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Abstract

Background: The recent outbreak of Ebola has been cited as the largest in history. Despite this global health crisis,
few drugs are available to efficiently treat Ebola infections. Drug repurposing provides a potentially efficient solution
to accelerating the development of therapeutic approaches in response to Ebola outbreak. To identify such
candidates, we use an integrated structural systems pharmacology pipeline which combines proteome-scale ligand
binding site comparison, protein-ligand docking, and Molecular Dynamics (MD) simulation.

Results: One thousand seven hundred and sixty-six FDA-approved drugs and 259 experimental drugs were
screened to identify those with the potential to inhibit the replication and virulence of Ebola, and to determine the
binding modes with their respective targets. Initial screening has identified a number of promising hits. Notably,
Indinavir; an HIV protease inhibitor, may be effective in reducing the virulence of Ebola. Additionally, an antifungal
(Sinefungin) and several anti-viral drugs (e.g. Maraviroc, Abacavir, Telbivudine, and Cidofovir) may inhibit Ebola
RNA-directed RNA polymerase through targeting the MTase domain.

Conclusions: Identification of safe drug candidates is a crucial first step toward the determination of timely and
effective therapeutic approaches to address and mitigate the impact of the Ebola global crisis and future outbreaks
of pathogenic diseases. Further in vitro and in vivo testing to evaluate the anti-Ebola activity of these drugs is
warranted.

Keywords: Drug repositioning, Infectious disease, Indinavir, Sinefungin, Binding site similarity, RNA-directed RNA
polymerase, VP24

Background
The recent Ebola outbreak poses a serious threat to hu-
man health around the world and has been cited as the
largest Ebola outbreak in history [1]. Efficient therapeu-
tics with the ability to cure Ebola infections are yet to be
available. Despite recent technological advances, the
conventional drug discovery and development process
often takes more than 10 years, and costs more than 2
billion dollars to bring a new drug to market [2]. New
approaches are urgently needed to deliver medicines to
treat Ebola in a timely fashion.

Repurposing safe drugs to be anti-infectious agents
has emerged as a novel concept to combat pathogens,
and to accelerate drug development [3–7], especially
given that the ADME and toxicology properties of ap-
proved drugs are already known. Moreover, computa-
tional approaches provide an attractive solution in
determining potential drug repurposing opportunities,
especially where in vitro and/or in vivo screening is
difficult or even impossible [8]. It should be noted,
however, that several unique challenges are encoun-
tered during in silico anti-infective drug repurposing.
For example, the successful phenotype-based method
[9] which compares molecular or organismal pheno-
types of drug response with those of diseases, has
limitations when applied to anti-infective drug devel-
opment. Notably, it is not trivial to compare drug
response and disease phenotype across human and
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pathogens. Additionally, ligand- and target-based drug
repurposing are limited by their under-representative
coverage of drug targets in the pathogen genomes
[10]. Finally, few virulence-related proteins have char-
acterized ligands, even though their structures are
readily available [7].
Previously, we developed a structural systems pharma-

cology approach, to identify drug-target interactions on
a proteome scale by integrating proteome-wide ligand
binding site comparison [11, 12], protein-ligand docking
[13], and Molecular Dynamics (MD) simulation with
systems biology modeling [7, 11, 14–21]. Here, we apply
this proven successful strategy to reveal FDA-approved
and experimental drugs with the potential to inhibit the
replication and virulence of Ebola. Here we focused on
two main Ebola targets: RNA-directed RNA polymerase
(L) and VP24 [22, 23]. RNA polymerase plays a key role
in RNA transcription and replication [22]. Thus, the in-
hibition of RNA polymerase in Ebola may inhibit its rep-
lication. Ebola VP24 interacts with human Karyopherin
alpha to disarm the human immune system [24, 25].
Thus, the inhibition of VP24 may disrupt the VP24-
Karyopherin alpha interaction and reduce the virulence
of Ebola. The 3D structure of RNA polymerase was
obtained by homology modeling while the druggable
binding site of VP24 was explored using MD simula-
tions. The MD simulation has made significant con-
tributions in structure-based drug design in recent
years [18, 26–34]. The MD simulation allows us not
only to investigate conformational flexibility which
plays an important role in molecular recognition, [30]
but also to reveal the potential druggable binding site
on the receptor that is not evident from static X-ray
structures [18, 26–29, 31, 32]. One thousand seven
hundred sixty-six FDA-approved drugs and 259 nu-
cleotide/nucleoside experimental drugs in DrugBank
[35] have been computationally screened against these
two targets. As there is not a single docking program
performed well for all targets [36], we used multiple
docking software packages to obtain the consensus
results to avoid the bias of some docking tools. Our
initial screening has identified several promising hits.
Specifically, Indinavir, an HIV protease inhibitor, may
also reduce the virulence of Ebola based on it high
binding affinity to VP24. Additionally, the antifungal
drug Sinfungin may inhibit Ebola RNA-directed RNA
polymerase through targeting its MTase domain. The
detailed binding modes of these promising hits with
their respective targets have been determined. The
results presented here can be used as a stepping stone
to validate the anti-Ebola activity of these drugs
through both in vivo and in vitro experimentation, and
hence may offer new opportunities to design efficient
anti-Ebola therapeutics.

