbee webser-
ver [11]. At the input, RNApdbee accepts RNA atom co-
ordinate data encoded in a PDB file. Next, it identifies
base pairs using incorporated procedures of standalone
versions of RNAView [8], MC-Annotate [9] or 3DNA/
DSSR [10], on user selection. Additional functions drive
classification of non-canonical base pairs according to
LW [4, 6] and Saenger [3] nomenclatures, and identify
pseudoknot orders. The resulting secondary structure is
presented in dot-bracket, BPSEQ and CT formats to-
gether with a graphical image. By default, RNApdbee
output representations contain only canonical base pairs,
while non-canonical ones are included in a separate list.
However, the user can also choose to obtain an extended
secondary structure with non-canonical base pairs repre-
sented in the textual and graphical output. This is a new
feature of RNApdbee, not implemented in the first ver-
sion of the tool. Its selection results in adding non-
canonical base pairs to output representations of the
secondary structure, providing their classification in a
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CT file and a separate list supplementing structure
description.

Accuracy measures for RNA secondary structure models
For the purpose of RC/Rp evaluation, the accuracy of
predicted extended secondary structures was assessed by
computing the number and percentage of predicted
non-canonical interactions, precision (PPV), sensitivity
(TPR) and the Matthews correlation coefficient (MCC)
[21]. Precision, also called positive predictive value (PPV),
is the fraction of predicted base pairs that are relevant. It
shows the probability of the predicted interaction presence
in the reference structure. Sensitivity, also known as recall
or true positive rate (TPR), indicates the fraction of rele-
vant base pairs that are predicted as such. Thus, it gives
the probability of anticipating base pairs that occur in the
reference structure. Finally, the Matthews correlation co-
efficient (MCC) is the balanced measure of binary classifi-
cation quality. All of these measures compare a predicted
structure with the reference one. Thus, for the purpose of
accuracy assessment, the sequences and secondary struc-
tures of reference RNAs were collected from the RNA
STRAND database [22].

To evaluate predicted models in a large-scale experi-
ment, an automated comparison of predicted and refer-
ence non-canonical base pairs was carried out, based on
sequences and secondary structures encoded in dot-
bracket notation. Since this notation does not support
the representation of multiplets, they were not consid-
ered. In the case of RNApdbee-annotated models, their
dot-bracket representation encodes base pairs connected
by more than one H-bond. Consequently, not all interac-
tions occurring in the reference structures could be
compared this way.

For a detailed inspection of our pipeline performance,
two carefully selected structures — archaeal tyrosyl-
tRNA [23] and K-turn linked with GNRA loop — were
manually analyzed. The comparison of their predicted
models with the reference structures was done on the
lists of H-bond connected bases given by particular
methods. All other interactions, including stacking,
base-sugar, base-phosphate etc., were ignored. A detailed
manual analysis, involving PPV, TPR and MCC compu-
tation, followed four different variants. In the first, all
relevant H-bond mediated base-base interactions (ca-
nonical and non-canonical) annotated in the resulting
structure were counted as true positives, regardless of
their classification. In the next two variants, all relevant
canonical (variant II) or non-canonical (variant III) base
pairs were taken into account, regardless of their classifi-
cation. In variant IV, all base pairs that were relevant
and correctly assigned to LW categories were regarded
as true positives, whereas those incorrectly classified
were counted as false positives. In the latter case, the
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number of false negatives was equal to the number of
unpredicted non-canonical interactions.

Results and discussion

Computational pipeline to assess extended RNA
secondary structure

The presented method to assess RNA extended second-
ary structure starts from sequence- or canonical second-
ary structure-based prediction of the RNA tertiary
model and then performs the extended secondary struc-
ture retrieval from atom coordinate data. In our pro-
posal, the method is applied by running in a pipeline
(the RC/Rp pipeline) two independent web-interfaced
applications, RNAComposer and RNApdbee (Fig. 1). In
the first step, a user should run a session of RNACom-
poser, available at http://rnacomposer.cs.put.poznan.pl
or http://rnacomposer.ibch.poznan.pl. This application
predicts the RNA tertiary structure based on an input
sequence of nucleotides or, optionally, a secondary struc-
ture. The output model is saved in a PDB file and consti-
tutes the input for RNApdbee, which should be
executed in the second step. RNApdbee, hosted at
http://rnapdbee.cs.put.poznan.pl/, aims to extract the
RNA secondary structure from the PDB-encoded atom
coordinate data. It should be run with the Include non-
canonical interactions option that has been added to the
application within the scope of the presented work.

