Hoff et al. BMC Bioinformatics (2016) 17:143
DOI 10.1186/512859-016-0985-x

Does the choice of nucleotide

BMC Bioinformatics

@ CrossMark

substitution models matter topologically?

Michael Hoff'T, Stefan Orf' T, Benedikt Riehm' T, Diego Darriba? and Alexandros Stamatakis'?"

Abstract

Background: In the context of a master level programming practical at the computer science department of the
Karlsruhe Institute of Technology, we developed and make available an open-source code for testing all 203 possible
nucleotide substitution models in the Maximum Likelihood (ML) setting under the common Akaike, corrected Akaike,
and Bayesian information criteria. We address the question if model selection matters topologically, that is, if
conducting ML inferences under the optimal, instead of a standard General Time Reversible model, yields different
tree topologies. We also assess, to which degree models selected and trees inferred under the three standard criteria
(AIC, AlCc, BIC) differ. Finally, we assess if the definition of the sample size (#sites versus #sites x #taxa) yields different

models and, as a consequence, different tree topologies.

Results: We find that, all three factors (by order of impact: nucleotide model selection, information criterion used,
sample size definition) can yield topologically substantially different final tree topologies (topological difference
exceeding 10 %) for approximately 5 % of the tree inferences conducted on the 39 empirical datasets used in our study.

Conclusions: We find that, using the best-fit nucleotide substitution model may change the final ML tree topology
compared to an inference under a default GTR model. The effect is less pronounced when comparing distinct
information criteria. Nonetheless, in some cases we did obtain substantial topological differences.

Keywords: Phylogenetics, Nucleotide substitution, Model selection, Information criterion, BIC, AIC

Background
Statistical models of DNA evolution as used in Bayesian
inference (BI) and Maximum Likelihood (ML) methods
for phylogenetic reconstruction are typically required to
be time-reversible. That is, evolution (or the Markov pro-
cess modeling it) is assumed to occur in the same way if
followed forward or backward in time. Time-reversibility
has some intrinsic computational advantages, mainly that,
the likelihood of a tree one intends to score is the same for
any placement of the virtual root that is deployed to direct
the Felsenstein pruning algorithm [1].

To ensure that, a nucleotide substitution matrix is time-
reversible, it must exhibit a certain symmetry. This sym-
metry requirement is depicted in the following example

*Correspondence: Alexandros.Stamatakis@h-its.org
TEqual contributors

Karlsruhe Institute of Technology, Department of Informatics, Kaiserstral3e 12,
76131 Karlsruhe, Germany
2The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for
Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany

() BiolVled Central

for a set of substitution rates {rac, rag, ¥aT, rca, Yo, 'aT}
and a set of stationary frequencies {r4, 7c, 7g, 7T}:

A o G T

— YacTlC YagTlG VYaTt?tT
Facta — FcellG FerltT
'aGTA YcgUCc — TFerniT
FATTTA YeT?lC YeTlG —

NQQ»

As implied by the above representation the rates rxy in
the upper and lower diagonal part of this matrix must
be symmetrical. Therefore, there can be at most 6 dis-
tinct, independent rates. Because rates in such a matrix
are relative rates, one rate (typically rgr) is set to 1.0 by
default such that there are at most 5 free parameters that
can be estimated via ML optimization or sampled with
MCMC methods for BI. A time-reversible DNA substitu-
tion matrix can have between 1 up to 6 distinct rates. Note
that, we further differentiate between substitution models
with identical base frequencies (i.e., 14 = ... = 0.25)
or distinct base frequencies. Distinct base frequencies can

© 2016 Hoff et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http:/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http:/creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-0985-x-x&domain=pdf
mailto: Alexandros.Stamatakis@h-its.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Hoff et al. BMC Bioinformatics (2016) 17:143

be either be obtained by using empirical base frequencies
or via direct sampling (BI) or ML inference of the base fre-
quencies. Nonetheless, here we mainly focus on models as
defined by substitution rates and not base frequencies. If
all 6 rates and all base frequencies are identical we obtain
the Jukes-Cantor (JC [2]) model and if all 6 rates are inde-
pendent, we obtain the General Time-Reversible (GTR
[3]) model.