Methods
Structural systems pharmacology pipeline
The structural systems pharmacology approach has
been successfully applied to the prediction of side effect
[15, 37], drug repurposing [10, 14, 38], polypharma-
cology drug design [16-18, 39], and other applications
[12, 20, 40, 41]. Here we used the strategy to determine
effective drugs which target Ebola virus. A summary of
the protocol is shown in Fig. 1. Compounds from our
drug library were screened based on two targets VP24
and MTase. The binding pocket of VP24 was obtained
based on the trajectory from VP24 molecule dynamics
simulation. The structure of MTase was built by hom-
ology model, and verified by the model evaluation soft-
ware, Verify3D [42, 43] and PROCHECK [44]. Binding
site similarity between the targets and the structural
proteome was determined by SMAP [11, 12, 40]. Fi-
nally, candidate inhibitors were selected based on the
consensus docking scores from multi-docking packages
and dock pose analysis.

Ligand binding site comparison on a structural proteome
scale
Forty thousand four hundred and ninety-one biological
units of solved complex structures that are co-crystallized
with small molecules with at least five carbon atoms are
compared with the predicted binding site of VP24, and
SAM co-factor and substrate binding sites in MTase of
RdRp using the ligand binding site comparison software
SMAP [11, 12, 40]. Top ranked binding sites with their co-
crystallized ligands with a p-value < 0.05 are subject to fur-
ther analysis.

Fig. 1 The pipeline of structural systems pharmacology approach
in this study
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Homology modeling
A homology model of O’-2-MTase was constructed
iteratively to optimize its binding site conformation.
First, human CAP-specific mRNA 2′-O-MTase (PDB id:
4N49) was used as a template to build a homology
model whose secondary structure fragments surround-
ing the SAM binding site are optimized, i.e., no atomic
crashes with the putative SAM conformation derived
from SMAP. Modeller v9.14 [45] was used in this step.
Second, I-TASSER that can build a model from multiple
targets was used to add and optimize other fragments:
ARG1-ALA26 and SER59-GLU87 to the model. Finally,
loops were further optimized using Modeller v9.14. The
final model was verified by Verify3D, which determines
the compatibility of an atomic model (3D) with its own
amino acid sequence (1D) [42, 43], and PROCHECK,
which is a program to check the stereochemical quality
of protein structures [44].

Protein-ligand docking
The 3D coordinates of 1766 FDA-approved, DrugBank
[35] annotated, non-redundant drugs were downloaded
from ZINC database. Additionally, given that a number
of nucleotide/nucleoside drugs demonstrated anti-viral
properties, 259 nucleotide/nucleoside experimental
drugs in DrugBank (updated 2014.03.19) were included
in our drug candidates. These drugs were docked to
VP24 and RNA-directed RNA polymerase using four
docking packages Audodock4 [46], Autodock Vina [47],
PLANTS [48], and Surflex [49]. Virtual screening ana-
lysis via the AutoDockTools 4 used the following set-
tings in addition to the default docking parameters:
ga_num_evals = 1750000, ga_pop_size = 150, ga_run =
20, and rmstol = 2.0. The top confirmation and score for
interesting results were output. In Autodock Vina, the
research space was redefined by the center coordinate
and the size of every dimension of the grid box. The top
1 conformation and score were output. In Surflex, the
proto was first obtained by predicting the binding site
and protomol. The default parameters are set. The top 1
conformation and score were output. In PLANTS, to
dock the drug lib, the screen mode is chosen, the bind-
ing site center is redefined as is done for Autodock Vina
and the binding site radius is set as 12.5 Å. The top 1
conformation and score were output.