The output secondary model is described by canonical
and non-canonical base pairs and referred to as ex-
tended representation, in contrast to a non-extended
secondary structure that shows canonical interactions
only. The resulting structure is encoded in textual nota-
tions and displayed in graphical form, both revealing ca-
nonical and non-canonical base pairs. Additionally,
base-pair classification according to LW and Saenger
nomenclature is produced. The results also contain in-
formation about other types of interactions such as
stacking and interactions formed between sugars, phos-
phates and bases.

Both components of the RC/Rp pipeline are web server
tools available free of charge, designed to work with most
common web browsers (Microsoft Internet Explorer,
Mozilla Firefox, Opera and Google Chrome). They are
fully automatic and do not require any additional informa-
tion, like templates or sequence alignment, to complete
the assessment process. The computation is fast and the
results are available immediately.

Pipeline evaluation and comparison to other methods

To perform a large-scale evaluation of the proposed RC/
Rp pipeline and compare it with the other available tools,
we have used the data deposited in RNA STRAND [22], a
curated database of known RNA secondary structures
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Input Data:
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GGUCAGGUCCGAAAGGAAGCAGCC
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RNApdbee
PDB file-based extraction and visualization
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Output data:
extended secondary structure of RNA
in dot-bracket and graphical representations
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CCOCCCCeee2)))))-0))))

Fig. 1 Workflow in the RC/Rp pipeline

found in various organisms. Currently, RNA STRAND
holds 4666 RNA secondary structures.

For the purpose of evaluation, we decided to retrieve all
RNA nucleotide sequences up to 500 nucleotides (nts)
long and their associated secondary structures deposited
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in the RNA STRAND database. Both structures derived
from comparative sequence analysis and from tertiary
structure determination were included. Next, the data
were analyzed and all sequences containing modified resi-
dues as well as those with canonical interactions only were
excluded. The collection of remaining sequences and sec-
ondary structures of 1088 RNAs was divided into four
subsets of different lengths (see Table 1): up to 50 nts (319
sequences), 51 to 100 nts (126 sequences), 101 to 200 nts
(188 sequences), 201 to 500 nts (455 sequences).

All datasets were used to compare the quality of pre-
dictions obtained from RNAwolf, MC-Fold, MC-Fold-
DP and RC/Rp pipeline in two experiments: the first
concerning sequence-based prediction and the second, ca-
nonical secondary structure-based prediction. RC/Rp was
executed with each option for base-pair identification,
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namely RNAView, MC-Annotate and 3DNA/DSSR (here-
inafter RC/Rp-1, RC/Rp-2, RC/Rp-3, respectively). In the
sequence-based experiment, every considered sequence
was an input to each of the above-mentioned methods
that was executed to predict the corresponding secondary
structure. In the other experiment, we applied all the
methods except for MC-Fold-DP, which does not accept
secondary structure as input data. In case of the dataset
containing long sequences (over 200 nts long), MC-Fold
computation was interrupted after seven days (during this
time the tool managed to process 14 out of 455 se-
quences). Thus, starting from the set of 1088 sequences,
we obtained 11058 secondary structures for further ana-
lysis (including 6073 structures in the sequence-based ex-
periment and 4985 structures in the canonical secondary
structure-based experiment). Each predicted extended

Table 1 Quality of non-canonical base pair prediction for RNA STRAND-deposited structures (best values in bold)

Sequence length (nts)