Evidently, there is a large number of possible time-
reversible models situated between the JC and GTR
model. We can essentially consider all possible combina-
tions of dependencies between the 6 substitution rates. In
the literature, only a subset of these has been explicitly
described and named, for instance the HKY85 model [4].
We are aware of two papers and respective implementa-
tions that consider all possible time-reversible nucleotide
models and intend to select the best-fitting one among
these 203 substitution matrices.

The first paper that addressed the problem used
Bayesian statistics and MCMC methods to sample among
all possible substitution matrices proportional to their
posterior probability [5]. The method for integrating over
all substitution models is available in MrBayes version 3.2
[6] via the command 1set nst=mixed.

Another code that allows for testing all possible sub-
stitution matrices in a ML framework based on the AIC
(Akaike Information Criterion), AICc (corrected AIC)
BIC (Bayesian Information Criterion), and DT (Deci-
sion Theory) criteria is jModelTest 2 [7]. However,
jModelTest relies on PHYML [8] to calculate likelihood
scores for a given substitution model and tree. PHYML is
relatively slow compared to RaxML (v. 8.1.7 [9]) and the
Phylogenetic Likelihood Library (PLL [10]) that relies on
the same phylogenetic likelihood kernel implementation
as RaxML. For instance, optimizing the model parameters
and branch lengths on a fixed tree with 354 ITS sequences
[11] using a GTR model with I'-distributed rate hetero-
geneity among sites [12] and 4 discrete rate categories
requires 11 s with RaxML and 110 s with PHYML.

Here, we present and make available a fast implemen-
tation of a ML-based model testing tool for all possible
time-reversible DNA substitution models. It was devel-
oped by three students within the context of a program-
ming practical at the Master level in the computer science
department of the Karlsruhe Institute of Technology. The
educational aspects of this project are discussed in the
on-line supplement (Additional file 1).

The effect of different selection criteria and substitution
models on ML-based phylogenetic analyses has already
been discussed before. Darriba et al. [7] evaluated the
accuracy of distinct model selection criteria with respect
to recovering the true generating model parameters (e.g.,
substitution rates, proportion of invariant sites, or the «
shape parameter of the I" distribution) under simulation,

Page 2 0f 13

using 40,000 synthetic alignments under a wide range of
model parameters.

Ripplinger and Sullivan [13] evaluated the influence of
model choice on empirical tree topologies as determined
by using the hierarchical Likelihood Ratio Test (hLRT
[14]), the AICc and BIC criteria, as well as DT. In their
tests, the selection criteria at hand, often returned differ-
ent best-fit models. These different best-fit models then
also induced distinct ML trees. Ripplinger and Sullivan
exclusively focused on selecting named models in their
study, that is, they did not select among all possible 203
substitution models. They did, however, also investigate
the impact of model selection on bootstrap support val-
ues. Note that, this was not feasible in our study because
of the limited amount of time and credits available to the
students for completing the programming practical.

Nonetheless, our work fills the gap by the two aforemen-
tioned papers [7, 13] since we study the impact of selecting
among all possible 203 substitution models on ML-based
tree inferences on empirical datasets compared to tree
inferences conducted under a default GTR+I" model.

Initially, we present two algorithms for generating all
possible substitution models. Thereafter, we discuss the
sequential and parallel implementation using the PLL.
Subsequently, we present a set of experiments on empiri-
cal datasets to answer the following question: Does model
selection really matter with respect to its impact on the
shape of the final tree topology? Posada and Buckley dis-
cussed the potential impact of the sample size on AICc
and BIC criteria [15]. We also assess if different possible
definitions of the sample size as used for calculating infor-
mation criteria influence the model that will be selected.
In addition, we conduct a small simulation study to verify
that our tool works correctly. We conclude with speedup
data for the parallel implementation of our tool.