Consensus scoring of protein-ligand docking
For all drug molecules, the corresponding docking
scores from each docking tool were ranked. The score
correlation was analyzed between two different docking
tools by a linear fit. The correlation coefficient is 0.20,
0.43, and 0.61 between the Autodock Vina and Surflex
scores, between the Autodock Vina and the PLANTS
scores, and between the Surflex and the PLANTS scores,

respectively, as shown in Additional file 1: Figure S1. As
the correlation is higher between the Surflex and
PLANTS scores, the top scored compounds from Sur-
flex and PLANTS were further prioritized. If a drug was
ranked within the top 100 by both Surflex and PLANTS,
it was selected for further analysis.

MD simulation
We performed a MD simulation to investigate the con-
formation change of VP24 protein in water. The simula-
tion system was set up using Xleap based on the PDB id:
4M0Q. The TIP3P water box was added with a minimal
wall distance of 12.0 Å from the VP24 and 11,237 water
molecules were included. The simulation was performed
using ACEMD. VP24 was described using the AMBER99SB
force field on an NVIDIA GPU machine [50, 51]. The
other parameters for the MD simulation were set at 300 K
and 1.0 bar and with a 12.0 Å cutoff for the non-bonded
interactions. The time step was 4 fs with the SHAKE algo-
rithm [52]. A 200 ns equilibration protocol had been
employed, and the trajectory was analyzed using the ptraj
plugin. The system reached an equilibration state after
10 ns and the RMSD of the trajectory was shown in
Additional file 1: Figure S2. From the equilibrated tra-
jectory, the conformations were clustered based on
RMSD. The binding pocket was predicted by Surflex
[49] for the representative conformation of every clus-
ter. The volumes of the binding pocket were determined
by CASTp [53]. Finally, the conformation with the lar-
gest pocket was chosen.

Results and discussion
Drugs that may disrupt Ebola-human interaction
The VP24 protein which is responsible for the Ebola-
Human interaction has a solved PDB structure (PDB id:
4M0Q). While there is no known pocket that can ac-
commodate a small molecule in its protein-protein
interaction (PPI) interface with human Karyopherin
alpha, a small molecule binding site in the PPI interface
can be formed through conformation selection [54]. We
applied MD simulations to obtain a sample of the con-
formation of VP24. A 200 ns MD was carried out using
ACEMD on the GPU machine [51]. The largest pocket
was formed after a 12 ns simulation and was located in
the VP24-Karyopherin alpha binding interface (Fig. 2,
amino acids on the interface are depicted in sticks while
the binding site is in transparent yellow). As a compari-
son, the initial structure from PDB is showed in gray.
Adjacent to the binding site, the loop (red color, amino
acids 181–186) has a prominent conformational change
during MD simulation, but remains at the interface of
the PPI. Small molecule binding may interfere with the
PPI at this VP24-Karyopherin alpha interface, thus lead-
ing to the interruption of the host-virus interaction, and
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inhibition of the virus [55]. The conformation of VP24
after the 12 ns simulation was subsequently used to
screen potential inhibitors of VP24.
To identify existing drugs which may inhibit VP24, a