1-50 51-100 101-200 201-500
Number of reference structures that include non-canonical base pairs 319 126 188 455
Total number of non-canonical base pairs observed in reference structures 641 300 607 2252
(a) Results for non-canonical base pairs predicted from sequence
Number (and percentage) of correctly predicted non-canonical base pairs  RNAwolf 171 (26.68) 38 (12.67) 44 (7.25) 149 (6.62)
present in the reference structures MC-Fold-DP 405 (63.18) 94 (3133) 157 (2586) 636 (2824)
MC-Fold 363 (56.63) 82 (27.33) 167 (27.51) n/a
RC/Rp-1 369 (57.57) 111 (37.00) 291 (47.94) 690 (30.64)
RC/Rp-2 311 (4852) 79 (26.33) 244 (40.20) 618 (27.44)
RC/Rp-3 312 (4867) 81 (27.00) 225 (37.07) 654 (29.04)
Total number of predicted non-canonical base pairs RNAwolf 893 501 1334 8616
MC-Fold-DP 1099 1040 2891 20123
MC-Fold 816 699 1825 n/a
RC/Rp-1 1493 1462 4453 26050
RC/Rp-2 1418 1235 4041 27282
RC/Rp-3 949 698 2968 14756
(b) Results for non-canonical base pairs predicted from canonical secondary
structure
Number (and percentage) of correctly predicted non-canonical base pairs  RNAwolf 214 (33.39) 67 (22.33) 268 (44.15) 772 (34.28)
present in the reference structures MC-Fold-DP  r/a n/a n/a /a
MC-Fold 334 (52.11) 136 (45.33) 279 (45.96) n/a
RC/Rp-1 452 (70.51) 173 (57.67) 337 (55.52) 1124 (49.91)
RC/Rp-2 398 (62.09) 131 (43.67) 290 (47.78) 974 (43.25)
RC/Rp-3 408 (63.65) 145 (4833) 261 (43.00) 1051 (46.67)
Total number of predicted non-canonical base pairs RNAwolf 352 154 461 2183
MC-Fold-DP  n/a n/a n/a n/a
MC-Fold 335 137 279 n/a
RC/Rp-1 1404 1470 4145 26479
RC/Rp-2 1273 1191 3978 26287
RC/Rp-3 969 672 2754 15011
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secondary structure was compared to the reference one,
retrieved from the RNA STRAND database. On this com-
parison, the number and percentage of predicted reference
non-canonical base pairs was computed (Table 1), taking
into account all base pairs that could be encoded in dot-
bracket notation.

Since some structures deposited in the RNA STRAND
database have been annotated making use of RNAView
(applied also in RC/Rp-1), we have run additional ex-
periment to check whether there is an effect in using the
same tool for reference and predicted structure. In this
experiment, we have selected a subset of all experimen-
tally determined structures deposited in RNA STRAND
and we have downloaded their atom coordinates from
Protein Data Bank. Every PDB file has been processed
separately by RNAView, MC-Annotate and 3DNA/
DSSR, which resulted in obtaining three versions of
every reference secondary structure. Next, we have run
RC/Rp-1, RC/Rp-2 and RC/Rp-3 for each sequence in
the subset to compare the resulting secondary model
with three versions of the corresponding reference struc-
ture (Additional file 1: Table S1). We have also com-
pared every version of the reference structure with
respective secondary models predicted from canonical
secondary structure (Additional file 1: Table S2). The re-
sults obtained for different versions of the pipeline differ
only by 0.01-0.04 which proves that the effect of using
the same tool is negligible.

Due to the fact that non-canonical base pairs are un-
derrepresented in RNA STRAND-deposited structures
(statistically, for each structure in this database, only 2—
3 % base pairs are non-canonical), we have computed
the total number of such interactions predicted for every
structure by the considered methods. In case of struc-
tures provided by the RC/Rp pipeline, most of predicted
non-canonical interactions can be treated as reliable,
since they are derived from atom coordinate data. Thus,
even if they are not present in the reference structure,
they can be regarded as true positives (Table 1). An
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additional experiment performed to potentially distin-
guish between true and false positives has been
performed on the benchmark set available from Com-
paRNA website [24]. We have compared predicted
models to reference structures, which were derived for
RNAs with experimentally determined atom coordinates
(Additional file 1: Table S3). By computing precision,
sensitivity and Matthews coefficient, we have evaluated
non-canonical base pair prediction from canonical sec-
ondary structure as well as canonical and non-canonical
base pair prediction from sequence. Due to canonical
base pair involvement, we have run the experiments also
for RNAfold [19] and CONTRAfold [20] - two methods
for canonical RNA secondary structure prediction that
are incorporated into the RNAComposer system. CON-
TRAfold performs very well in predicting canonical in-
teractions which can be observed based on TPR and
MCC values. Yet, RC/Rp-1 and RC/Rp-3 are not far be-
hind, moreover, they turn out to be the best if non-
canonical base pair prediction is concerned.