Methods

Algorithms

The model test needs to calculate the ML score for every
possible time-reversible nucleotide substitution model. A
full list of all possible models was already available [5].
Nonetheless, part of the programming task was to design
algorithms for generating them.

In the following, we first provide some background
information and notation and then describe our two
algorithms for generating all time-reversible nucleotide
substitution models.

Notation, terminology & properties

In analogy to [5] we encode a substitution model as a
string of six digits over X¢ := {1,2,3,4,5,6}. For exam-
ple the string 111333 describes a substitution model with

Hoff et al. BMC Bioinformatics (2016) 17:143

the following constraints: rac = rag = rar and rcg =
rer = raor. Note that, the PLL [10] offers a similar for-
mat for specifying time-reversible nucleotide substitution
models. The only difference is that it uses the alphabet
{0,1,2,3,4,5).

In this string notation, the GTR model is denoted by
123456, that is, all rates are different and indepen-
dent from each other. The HKY85 model is denoted by
121121. Here, we constrain rac = rap = rce = rer and
rag = rct-

We call a model a k-model, if it has exactly k distinct
substitution rates. Hence, the parameter k characterizes
the degree of freedom of a model. We further define X :=
{1,2,...,k} as the alphabet of all digits with value < k.

While two distinct models over Xg can consist of
different digits/characters, they can specify exactly the
same constraints. For example, 121121 and 212212 are
semantically identical since they have the same degree of
freedom and identical rate dependencies. We call such
models redundant.

To avoid generating redundant models we introduce a
normalization property, which holds only for one, unique
model in a set of semantically identical models. A model
string s = sS1S253S4S55¢ (e.g., 123456 induces s; =
1,s9 = 2,...) with digits s; € ¢ is normalized, if and
only if, for each first occurrence of a value s; in s the fol-
lowing holds: {s1, s2,...,s,-1} = Xg,—1. For example, the
first occurrence of digit 3 in a model requires the pre-
fix, excluding the current digit, to consist of exactly two
digits: 1 and 2. The models 123111, 122132, 123456
fulfill this constraint and the models 311111, 113111,
124356 do not. The semantically equivalent, normalized
models 122222, 112111, 123456 for the unnormal-
ized ones in our example can be obtained by consistently
replacing characters from left to right. As a consequence
of the above definition, a normalized k-model therefore
only comprises characters in .

We further define the k-prefix of a k-model m, as
the shortest prefix of m that contains all characters in
¥ at least once. This part of the string is denoted
by underlining the respective characters. For example,
the 4—model 124311 has the 4—prefix 1243, as any
shorter prefix, say 124, does not yield all characters in
¥4 = {1,2,3,4}.

In the following, we first present a brute-force algo-
rithm and then a more elegant constructive algorithm for
generating all model strings.

Brute force approach

Our brute-force implementation initially enumerates all
possible strings of length 6 for the alphabet X5 =
{1,2,3,4,5,6}. The enumeration is done by counting from
111111 to 666666 in the base-6 numerical system,
except that the digits are in the range 1...6 instead of

Page30f13

0...5.In total, this yields 6° = 46656 strings out of which
only 203 are non-redundant.

To ensure that the algorith only returns normalized
model strings, we normalize every enumerated string and
subsequently filter out redundant models.

The normalization re-maps the digits of the model
string such that the normalization property holds. In the
model string, every constraint is represented by a unique
digit. The transformation now chooses new digits for each
constraint. These digits are assigned incrementally start-
ing with 1. For this, the algorithm identifies the constraints
of the model string by traversing it from left to right. To
properly order the constraints, they are ordered by the
index of their corresponding leftmost digit.

The first occurrence of each normalized string encoun-
tered in the enumeration of all strings is then added to a
final model list. We discard normalized model strings that
have already been included in this list. When all strings
have been enumerated, normalized, and added to the final
model list, the list contains all 203 non-redundant model
strings.