search for proteins with binding sites similar to that of
the VP24 PPI interface was conducted. Here, proteome-
wide ligand binding site comparison was carried out
using SMAP [11, 12, 50]. The rationale is that similar
binding sites may bind to similar molecules. The binding
site of HIV protease was identified to be the most simi-
lar to that of VP24 (SMAP p-value < 0.05). Furthermore,
1766 FDA-approved drugs were docked to the VP24
binding pocket using multiple protein-ligand docking
tools. Potential binders were ranked by their consensus
(see method section for details). Consistent with the re-
sult from the ligand binding site similarity search, Indin-
avir: a HIV protease inhibitor, was ranked second in the
protein-ligand docking study (Table 1). Its binding mode
illustrated by Pymol [56] and Ligplot + [57] is shown in
the Additional file 1: Figures S1b and S4b. Additional file
1: Figure S4b shows that the binding pocket of VP24
readily accommodates Indinavir depicting three hydro-
gen bonds between Indinavir and VP24. Notably, 11
amino acids form hydrophobic interactions with Indinavir,
as showed in Additional file 1: Figure S3b. As illustrated
in Fig. 3a, three hydrogen-bonding interactions exist be-
tween Indinavir and VP24: i) the O2 atom of Indinavir and
the nitrogen atom from the sidechain of residue Gln94 in
VP24, ii) the atom N4 of Indinavir and the oxygen atom in
the sidechain of VP24’s Gln94, and iii) the O4 atom of
Indinavir and the oxygen atom from the main chain of
Gln94 of VP24. Figure 3b which illustrates Indinavir
bound to its primary target. Moreover, we also compared

the binding modes of Indinavir in its primary target, HIV
protease, to its predicted Ebola target VP24, Fig. 3. Here,
the Indinavir-HIV complex was downloaded from Protein
Data Bank (PDB id 2AVO) [58]. Interestingly, HIV pro-
tease, reveals that the same atoms (O2, N4 and O4) of
Indinavir form the hydrogen bonds with residues;
Ala28, Asp29, Asp25 in Chain A and Asp25 in Chain B
of HIV protease. Consequently, the predicted similar
binding pattern of VP24 and HIV protease to Indinavir
suggest that this HIV protease inhibitor may be repur-
posed to target Ebola VP24.
In addition to HIV protease inhibitors, the top 20

ranked drugs; Table 1, (binding modes illustrated in
Additional file 1: Figures S3 and S4), are enriched by
GPCR-targeted drugs, especially for adrenergic receptors
and prostaglandin receptors (p-value = 1.4e-4). Most of
these drugs are administered for ocular hypertension or
hypertension. Notably, they may serve as additional lead
compounds towards the design of selective inhibitors of
VP24. Interestingly, like the binding mode of Indinavir
in VP24, the binding modes of the other 19 inhibitors,
show conserved electrostatic interactions between the
respective drug and VP24’s Gln94; shown in Additional
file 1: Figure S3a, c, f, i, j, k, n, o, t. It should be noted,
in some of the presented drug-target interactions, there
are electrostatic interactions from other VP24 amino acids
such as: Asp95 for drug hSaleterol Xinafoate (Additional
file 1: Figure S3d), Asp115 for drug Tafluprost (Additional
file 1: Figure S3k), and Asp99 for drug Benzylpenicilloyl
Polylysine (Additional file 1: Figure S3o). Another major
residue Gly173 also provide the main hydrogen-bonding
interactions for the corresponding drugs as showed in
Additional file 1: Figure S3d, e, g, j, m, p–t. Here again, we

Fig. 2 The binding interface of VP24 of Ebola with Karyopherin alpha. Interface residues are shown as stick models. An open pocket is shown as
transparent yellow spheres. Initial conformation from PDB and conformation generated from MD simulation is shown in grey and blue, respectively.
The loop (amino acids 181–186) that has a prominent conformational change after MD simulation is shown in red
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Table 1 Putative inhibitors of VP24, along with their structures, docking scores from four docking software packages, and primary
targets

Drug name Structure Docking score Primary target

Surflex Plants Vina Auto
dock

Montelukast 8.6 −102.97 −6.6 −5.11 Human leukotriene receptor

Indinavir 8.2 −98.66 −6.5 −6.98 HIV protease

Iloprost 7.5 −97.91 −6.1 −7.24 Human Prostacyclin receptor

hSalmeterol Xinafoate 7.0 −95.99 −5.3 −4.59 Human beta-2 adrenergic receptor

Travoprost 7.2 −95.92 −6.5 −5.21 Human prosaglandin F2-alpha receptor

Latanoprost 7.8 −95.68 −6.1 −5.61 Human prosaglandin F2-alpha receptor

Remikiren 7.3 −95.29 −6.7 −4.59 Human renin

Vitamin K1 7.2 −92.93 −6.1 −6.34 Human Vitamin K-dependent carboxylase
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Table 1 Putative inhibitors of VP24, along with their structures, docking scores from four docking software packages, and primary
targets (Continued)

