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Abstract

Background: Many functional RNA molecules fold into pseudoknot structures, which are often essential for the
formation of an RNA’s 3D structure. Currently the design of RNA molecules, which fold into a specific structure (known
as RNA inverse folding) within biotechnological applications, is lacking the feature of incorporating pseudoknot
structures into the design. Hairpin-(H)- and kissing hairpin-(K)-type pseudoknots cover a wide range of biologically
functional pseudoknots and can be represented on a secondary structure level.

Results: The RNA inverse folding program antaRNA, which takes secondary structure, target GC-content and
sequence constraints as input, is extended to provide solutions for such H- and K-type pseudoknotted secondary
structure constraint.
We demonstrate the easy and flexible interchangeability of modules within the antaRNA framework by incorporating
pKiss as structure prediction tool capable of predicting the mentioned pseudoknot types. The performance of the
approach is demonstrated on a subset of the Pseudobase++ dataset.

Conclusions: This new service is available via a standalone version and is also part of the Freiburg RNA Tools
webservice. Furthermore, antaRNA is available in Galaxy and is part of the RNA-workbench Docker image.
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Background
The recent years have seen an explosion in the discovery
of non-coding RNAs associated with many different and
surprising functions. Non-coding RNAs are involved in
most regulatory processes, e.g. via interactions with pro-
teins and other nucleotide sequences (DNA and RNA),
or act as protein assembly platforms for complex ribonu-
cleic particles. Due to this versatility, RNA molecules
are now an emerging focus in synthetic biology and
biotechnology. Aptamers against virtually any larger cel-
lular molecule or even complete cells can be identified by
SELEX RNA enrichment [1, 2]. This technique enables
new molecular-medical applications for diagnostics and
therapy [3–5] and the development of artificial biomate-
rials [6]. Another example is the procaryotic RNA-based
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CRISPR/Cas ‘immune system’ [7], which revolutionized
genome editing [8].
By combining different functional RNA molecules in

synthetic biology and biotechnological applications, syn-
thetic constructs can be designed with a completely new
functionality [9, 10]. However, the problem of compati-
bility occurs. In contrast to protein domains, functional
RNAs are not easily fusable in a single new molecule since
they mutually influence their structure. For that reason,
one needs computational design tools as an important
step in generating candidates for further testing. Since the
function of an RNA is related to both sequence and the
associated structure, we need to solve the problem of find-
ing a sequence (under certain constraints) that folds into a
functional structure. This is known as the inverse folding
problem.
Among published approaches, different strategies have

been pursued: Initial implementations realize simple sam-
pling and local optimization techniques. For example,
RNAinverse [11] samples sequences with subsequent local
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optimization, which was extended in INFORNA [12] with
an improved seeding of the sequences. Newer algorithms
mimic evolutionary processes (fRNAkenstein [13] and
ERD [14]), but also show sophisticated improved opti-
mization mechanics such as efficient ensemble defect
optimization (NUPACK [15]) or fragment-based bonifica-
tion methods (RNAfbinv [16]).
All above tools consider only nested secondary struc-

tures as design target. However, the functional structure
usually involves crossing base pairs, forming so-called
pseudoknots, that stabilize the tertiary three-dimensional
structure [17, 18]. In addition, pseudoknots have been
shown to be of high importance in specific functionality of
respective RNA families, e.g. shown in human telomerase
[19]. For example, the RFAM database (v12.0 07/2014)
[20] lists 2,450 different RNA families with a wide variety
of biological functions, of which 170 families are tagged
with the annotation ‘pseudoknot’.
To our knowledge, so far the tools Inv [21] and