Based on the input data specificity, we have split ex-
perimental results summarized in Table 1 into two parts
(Fig. 2). In both the set of input sequences and the set of
input canonical secondary structures, we have distin-
guished data acquired on comparative sequence analysis
(668 structures with a global number of 2591 non-
canonical base pairs) and structures determined experi-
mentally (420 structures including 1209 non-canonical
base pairs in total).

The quality of models predicted from short sequences
can be considered reasonably good for all tested
methods, with best results achieved by RC/Rp-1 and
MC-Fold-DP. For longer sequences, the differences be-
tween the methods become more evident. In particular,
RC/Rp-1 outperforms the other tools and shows the big-
gest hit ratio for most subsets. The differences in struc-
tures predicted by three variants of RC/Rp result from
the varying performance of procedures that identify and
classify RNA base pairs. In general, these methods

-
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present a broad consensus as to the location of canonical
base pairs and stacking interactions, but they are not al-
ways consistent when it comes to non-canonical pairs
and other types of interactions. MC-Annotate is consid-
ered more strict than RNAView, while 3DNA/DSSR
takes into account non-canonical base pairs located in hel-
ical regions only [11]. MC-Fold-DP applies a knowledge-
based potential derived from analyzing the database of 3D
structures and performs better than MC-Fold and RNA-
wolf, but does not distinguish between canonical and non-
canonical interactions in the output. Thus, an identifica-
tion of various types of base pairs must be done by the
user in additional sequence-based analysis. We found that
in general, predictions for non-canonical base pairs are
better for reference structures that have their atom coord-
inate data determined in an experimental manner (Fig. 2).
Interestingly, this is true for all the methods, even those
that predict an extended secondary structure directly from
the sequence. However, finding the reason for such input
data influence on prediction accuracy requires more de-
tailed investigation, which cannot be done automatically
in a large-scale experiment.

Separately, computing times were collected for every
method (Table 2). Obviously, due to the difference be-
tween our approach and methods that directly predict
secondary structure of RNA, computing times of the
RC/Rp pipeline are longer than those of RNAwolf and
MC-Fold-DP. In the case of RC/Rp, most of the time is
occupied by the first step, in which the tertiary structure
is predicted. However, the RC/Rp pipeline is still faster
than MC-Fold, and obtaining high-quality results should
be well worth a longer wait.
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Application examples
Here we present how the RC/Rp pipeline (ie RC/Rp-1,
RC/Rp-2, RC/Rp-3), RNAwolf, MC-Fold and MC-Fold-
DP predicted the extended secondary structure of two
example molecules, archaeal tyrosyl-tRNA and K-turn—
GNRA construct. For both examples, the secondary
models were predicted from sequences and compared to
the reference structures. By this comparison, including
canonical and non-canonical interactions, the PPV, TPR
and MCC values were calculated (see Tables 3 and 4).
To illustrate the results (Figs. 3 and 4) the secondary
structure diagrams were prepared using VARNA [25],
embodied into RNApdbee webserver. Additionally, arc
diagrams were generated by R-CHIE software [26] from
dot-bracket structure representations. Each arc diagram
visualizes the result of comparing the predicted model
to the reference secondary structure. Upper arcs repre-
sent predicted (blue) and unpredicted (black) base pairs
that occur in the reference structure. Bottom arcs cor-
respond to predicted base pairs that are not found in the
reference structure. Thus, the blue upper arcs corres-
pond to true positives, black upper arcs false negatives,
and bottom arcs false positives. Dashed blue lines in
structure images represent RC/Rp-predicted interactions
mediated by one H-bond only. These interactions are
not encoded in dot-bracket notation.