Mitoxantrone 9.9 −92.07 −6.0 −7.42 Human DNA topoisomerase 2α

Labetalol hydrochloride 7.7 −90.8 −6.0 −6.36 Human 1,1,2 adrenergic receptor

Tafluprost 8.1 −90.7 −5.9 −5.36 Human prosaglandin F2-alpha receptor

Misoprostol 7.1 −89.75 −5.4 −4.09 Human prostaglandin E2 receptor

Carboprost 7.3 −89.6 −5.5 −5.18 Human prostaglandin E2 receptor

Fosinopril 6.9 −88.92 −6.8 −6.85 Human angiotension-converting enzyme

Benzylpenicilloyl
Polylysine

6.9 −88.71 −6.4 −6.34 Human immunoglobulin receptor

Bimatoprost 6.8 −88.37 −6.0 −5.82 Human prosaglandin F2-receptor
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observe some hydrogen-bonding interactions from other
amino acids such as: Ile172 for drug Iloprost (Additional
file 1: Figure S3c), Ile98 for drug Remikiren (Additional
file 1: Figure S3g), Gly111 for drug Mitoxantrone (Add-
itional file 1: Figure S3i), His177 for drug Misoprostol
(Additional file 1: Figure S3l), Thr174 for drug Fosinopril
(Additional file 1: Figure S3n), Ile98 for drug Benzylpeni-
cilloyl Polylysine (Additional file 1: Figure S3o), Ile172 for
drug Bimatoprost (Additional file 1: Figure S3p), Ile98 for

drug Valrubicin (Additional file 1: Figure S3r) and Gln175
for Mycophenolate Mofetil (Additional file 1: Figure S3t).
Importantly, hydrophobic interactions also contribute to

the drug-target associations presented in the current study.
Specifically, the binding pocket consists of about ten amino
acids which form a hydrophobic environment; illustrated
by spoked arcs and residue name. Further exploration of
these binding modes may provide crucial information
towards the design of lead compounds targeting VP24.

Fig. 3 a The predicted binding mode of Indinavir in VP24 of Ebola (a) and (b) the binding mode of Indinavir in HIV protease (PDB id 2AVO)

Table 1 Putative inhibitors of VP24, along with their structures, docking scores from four docking software packages, and primary
targets (Continued)

Nebivolol 7.2 −88.06 −5.6 −8.13 Human beta-1 adrenergic receptor

Valrubicin 6.8 −87.08 −7.1 −7.32 Human DNA topoisomerase 2α

Tamsulosin 6.8 −87.02 −6.3 −6.45 Human Alpha-1A adrenergic receptor

Mycophenolate Mofetil 7.4 −86.87 −5.9 −6.04 Human Inosine-5’-
monophosphate dehydrogenase
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Inhibitors of SAM-dependent 2′-O-MTase domain of
RNA-directed RNA polymerase
The RNA-directed RNA polymerase L of Ebola was pre-
dicted to contain four major domains using an HHPred
alignment [59] by searching against Pfam library. The
aligned domains included: i) a Mononegavirals RdRp-
like catalytic domain (residues 10–1090), ii) a mRNA-
capping region V domain (residue 1104–1309), iii) a
mRNA Guanine-7-MTase (residue 1472–1850), and iv) a
SAM-dependent 2′-O-Methyltransferase (MTase) do-
main (residues 1804–2006), as shown in Table 2. Not-
ably, no structures of these domains have been
experimentally solved, and with the exception of 2′-O-
MTase domain, no reliable structural template and align-
ment can be detected for the other three domains. A re-
liable homology model of 2′-O-MTase was constructed
and verified by Verify3d and PROCHECK. Notably, the
Verify3D shows 83.33 % of the residues had an averaged
3D-1D score > = 0.2; the PROCHECK suggests that 80 %
residues in the most favorable regions, as shown in
Additional file 1: Figure S5. More importantly, scores
for the residues composing binding pocket was relatively
higher (red color in Additional file 1: Figure S5a), and
these residues fell into the allowed regions in the
Ramachandran plot (Additional file 1: Figure S5b). These
results suggest that our model is suitable for further dock-
ing studies. The homology model was subsequently ap-
plied to screen for potential competitive inhibitors of the
2′-O-MTase binding site.
Here, a scan was conducted across 40,491biological