MODENA [22] are the only approaches that allow for
the design of sequences that fold into a given structure
with pseudoknot features. Inv performs local optimization
based on the loop decomposition of the target structure.
MODENA uses a genetic heuristic to produce solution
sequences, which are evaluated by applying either IPknot
[23] and hotknots [24] as structure prediction programs.
However, both tools lack the possibility to specify a tar-
geted GC-content, which is an important requirement
in practical design applications. The reason is simply
that the GC-content of an RNA molecule can influ-
ence the efficiency of inherent functionality dramatically
[25–27].
In [28], we have presented antaRNA, a sequence design

tool that heeds the objectives formulated above. Within
this paper, we present the extension of antaRNA for tar-
geting pseudoknot structures. The tool provides the user
with sequences that form the targeted (pseudoknot) struc-
ture as their minimum free energy (mfe) structure with
a specified GC-content. For mfe-optimization, pKiss [29]
is incorporated. Extending the already available constraint
palette of antaRNA, soft sequence and soft fuzzy struc-
ture constraints are introduced.We present the parameter
optimization for pKiss usage and compare antaRNA’s per-
formance with MODENA. Furthermore, we emphasize
antaRNA’s availability within the Freiburg RNA Tools
webservice [30] for ad hoc usage using forna [31] for
structure visualizations. In addition, antaRNA is embed-
ded into a Galaxy-RNA-workbench Docker Image [32] for
local large scale experiments.

Implementation of antaRNA
In the following, we give a brief overview of antaRNA’s
optimization approach. A detailed description includ-
ing all formalisms is provided in [28]. Subsequently, we

introduce the recent extension of antaRNA to the design
of sequences for crossing pseudoknot structures.

Overview
Given an RNA secondary structure constraint in extended
dot-bracket notation C

str, a targeted GC-content value
C
gc and supplemental sequence constraint C

seq using
IUPAC nucleotide definitions, antaRNA [28] solves the
RNA inverse fold problem.
To this end, the Ant Colony Optimization technique

[33, 34], an automatically adapting local search scheme,
is applied. It mimics the ants’ adaptive search for food
within a given terrain (see Fig. 1 and Algorithm 1).
Here, the terrain is a graph encoding of the inverse
folding problem with weighted edges representing the
ants’ pheromone that guides their search. During an
ant’s walk, the current pheromonic state of the ter-
rain guides an ant to make its decisions in selecting
certain edges, which lead to nucleotide-emitting ver-
tices. Within one walk, an ant assembles a solution
sequence. Dependent on the quality of the sequence with
respect to its structure, sequence and GC-distances to the
respective constraints, the pheromonic state of the ter-
rain graph is updated according to a solution’s quality
score.
Therefore, after a certain number of consecutive

sequence assemblies and terrain adaptations, the features
of the assembled sequences converge towards the antici-
pated constraints of the input [28].

Pseudoknot structures
A main focus of inverse folding is the probability that the
designed sequences fold into a given target structure. To
this end, for each assembled sequence the minimum free
energy (mfe) structure is predicted. antaRNA’s structural
distance measure, dstr, evaluates the compliance of an mfe
structure with the structural target. This distance guides
the pheromone update of the terrain.
For nested target structures, mfe prediciton was done

using RNAfold from the ViennaRNA-package [11, 35].
In this work, structure constraints have been extended
to support crossing, i.e. pseudoknot, structures. To this
end, the structure predictor employed in antaRNA was
substituted with the program pKiss [29]. pKiss is capa-
ble of predicting two specific subclasses of pseudoknots:
hairpin (H-type) and kissing hairpin (K-type) structures.
Both types are biologically important, even thoughH-type
pseudoknots have been reported more often in the litera-
ture and in data bases. Both play crucial roles in various
key functional domains of RNAs [36].
Since mfe structure prediction is done for each assem-

bled sequence, its time complexity is of importance.
RNAfold finds nested structures with a time complexity of
O(n3) for sequences of length n [37]. pKiss predicts mfe
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Fig. 1 Schematic Terrain Graph Starting from a vertice v• , n subsequent vertices within the graph are visited by a single ant during its walk through
the terrain in order to assemble an RNA sequence. For each visited vertex, a corresponding nucleotide information is incorporated to the
corresponding position within the sequence. The specific vertex of position j is chosen probabilistic according to the set of edges leading away of
the current vertex i. Hereby specific pheromone and terrain contributions of the edges influence the probabilities per position. The interplay of an
increasing sequence constraint specificity and the applied inductive structure constraint determine the number of vertices for some sequence
positions. For example, even though positionm is labeled with an ‘N’ as sequence constraint, the position only has three vertices due to the
sequence constraint of position 2 and its request to form a base pair with the nucleotide at positionm. This leads to the removal of the ‘A’
nucleotide vertex inm, since this cannot base pair with neither ‘C’ nor ‘G’ at position 2