A structure of K-turn-GNRA construct

The first example was constructed from a K-turn and
GNRA loop. Its prediction aimed to check the ability of
the RC/Rp pipeline and state-of-the-art methods to
recognize the secondary structures of RNA modules. The

Table 2 Average computing times (and standard deviation) for RNA STRAND-deposited structures (in seconds)

Method Sequence length (nts)

1-50 51-100 101-200 201-500
(a) Results for sequence-based prediction
RNAwolf 9.51 (0.25) 9.80 (0.26) 10.61 (0.61) 3744 (19.15)
MC-Fold-DP 1.62 (0.38) 1.67 (048) 1.87 (048) 6.63 (2.03)
MC-Fold 6.50 (5.82) 142.26 (124.27) 1376.01 (992.24) n/a
RC/Rp-1 12.15 (2.78) 20.94 (4.88) 3338 (4.74) 92.81 (23.39)
RC/Rp-2 1222 (2.82) 21.20 (4.89) 34.00 (4.81) 97.27 (2447)
RC/Rp-3 12.17 (2.81) 20.99 (4.90) 33.56 (4.73) 9340 (23.53)
(b) Results for sequence and canonical secondary structure-base prediction
RNAwolf 5.71 (4.05) 338 (3.93) 5.71 (4.05) 15.06 (58.73)
MC-Fold-DP n/a n/a n/a n/a
MC-Fold 1.87 (2.83) 35.72(71.92) 825.68 (1033.23) n/a
RC/Rp-1 10.64 (3.30) 1747 (4.19) 2944 (4.19) 83.97 (23.05)
RC/Rp-2 10.72 (3.35) 17.73 (4.23) 29.99 (4.21) 86.58 (24.03)
RC/Rp-3 10.67 (3.34) 17.53 (4.22) 29.62 (4.21) 84.44 (23.13)
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Table 3 The accuracy of secondary structure models predicted
from the sequence of K-turn—-GNRA construct (best values in
bold)

Method PPV TPR MCC
Variant I: Canonical and non-canonical base pairs

RNAwolf 0.67 044 0.54
MC-Fold-DP 0.85 0.61 0.72
MC-Fold 0.77 0.56 0.65
RC/Rp-1 1.00 0.67 0.82
RC/Rp-2 1.00 0.72 0.85
RC/Rp-3 1.00 067 0.82
Variant II: Canonical base pairs only

RNAwolf 0.70 0.78 0.74
MC-Fold-DP 0.69 1.00 0.83
MC-Fold 0.89 0.89 0.89
RC/Rp-1 1.00 1.00 1.00
RC/Rp-2 1.00 1.00 1.00
RC/Rp-3 1.00 0.89 0.94
Variant lll: Non-canonical base pairs only, regardless of classification
RNAwolf 0.50 0.11 0.24
MC-Fold-DP n/a 0 n/a
MC-Fold 1.00 0.11 033
RC/Rp-1 1.00 033 0.58
RC/Rp-2 1.00 0.44 0.67
RC/Rp-3 0.75 033 0.50
Variant IV: Non-canonical base pairs only, classification dependent
RNAwolf 1.00 0.11 0.33
MC-Fold-DP n/a n/a n/a
MC-Fold 1.00 0.11 033
RC/Rp-1 0.67 0.25 041
RC/Rp-2 0.75 0.38 0.53
RC/Rp-3 067 0.25 041

K-turn sequence, rf(CUUGGAUU).r(GUCAG) selected for
the purpose of this experiment, came from the RNA com-
ponent of the eukaryotic ribosome, deposited with
IL_3U5F_051 identifier in RNA 3D Motif Atlas [27]. The
corresponding crystallographic structure (PDB: 4 V88) fa-
cilitated a proper manual recognition of non-canonical in-
teractions in the K-turn motif when constructing the
reference model of the molecule. The GAGA loop was at-
tached as the second component of the construct. Both
components were connected by a sequence able to form a
double-strand made of four canonical G—C pairs. Three
additional three G—C base pairs were attached on the
other side of K-turn motif. Thus, we obtained a construct
with the following sequence: 5-CGCCUUGGAUUGCGC
GAGAGCGCGUCAGGCG-3" and the secondary struc-
ture as shown in Fig. 3a.
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Table 4 The accuracy of secondary structure models predicted
from tyrosyl-tRNA sequence (best values in bold)