units of PDB structures to identify ligand binding sites
similar to those present in the modeled 2′-O-MTase
using SMAP. Consequently, it is not surprising that
SAM binding pockets of multiple MTase were aligned
with the 2′-O-MTase model with high statistical signifi-
cance (p-value < 1.0e–3). The binding pose of SAM in
the 2′-O-MTase model was determined by the superim-
position of the modeled 2′-O-MTase binding site unto
that of the most similar structure; human CAP-specific
mRNA 2′-O-MTase from (PDB id: 4 N49). In addition
to SAM which is known ligand of MTase, an antifungal
drug Sinefungin was identified with high statistical sig-
nificance (p-value = 1.8e–3).

Protein-ligand docking experiments were conducted to
further verify predictions from the ligand binding site
comparison. In addition to the ligands determined by
SMAP, a number of SAM analogs (e.g. A9145C and aza-
S-adenosyl-L-methionine) and anti-virus drugs were in-
cluded in the screening. Because SAM is the known ligand
of 2′-O-MTase, it is assumed that true binders of 2′-O-
MTase should be ranked higher than or close to SAM.
Among the identified putative inhibitors of 2′-O-MTase,
several consistently ranked at the top or higher than SAM
by four docking software packages: Surflex, PLANTS,
Autodock Vina and Autodock, Table 3. Notably, the
RMSD between the redocked SAM molecule and the con-
formation inferred from solved structure by SMAP was
0.964 ; suggesting reliable docking results.
Here, Sinefungin and A9145C are antiviral, antifungal,

and antibacterial agents, whose structures are analogous
to SAM [56, 60–66]. It is well known that aza-S-adenosyl-
L-methionine inhibits mRNA cap methyltransferase [67].
Maraviroc is a chemokine receptor antagonist that is
designed to act against HIV by interfering with the inter-
action between HIV and CCR5 [68]. Abacavir is a power-
ful nucleoside analog reverse transcriptase inhibitor
against HIV [69]. Telbivudine is a synthetic thymidine nu-
cleoside analog with specific activity against the hepatitis
B virus [70]. Cidofovir is an antiviral medication for the
treatment of cytomegalovirus (CMV) retinitis [71]. Not-
ably, our results reveal that for the first time, the possible
molecular mechanism of drug action for, Cidofovir. These
finding suggest that Cidofovir may have activity against
the Ebola virus and may additionally provide critical
insight into the design of more potent and selective anti-
Ebola therapeutic agents. Figure 4 and Additional file 1:
Figure S6 show the putative binding mode of these inhibi-
tors in 2′-O-MTase. Multiple hydrogen bonds form be-
tween Cidofovir and 2′-O-MTase including Leu54, Ser58
and Glu137. For the other 7 drugs, the binding modes also
shows that amino acids Gla34, Ala35, Gly36, Leu54,
Ser58, Asp99 and Ile100 are key residues in hydrogen-
bonding interactions. Notably, amino acids within the
binding pocket also provide conserved hydrophobic inter-
actions; illustrated in Additional file 1: Figure S6 using the
spoked arcs and residue names.
In the current study, a single conformation of the re-

ceptor structure was used for compound screening using
protein-ligand docking. The bias in the scoring functions
was minimized by using multiple types of docking soft-
ware [72] including Surflex, PLANTS, AutoDock and
Autodock Vina. Ensemble docking; a powerful approach
which use multiple conformations and is widely used in
virtual screening [73–75] allows for flexibility in protein
receptors. In the presented high-throughput protocol
however, docking is used to identify the initial promising
hits. Hence, the priori verification of sampling accuracy

Table 2 Putative Pfam domains of Ebola RNA-directed RNA
polymerase L, along with their annotations, e-value of HHPred
alignment, and start and end position of the alignment

Pfam
family

Annotation E-value Start
position

End
position

PF00946 Mononegavirals RdRp 6.0e–212 10 1090

PF14318 mRNAcapping region V 1.2e–57 1104 1359

PF12803 G–7-MTase 7.5e–46 1472 1850

PF14314 2′-O-MTase 1.4e–13 1804 2006
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will be limited [76]. Moreover, the choice of score func-
tion also affects the (ensemble) docking performance.
Due to a lack of known reference ligands, it is difficult
to determine which conformation ensemble and scoring
function are optimal. We will apply the ensemble ap-
proach in the near future as more protein-ligand inter-
action and mutagenesis data become available.