structures with pseudoknots inO(n4) when heuristics are
applied. For exact mfe calculations, pKiss requires O(n6)
time [29]. antaRNA provides the possibility to choose the
prediction method applied by pKiss.
antaRNA was extended such that the structure parsing

and management now respects the increased complexity
of pseudoknotted structures. The allowed set of brackets
within the dot-bracket structure constraint notation was
extended to “()[]{}<>” as it is used by pKiss. Further-
more, a pKiss-optimized set of parameters for antaRNA
has been identified, when using pKiss for structure predic-
tion. This is discussed in the following sections.

Algorithm 1: Ant Colony Optimization Principle
employed in antaRNA
Data: Cstr, Cseq, Cgc

Result: Ssol satisfying Cstr, Cseq, Cgc

T ← intitializeTerrain(Cstr, Cseq, Cgc); Ssol ← ε

while termination criterion not met do
S ← produceSolution(T)
Q ← evaluateSolution(S)
T ← evaporatePheromone(T , ρ)
T ← updateTerrain(T ,S ,Q)
if S superior Ssol then

Ssol ← S
end

end
return Ssol

New features
In addition to pseudoknot structure support, antaRNA
now provides soft sequence and improved hard fuzzy
structure constraint definitions. Both increase the level of
detail, at which the target constraints can be defined.
The soft sequence constraint now allows to specify (in

lower case letters) the preference for a nucleotide at a
certain position. The nucleotide is then not enforced but
penalized in the sequence quality assessment if a differ-
ent nucleotide was set. This enables more flexibility to the
antaRNA-based sequence design.
The fuzzy structure constraint, based on the already

existent implicit block constraint framework of antaRNA
[28], allows to define regions of structural interaction
(using lower case letters), in which no explicit struc-
ture is predefined. For instance, the structural constraint
C
str =‘(aaaaaa)’ is neither violated if a base pair is

present in the a-block, e.g. ‘((....))’ or ‘(.(...))’,
nor if no base pair is designed, i.e. ‘(......)’. So far, if
no base pair was formed within such a block no penalty
(structural distance) was applied. By introducing the new
hard fuzzy structure constraint framework (encoded by
upper case letters), now the ‘no base pair’ case is penal-
ized, if found within a solution. The structural distance is
increased by the equivalence of one missing explicit base
pair for each upper case block that shows no base pair.
Therefore, at least one base pair has to be designed within
a defined hard fuzzy structure constraint block. The latter
adds a more imperative form of fuzziness to the structure
constraint definition within antaRNA.
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Parameter optimization and benchmarking
antaRNA was extended such that the usage of pKiss as a
structure prediction program is possible. pKiss optionally
replaces RNAfold as the mfe prediction tool. This made
it necessary to identify a new set of pKiss-specific param-
eters for the antaRNA pipeline. In the following, we
provide details about the data used for parameter opti-
mization and the benchmarking of different design tools.

Data
The parameter optimization and benchmarking of
antaRNA was performed on partitions of the pseudo-
knot specific PseudoBase++ database [38] (download
of 2014/12). PseudoBase++ contains 304 entries. 37
entries, which did not show canonical base-pairings
(AU,GC,GU), were excluded from the dataset. Pseudo-
knot structures can be grouped into types according to
their composition. Figure 2 depicts regular simple hairpin
pseudoknot (H), bulge hairpin pseudoknot (B), complex
hairpin pseudoknot (cH), and kissing hairpin pseudo-
knot (K). pKiss supports H- and K-type pseudoknots,
where B- and cH-type pseudoknots are subvariants of the
H-type. We excluded further 2 entries from the derived
PseudoBase++ dataset, that did not fall into these classes.
From this pool of 265 structural constraints, the train-

ing set was derived. We selected at random 16 entries of
increasing lengths, while each entry has a minimal length
difference of 5 to the next shorter or longer structure. The
final training set consists of 7 H-type and 3 B-type as well
as 6 cH-type structures of higher complexity e.g. due to
additional multiloops.
The remaining 249 instances were pooled into the test

set. It contains 209 H-type, 29 B-type, 8 cH-type and 3
K-type structures. The datasets are available on the tool’s
web page.