Method PPV TPR MCC
Variant I: Canonical and non-canonical base pairs

RNAwolf 0.71 0.44 0.56
MC-Fold-DP 041 033 0.37
MC-Fold 057 044 050
RC/Rp-1 0.94 0.74 0.83
RC/Rp-2 0.97 0.77 0.86
RC/Rp-3 0.94 0.77 0.85
Variant II: Canonical base pairs only

RNAwolf 0.80 0.76 0.78
MC-Fold-DP 0.28 043 0.35
MC-Fold 0.56 0.71 0.63
RC/Rp-1 0.95 1.00 0.98
RC/Rp-2 1.00 1.00 1.00
RC/Rp-3 1.00 1.00 1.00
Variant Ill: Non-canonical base pairs only, regardless of classification
RNAwolf 025 0.06 0.12
MC-Fold-DP n/a 0 n/a
MC-Fold 067 0.11 027
RC/Rp-1 0.89 044 0.63
RC/Rp-2 0.90 0.50 0.67
RC/Rp-3 0.82 0.50 0.64
Variant IV: Non-canonical base pairs only, classification dependent
RNAwolf 0.25 0.06 0.12
MC-Fold-DP n/a 0 n/a
MC-Fold 033 0.06 0.14
RC/Rp-1 0.78 0.39 0.55
RC/Rp-2 0.80 0.44 0.60
RC/Rp-3 0.55 033 043

Table 3 presents the results of comparing the reference
structure to models predicted by all considered tools.
The output from RC/Rp-1, RC/Rp-2, RC/Rp-3 and
RNAwolf can be viewed in Fig. 3b-e. All tools were suc-
cessful in predicting canonical interactions, while recog-
nition of non-canonical ones revealed a visible difference
in their performance. Most tools encountered some
problems with the region containing the internal loop,
which resulted in a low accuracy of K-turn interactions.
MC-Fold and MC-Fold-DP did not recognize any non-
canonical base pairs within the K-turn motif, while
RNAwolf predicted one incorrect G—G pair there. The
GAGA loop was mostly well predicted, although its
non-canonical interaction (G16—A19) was not classified
in the case of MC-Fold-DP. The RC/Rp pipeline was
able to anticipate correctly most of the canonical base
pairs and many non-canonical ones, although a few
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Fig. 3 (a) The reference secondary structure of K-turn-GNRA construct with LW-annotated non-canonical base pairs, and its dot-bracket notation.
Base pairs close to particular LW interaction, but not meeting strict criteria for membership are connected by gray dashed lines. (b-e) Secondary
structures predicted by (b) RC/Rp-1, (c) RC/Rp-2, (d) RC/Rp-3, and (e) RNAwolf, and arc diagrams to display the results of comparing dot-bracket
representations of particular predicted models with the reference structure
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problems were encountered. RC/Rp-3 incorrectly recog-
nized wobble U11-G24 as a non-canonical pair, since
the 3DNA/DSSR procedure did not assign it to any Saen-
ger class. RC/Rp-2 generated the best model (Fig. 3c). It
found four non-canonical base pairs and correctly allo-
cated three of them to LW families. Four non-canonical
interactions were not found, three of them regarded as
close to particular LW classes, and one being a strong
non-canonical pair.

A structure of archaeal tyrosyl-tRNA

This example molecule is a component of an archaeal
tyrosyl-tRNA synthetase complexed with tRNA(Tyr) and
L-tyrosine [23] (PDB: 1J1U). A structure of this complex
was solved experimentally using X-ray crystallography
with a resolution of 1.95 A, and deposited in PDB [28].
Detailed structural information concerning just the RNA
component, including non-canonical base pairs with clas-
sification, is available from NDB [29] (NDB: PR0092),
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Fig. 4 (a) The reference secondary structure of archaeal tyrosyl-tRNA with LW-annotated non-canonical base pairs, and its dot-bracket notation.
Base pairs close to particular LW interaction, but not meeting strict criteria for membership are connected by gray dashed lines. (b-e) Secondary
structures predicted by (b) RC/Rp-1, (c) RC/Rp-2, (d) RC/Rp-3, and (e) RNAwolf, and arc diagrams to display the results of comparing dot-bracket
representations of particular predicted models with the reference structure. Orange arcs show pseudoknot interaction