Conclusion
In the current study, we incorporated a proven struc-
tural systems pharmacology approach to identify several
existing anti-virus and anti-fungal drugs which may be
able to target and inhibit critical biological processes
such as virus replication and virulence in Ebola. Col-
lectively, in addition to identifying a number of lead

Table 3 Putative inhibitors of SAM binding site of 2′-O-MTase, along with their structures, docking scores from four docking
software packages, and primary targets

Compound Structure Docking score Primary target

Surflex PLANTS Vina Auto
Dock

SAM 10.7 −109.03 −7.5 −7.34 Glycine N-methyltransferase

aza-S-adenosyl-L-
methionine

9.3 −104.34 −8.9 −8.67 Glycine N-methyltransferase

Sinefungin 8.5 −103.68 −7.9 −9.59 Glycine N-methyltransferase

A9145C 7.0 −82.20 −6.3 −11.09 Glycine N-methyltransferase

Maraviroc 8.1 −98.7 −8.3 −10.94 C-C chemokine receptor type 5

Abacavir 7.2 −73.9 −6.8 −6.27 nucleoside analog reverse transcriptase
inhibitor

Telbivudine 5.7 −74.4 −6.4 −5.77 Protein P

Cidofovir 6.7 −78.3 −7.2 −5.57 DNA polymerase catalytic subunit
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compounds which may aid in the design of VP24 in-
hibitors, our analysis revealed two very promising drug
candidates for repurposing: Sinfungin which may in-
hibit Ebola’s RNA polymerase activity, and Indinavir
which may possibly disrupt Ebola-human interactions.
Although further in vitro and in vivo experiments are
needed to validate these in silico predictions, identifi-
cation of these candidates is a crucial first step toward
the determination of timely and effective therapeutic
approaches to address and mitigate the impact of the
Ebola global crisis and future outbreaks of pathogenic
diseases.

Additional file

Additional file 1: Figure S1. The correlations of docking scores
between Surflex and Vina, between PLANTS and Vina, and between
PLANTS and Surflex, respectively. Figure S2. The 200ns MD trajectory of
VP24. Figure S3. The binding mode of the top 20 ranked drugs against

VP24. (a) Montelukast, (b) Indinavir, (c) Iloprost, (d) hSalmeterol Xinafoate,
(e) Travoprost, (f) Latanoprost, (g) Remikiren, (h) Vitamin K1, (i)
Mitoxantrone, (j) Labetalol hydrochloride, (k) Tafluprost, (l) Misoprostol,
(m) Carboprost, (n) Fosinopril, (o) Benzylpenicilloyl Polylysine, (p)
Bimatoprost, (q) Nebivolol, (r) Valrubicin, (s) Tamsulosin, (t)
Mycophenolate Mofetil. Figure S4. The 3D binding mode of the top 20
ranked drugs on the target of VP24. (a) Montelukast, (b) Indinavir, (c)
Iloprost, (d) hSalmeterol Xinafoate, (e) Travoprost, (f) Latanoprost, (g)
Remikiren, (h) Vitamin K1, (i) Mitoxantrone, (j) Labetalol hydrochloride, (k)
Tafluprost, (l) Misoprostol, (m) Carboprost, (n) Fosinopril, (o)
Benzylpenicilloyl Polylysine, (p) Bimatoprost, (q) Nebivolol, (r) Valrubicin,
(s) Tamsulosin, (t) Mycophenolate Mofetil. Figure S5. Structural quality
assessment of the homology model of O’-2-MTase. (a) Verify3D score. The
sphere in red color showed the residues of composing binding site. (b)
Ramachandran Plot using PROCHECK. Figure S6. The predicted binding
mode of drugs that are listed in Table 3 in 2’-O-MTase. The drugs in the
panels are: (a) SAM, (b) aza-S-adenosyl-L-methionine, (c) Sinefungin, (d)
A9145C, (e) Maraviroc, (f) Abacavir, (g) Telbivudine, and (h) Cidofovir.
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