Note that, a normalized string always begins with 1, the
second digit can only be 1 or 2 etc. We use this observa-
tion to optimize the brute force enumeration algorithm.
For this, we only place characters in the set {1,...,n} at
the nth position of the string. This prevents the algorithm
from enumerating a large number of non-normalized
strings. With this modification, only 1 x2x3 x4 x5x6 =
720 strings are enumerated. This generates only 1.5 % of
the strings the naive brute-force approach enumerates and
yields only 720 — 203 = 517 redundant models.

Inductive algorithm

Our inductive algorithm uses the set of all k-models
to construct all possible (kK + 1)—models. The algo-
rithm starts with the single 1—model 111111 (the JC
model) and constructs all 31 normalized 2—models (e.g.,
111112, 111121, 111122, ...). This process contin-
ues inductively by incrementing k until the sole possible
6—model 123456 (the GTR model) is generated.

In the following we will explain how a single new (k + 1)
—model can be derived by applying kK — k + 1 on
a k-model by using character replacement. Extending a
normalized model to k + 1 degrees of freedom requires
one character to be replaced by a new character k + 1.
To maintain the normalization property and to ensure
the correctness of this operation, the replacement must
not be applied to the k-prefix. For example when apply-
ing 2 + 3 the 2—prefix 12 of model 121111 must
not be used for a character replacement operation, since
the resulting models 321111 and 131111 would not be
normalized. To avoid the construction of redundant mod-
els, we further restrict the character replacement step to
only replace characters of value k. Otherwise, the sets of

Hoff et al. BMC Bioinformatics (2016) 17:143

(k + 1)—models that are derived from different k-source
models will not be disjoint. To illustrate what can happen,
the step 2 +— 3 is applied to the third character of two
2—models 121111 and 122111. This will generate the
3—model 123111 twice. An example for a derivation

respecting both constraints is 1233211 % 1234211
Note that, the (k 4+ 1)—prefix always extends the k-prefix
to include the newly inserted character k + 1.

The algorithm relies on the property that every con-
ducted replacement operation yields a valid model and
thus, a fraction of the overall result. As a consequence,
every model derivation step has to be applied to a copy of
the source model to avoid over-writing already generated
models.

Given a single k-model, the induction step k — k + 1
is conducted in two phases. First, all characters not con-
tained in the k-prefix that have value k are used to derive
new models, one for each such character. This generates
a set of (k + 1)—models, where the (k + 1)—prefixes
now protect their newly inserted characters. For example
the 1-model 111111 produces the 2—models 121111,
112111,111211,111121 and 111112. Note that, only
the first phase derives (k4 1) —models from k-models and
thus produces models with a longer protected prefix.

In the second phase, we use this set of (k 4+ 1)—models
to recursively derive further (k + 1)—models. For each
model in the set, we identify all occurrences of k not con-
tained in the (k 4+ 1) —prefix. For each such “unprotected”
occurrence of k we generate a new model by replacing the
character k by k + 1. Each new model is then processed
recursively in the same way. Note that, only occurrences of
k right of the last replaced character are considered. This
process continues until we reach the end of the string.

For example the model 111211, which has been gen-
erated in the first phase of 1 +> 2 yields 111221 and
111212. Notice the changes in both new models and the
trailing 1 in the first model marked by a line on top of
it. The line indicates that the recursive processing of this
model will start at this character and not consider char-
acters left of it. The recursion then yields 111222, as the
marked 1 can still be replaced.

Figure 1 shows a more complex derivation process.
The 2—model 122122 is used to derive 3—models start-
ing at the left-most digit not contained in the prefix.
Edges represent both, continuation of iteration and start
of recursion on newly created models. Each first replace-
ment increases the degree of freedom by one. Hence, the
prefix is extended and the second phase of processing
begins on this path.