while RNA STRAND [22] collects the basics of its second-
ary structure topology (RNA STRAND: PDB_00474). For
the purpose of our experiment, the secondary structure of
archaeal tyrosyl-tRNA taken from RNA STRAND was
coupled with NDB-archived information about non-
canonical interactions, thus constituting the reference
structure (Fig. 4a).

Experimental results (Table 4) reveal that secondary
models predicted by RNAwolf, MC-Fold-DP and MC-
Fold significantly differ from the reference structure, es-
pecially where non-canonical interactions are concerned.
MC-Fold-DP did not distinguish between canonical and
non-canonical base pairs, thus giving the output struc-
ture quite distant from the reference one. RNAwolf and
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MC-Fold correctly predicted and classified one out of 18
non-canonical base pairs.

The RC/Rp pipeline correctly anticipated most of the
canonical and non-canonical interactions (diagrams in
Fig. 4b-d), including close to non-canonical ones (cf
NDB [29]). As for canonical base pairs, only RC/Rp-1
gave a false positive (G25-U46). RC/Rp-3 provided zero
false negatives and the number of true positives equal to
the number of reference interactions. Additionally, all
RC/Rp versions found one pseudoknot base pair and
some distant interactions that, although not encoded in
dot-bracket, existed in the reference structure. Due to
the limitations of dot-bracket notation and incomplete
encoding of the reference model in the RNA STRAND
database, some correctly predicted interactions were
counted as false positives (eg U55-A59 and U34-G38
pairs), while others were incorrectly classified as false
negatives (eg G27—A45 and C33-A39 pairs from cis W-
C/W-C family).

Conclusions

We have demonstrated a novel approach for the auto-
mated assessment of extended RNA secondary structure
from sequence or secondary structure. It is founded on
the concept of annotating the extended RNA secondary
structure on the tertiary coordinates, predicted in the
preliminary step. We have shown its example implemen-
tation running RNAComposer and RNApdbee webser-
vers in a computational sequence named the RC/Rp
pipeline. The computational experiments performed on
the entire set of sequences available from the RNA
STRAND database, excluding those with modified resi-
dues, show the efficiency and superiority of our pipeline
over the existing tools for assessing the extended sec-
ondary structure of RNA. It is particularly true as far as
the accuracy of non-canonical base pair prediction is
concerned. A detailed insight into two example struc-
tures of archaeal tyrosyl-tRNA and K-turn—-GNRA con-
struct also reveal the advantages of our approach over
the other tools, especially in the case of non-canonical
interactions. Even when faced with the K-turn motif that
was difficult to identify [30], the RC/Rp pipeline was able
to recognize many non-canonical interactions present
there.

These promising results allow us to anticipate possible
applications of the RC/Rp pipeline in different biological
problems. The knowledge of extended secondary struc-
ture can accelerate an advancement of the 3D RNA
module concept [31], and improve module identification
and search within available structures [32]. We hope that
the RC/Rp pipeline will be helpful in supporting new so-
lutions to RNA motif discovery problems [33]. Indeed,
in its first application to our previously-published data
concerning the mechanism of spontaneous degradation
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of RNA molecules [34, 35], we found improved predic-
tion accuracy of stable RNA degradants (data not
shown).

Future plans include the development of a web server
that will integrate both tools of the RC/Rp pipeline.

Additional file

Additional file 1: Table S1. Accuracy of sequence-based prediction by
RC/Rp pipeline applied for experimentally determined structures, assessed
upon comparison of dot-bracket representations. Table S2. Accuracy of
canonical secondary structure-based prediction by RC/Rp pipeline applied
for experimentally determined structures, assessed upon comparison of
dot-bracket representations. Table S3. Prediction accuracy for the reference
set containing 1-200 nts long sequences and secondary structures from
CompaRNA PDB benchmark. (PDF 78 kb)
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