Parameter optimization
The parameter optimization used a grid search for
the best set of pKiss-specific parameters. For each
tested parameter combination, designs for the structures
from the training set and target GC values C

gc ∈

{0.25, 0.5, 0.75} were evaluated. Per produced sequence
design, a time limitation of 600 seconds was applied.
The parameter set showing the highest average design

quality was selected as default parameter set and is used
in the following. For a detailed listing of the optimized
parameters please refer to the tool’s web site. Design qual-
ity covers the achieved GC deviation, the reached struc-
tural deviations and the consumed runtime. For details
concerning design quality evaluation see [28].

Benchmark
The performance of antaRNA for the design of sequences
folding into pseudoknot structures was benchmarked on
the test data. For each structure constraint Cstr in the test
set, ten sequence designs were done for three different
target Cgc values (0.25,0.5,0.75), resulting in 7,470 design
experiments. Per experiment the runtime was restricted
to 1,200 seconds.
The benchmarking of MODENA was performed on

the same test data and has been kindly provided by
the authors of MODENA. It was benchmarked for both
structure prediction methods supported, namely IPknot
and hotknots. Since it does not support GC-content con-
straints, no target GC-value was set.
The benchmark was evaluated based on the structural

distances of a sequence’s mfe structure to the respective
structure constraint and the deviation of the GC-content
from the target value. ForMODENA, no special GC target
constraint was specified and thus the achieved GC-value
was assessed. A comparison towards the performance of
the described program Inv was not possible due to its
unavailability.

Results
Figure 3 provides an overview of the results. For antaRNA,
results are grouped by the targeted GC-content val-
ues C

gc. To identify potential influences on the qual-
ity of the design, the data set is grouped according to
the declared pseudoknot categories. The performance
was compared to the tool MODENA. Since MODENA
supports two different pseudoknot folding prediction

a b c d

Fig. 2 Pseudoknot Types a regular simple hairpin pseudoknot (H), b bulge hairpin pseudoknot (B), c complex hairpin pseudoknot (cH), d kissing
hairpin pseudoknot (K). The complexity order is H< B < cH <K. Technically B-type and cH-type are more complex forms of H-type pseudoknots
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a

c

b

Fig. 3 Constraint Compliance for Pseudoknot Categories. a GC-deviation of antaRNA for different Cgc, b Intrinsic GC values ofMODENA using
hotknots (orange) and IPknot (yellow), c Structural Distances of antaRNA (blue scaled for different Cgc) andMODENA (yellow scaled) using hotknots
and IPknot. For each tool, the targeted pseudoknot categories hairpin (H), bulge (B), complex hairpin (cH) and kissing hairpin (K) are illustrated

tools, namely IPknot and hotknots, both results are pre-
sented.

GC deviation dgc The targeted GC-content is precisely
produced by antaRNA: the GC distance dgc is 0 for all
GC constraints, as shown in Fig. 3a. MODENA does not
provide GC-content driven optimization but shows to
have an intrinsic tool dependent GC bias: the GC content
of MODENA sequences is on average about 55 − 60 %
(Fig. 3b). Noticeable is the fact, that the variance of GC
values is wider in low complexity pseudoknot categories
(H). The median is slightly lower, when hotknots is used.

Structural Distance dstr Compared to the approach of
MODENA, antaRNA (blue in Fig. 3c) usually predicts
the structure with high accuracy, exhibiting only a small
variation among the structure distances within the dif-
ferent pseudoknot categories. The structural distances of

antaRNA display the growing complexities of the respec-
tive pseudoknot categories. While for H- and B-type
structures the dstr median of antaRNA is about 0, the
medians of cH- and K-type structures do not exceed dstr
of 2.5 %. Nevertheless, with increasing structure complex-
ity (H- to K-type), the upper quartiles of the distributions
escalate to a dstr value of 1.5 % for B-type, 3 % for cH-type
and about 7 % in the case of K-type structures.
In contrast,MODENA (yellow in Fig. 3c) shows for both