Given a set of k-models, the induction step k +— k + 1
as explained above is applied to each model in the set. The
hereby obtained sets of (k + 1)—models are disjoint by

construction and can thus be easily unified to one com-
plete set of (k+1)—models. The overall induction process

Page 4 0of 13

123133
123132
123123
123122
122133
122132

122122~ 122123

Fig. 1 Inductive model derivation step 2 + 3. Process tree showing
how all 3—models derivable from 122122 are generated. Lines on
top of characters indicate execution progress. Lines beneath visualize

123135{1
ﬂBQQ%ﬂBQ2{

;g§12§{j
122122

B B 122135{1
122122»122122{:

the 2— respectively 3—prefix

can be visualized by the following sequence of inductive
steps:

1—2 23 34 45 56
(111111} =5 Sy 25 83 228 Sy —22 S5 222 {123456)

where |Sy| = 31, |S3| = 90, |S4| = 65 and |S5| = 15.

Implementation
The goal of the programming practical was to develop a
program that tests all possible time-reversible nucleotide
substitution models under Maximum Likelihood (ML) on
a fixed, reasonable tree and subsequently selects the best
model. Model selection is conducted using the following
standard criteria: AIC, BIC, and AICc. In other words,
our algorithm represents an ML-based re-implementation
of the Bayesian approach deployed in [5]. Once the best
model has been selected, the tool shall also conduct a
ML-based phylogenetic tree search under the best model.

For likelihood calculations, tree searches, and handling
I/O we used PLL [10].

Initially, we provide a top-level outline of the algorithm:

e Parse a multiple sequence alignment of DNA
sequences

e Compute a reasonable, non-random, reference tree
using parsimony

® Generate all 203 possible time-reversible substitution
matrices

e Loop over these 203 matrices and optimize the ML
score on the fixed tree for each model using PLL and
I'-distributed rate heterogeneity among sites with 4
discrete rate categories

e Use AIC, BIC, and AICc to determine the best among
the 203 models

e Conduct an ML tree search (as implemented in PLL)
on the best model

e Write the final ML tree to a Newick file

Note that, the actual implementation computes the best
model for 5 instead of 3 information criteria. We compute

Hoff et al. BMC Bioinformatics (2016) 17:143

BIC and AICc scores twice to allow for using distinct sam-
ple size definitions. In the following we briefly describe the
sequential and parallel implementations of the algorithm.

Sequential implementation

Initially, we parse and read the alignment data (either in
PHYLIP or FASTA format) into a PLL data structure using
the appropriate I/O routines of the PLL. Besides the align-
ment file name, users can also specify if they want to use
empirical base frequencies or conduct a ML estimate of
the base frequencies. We then build a reasonable tree on
which we are going to calculate the likelihoods for all mod-
els. This is done via the randomized stepwise addition
parsimony tree algorithm as implemented in the PLL. We
then loop over all (pre-computed) possible models and set
the substitution rate dependencies in the matrix using the
appropriate PLL function according to the current model
string. Subsequently, we optimize all model parameters
(base frequencies, rates, branch lengths, « shape param-
eter of the I' model of rate heterogeneity) on the fixed
parsimony tree with PLL and calculate the values for the
five information criteria. We keep track of the minimum
value and the corresponding model for each criterion sep-
arately for further downstream analysis. Given the set of
best models (at least one and at most three) according to
the criteria, we then conduct a ML tree search for each
criterion and best-scoring model and write the resulting
ML tree to file in Newick format.

Parallel implementation

The runtime of the sequential implementation is domi-
nated by likelihood calculations in the PLL that account
for approximately 90-95 % of overall execution time.
Thus, the “model optimization” and “tree search” steps
can become performance bottlenecks, in particular for
large datasets. To this end, we designed an MPI-based
Master/Worker approach that evaluates all 203 distinct
models in parallel. Note that, the likelihood evaluations
for each of the 203 models are completely independent of
each other.

The primary goal is to efficiently find the best-fitting
model for each information criterion. As already men-
tioned, we need to optimize the model parameters for
each of the 203 models. Thereafter, we can calculate the
information criteria using the respective ML score and
other relevant information like the degrees of freedom and
the dataset properties, as mentioned before.