predictors (hotknots and IPknot) dstr-medians between
5 % and 12 %. Hereby, hotknots performs better than
IPknot, especially in the case of H- and K-type struc-
tures. In B-type, the IPknot distribution’s lower quartile
does not reach 0 but is about 4 %. The upper quartiles
range from 10 % (B-type, IPknot) up to 25 % (cH- and
K-type, hotknots). No correlation of structure’s pseudo-
knot complexity and the resulting structural distance is
visible.
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Discussion
Performance
As shown in [28] for nested structures, antaRNA’s key
feature is its reliable design of sequences that show the
targeted GC-content. Within this study, we illustrated
that this still holds when designing sequences for pseu-
doknot structure constraints. It was shown that antaRNA
performs very well in this respect in combination with
structure constraints from different pseudoknot struc-
ture complexity classes for various targeted GC-content
values.
Although the structural distances produced by

antaRNA grow with increasing pseudoknot complexity
(H- via B- and cH- to K-type), antaRNA outperforms the
current ‘state-of-the-art’ tool MODENA. The obtained
structural distances for antaRNA are about 5 − 10 %
lower compared to MODENA and additionally show a
maximal median structure deviation of 2.5 %, depending
on the pseudoknot category.

Optimization strategy
The ant colony optimization strategy applied in antaRNA
outperforms the strategy applied inMODENA. Both tools
are heuristics that use external folding prediction pro-
grams to evaluate designed sequences. MODENA uses a
stability and a similarity score to evaluate current solution
sequences in order to select parents for offspring genera-
tions within its genetic algorithm. antaRNA directly uses
the specified objectives and shares the information of the
currently best solutions in the terrain graph. In this way
subsequent ants (i.e. sequence designs) are biased towards
the direction of the targeted sequences.
Within the genetic operators of MODENA, random

crossover and point mutations are introduced into
parental sequences. Those mutations are inherited to a
child generation. Compared on the structural level, the
mutational approach seems less focused in the sense, that
good and correct (partial) solutions are only highlighted
by being not mutated. In contrast, in antaRNA the adap-
tive local search is capable of promoting good partial
solutions in successive runs. This behavior, in combina-
tion with a good transmission of current solution qualities
into the decision making process of making new solu-
tions, might be the basic reason for antaRNA’s advantage
in optimizing the problem at hand.

Conclusion and outlook
Within this study it was shown that antaRNA, by incor-
porating pKiss is capable of solving the inverse folding
problem for pseudoknot structure constraints under addi-
tional side constraints like a targeted GC-content. Cur-
rently, the common pseudoknot classes H, B, cH and K
are supported. This restriction is inherited from the used
pKiss mfe-structure predictor. Still, the flexibility of the

antaRNA framework allows for the integration of even
more general pseudoknot structure prediction tools. Due
to the immense increase in prediction runtime and only
limited increase in applicability, more complex predictors
are not wrapped by antaRNA.
For known pseudoknot structures, the sequences pro-

duced by antaRNA show only minor structural deviation
of their mfe-structure from the respective targets. While
not explicitly shown in the paper, antaRNA features a flex-
ible framework to further restrict the sequences produced
via the definition of hard and soft sequence constraints.
In addition, antaRNA introduces precise GC content con-
trol to the RNA inverse folding problem of pseudoknot
structures, which was not existent before.
In general, besides its good compliance with multi-

objective constraints, it was demonstrated that antaRNA
provides a highly flexible platform to solve the RNA
inverse folding problems for pseudoknot structures. It
is build in a way that the underlaying routines can
be easily adapted and extended to even more complex
problems.

Availability
antaRNA is written in Python and available at http://www.
bioinf.uni-freiburg.de/Software. Based on the choice if
targeting nested or pseudoknot structures, it depends on
RNAfold or pKiss, respectively. Further specifications are
listed on the tool’s homepage. antaRNA can be addi-
tionally found on the Freiburg RNA Tools webserver at
http://rna.informatik.uni-freiburg.de including explana-
tions and examples. Links to the Galaxy-RNA-workbench
Docker Image and the whole Galaxy Docker Image can
also be found on the homepage of antaRNA.
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