Since we only need to select the “best” model per
information criterion, we can merge the criterion scores
of different models by keeping only the minimum! for
each criterion. This means that, if we merge the results
for two distinct model evaluations, we obtain a list of
lowest criterion-score/model-index pairs. To explain the

Page 50f 13

parallelization we distinguish between “local” or “global”
result pair lists. A local result only aggregates the infor-
mation for a subset of models, whereas the global result
aggregates the information over all models.

In the sequential case, the one and only thread starts
with a local result list and updates it after each model eval-
uation. When the last model has been processed the local
result corresponds to the global result.

In the parallel case each worker process maintains its
own local result list. Worker processes receive work (mod-
els) from the master process, evaluate them, and update
their local result lists. When all models have been evalu-
ated, we use MPI to collect and automatically merge? all
local results lists into the global result list at the master.

In the following, we will briefly outline the MPI com-
munication and synchronization scheme. After asyn-
chronously sending an initial workload to each worker, the
master process uses a blocking wait for any worker to fin-
ish its model evaluation task. Once a worker has finished,
the master again uses an asynchronous send to propagate
the next model to be evaluated to this worker. Via the
asynchronous send, the master can immediately continue
distributing tasks to other workers. The worker employs
a blocking receive for a model, evaluates it, updates its
own local result list, and informs the master about the task
completion. When all models have been distributed and
evaluated, the master initiates a parallel reduction opera-
tion to obtain the global result list and terminate all MPI
processes.

Code quality assessment

In order to continuously monitor and improve the qual-
ity of our source code, we used several tools and methods
throughout our project. We deployed both, static, as well
as dynamic code analyses.

Static analysis Static analyses help to identify static pro-
gramming errors such as incorrect programming lan-
guage syntax or static typing errors. We compiled our
code with the gcc compiler using all available and reason-
able warning flags®. This allowed us to identify potential
programming errors at an early stage. Due to its more
pedantic nature (i.e., ability to detect more errors), we also
used the clang compiler with respective flags* period-
ically alongside of gcc to further reduce the amount of
potential errors.

Dynamic analysis These analyses cover run-time issues
such as memory leaks. We used valgrind and its sub-
module memcheck for detecting memory-related errors
in our program. By appending the Open MPI related
valgrind suppression file to the tool, we excluded sev-
eral MPI-specific memory management functions from

Hoff et al. BMC Bioinformatics (2016) 17:143

the analyses which resulted in an easier-to-interpret
debugging output.

Experimental setup

To answer our main question, whether models matter or
not, we applied our tool to a large number of representa-
tive empirical datasets. For each dataset we conducted 36
independent runs with 18 distinct random number seeds
and 2 base frequency configurations (empirical and ML
estimate) such as to generate 8 distinct randomized step-
wise addition order parsimony starting trees. In each run,
we determined a total of at most 5 best-scoring mod-
els using the following criteria: AIC, AICc-S (sample size:
#alignment sites), AICc-M (sample-size: #alignment sites
x #taxa), BIC-S (sample size: #alignment sites), BIC-M
(sample-size: #alignment sites x #taxa). In addition, in
each run we conducted one tree search under the GTR+T"
model. Thus, each out of the 36 per-dataset runs gener-
ated at most 6 ML trees, 5 using the best-scoring models
under the respective criteria and one under GTR+T". Note
that, different information criteria (like the 3 variants of
AIC) tend to choose the same model and therefore typ-
ically less than 6 distinct ML trees are generated overall
per run. Thus, the total number of trees inferred for each
dataset is < 6-36 = 216. For subsequent analyses we then
selected the trees with the respective highest ML score
out of the 36 runs (18 random seeds) for each criterion
separately and independently.

Empirical test datasets

The empirical test datasets we used are summarized in
Table 1. For each dataset we list the number of taxa,
number of sites, and the source from which they were
obtained. ‘Original paper’ refers to the Bayesian imple-
mentation in [5], ‘Lakner et al.’ refers to the datasets used
in [16], ‘MrBayes’ refers to benchmark datasets used for
testing MrBayes [6], and 'RAxML refers to datasets used
for benchmarking RaxML [9].

Hardware platform

With increasing number of taxa, the computations can
become time-consuming. Thus, we used a comparatively
large multi-core shared memory machine for our experi-
ments (running Ubuntu 14.04). The server comprises four
AMD Opteron 6174 processors, each equipped with 12
cores running at 2.2 GHz and has 256 GB RAM. While our
parallel implementation can use all 48 cores simultane-
ously, the computations for all test datasets still required
several days.

Results

In the following we describe the results of our experi-
ments. Initially, we verify that our model generation algo-
rithm is correct. Then, we provide speedup values for the

Page 6 of 13

Table 1 Summary of empirical test datasets

#taxa fsites Source
46 1104 Original paper
64 1620 Original paper
13 1255 Original paper
106 378 Original paper
68 818 Original paper
15 379 Original paper
13 273 Original paper
23 2841 Original paper
17 379 Original paper
30 1456 Original paper
23 9741 Original paper
18 1689 Original paper
17 432 Original paper
31 1140 Original paper
12 894 Original paper
27 1949 Lakner et al.
29 2520 Lakneretal.
36 1812 Lakner et al.
41 1137 Lakner et al.
43 1660 Lakner et al.
50 1133 Lakner et al.
59 1824 Lakner et al.
64 1008 Lakner et al.
71 1082 Lakner et al.
50 378 Lakneretal.
67 955 Lakner et al.
4 16119 MrBayes
12 898 MrBayes
9 720 MrBayes
123 1606 MrBayes
150 1269 RAXML
218 2294 RAXML
354 460 RAXML
404 13158 RAXML
500 1398 RAXML
10 705 RAXML
101 1858 RAXML
714 1241 RAXML

parallel implementation. After these technical issues, we
assess the magnitude of topological differences between
trees inferred under GTR+I" and trees inferred under
the best-fit model according to the respective information

Hoff et al. BMC Bioinformatics (2016) 17:143

criterion. Finally, we quantify differences between AICc,
BIC, and AIC and also assess if the sample size definition
has an impact on model selection.

Verification of model generation algorithms

We verified the correctness of the two model generation
algorithms by systematically comparing the respective
outputs to each other. Fortunately, they yield exactly iden-
tical sets of model strings. Note that, the two algorithms
were developed and implemented completely indepen-
dently. In addition, we also verified that our set of model
strings was identical to those provided in [5].

Speedups

To assess the parallel efficiency of our code, we measured
the speedups for an increasing number of MPI processes.
We only measured speedups for the model evaluation
phase and excluded the tree search phase which is calcu-
lated by a stand-alone PLL function. The obtained exe-
cution time over # cores plots are provided in Fig. 2 and
compared to a linear speedup line. Based on our results,
running the code with 6, 12, or 24 cores shows a higher
parallel efficiency than with 48 cores. Nonetheless, with
respect to time-to-completion, executing the code with
203 MPI processes for the 203 models will yield the fastest
response.

Topological analysis (RF distances)

Initially, we asked the question if model selection has
an impact on the final tree topology with respect to
trees inferred under GTR+I'. To this end, we calcu-
lated the relative Robinson-Foulds (rRF [17]) distances
(using RAXML) between the best-scoring ML tree under
GTR+T and the respective best-scoring trees under the
5 criteria. In Figs. 3, 4, 5, 6, and 7 we show histograms
of the distribution of rRF distances between the tree

Page 7 of 13

inferred under GTR+T and the trees inferred under AIC,
AICc-S, AICc-M, BIC-S, and BIC-M respectively. Note the
log scale on the y-axis (fraction of test datasets) of the
histograms.

While for the vast majority of datasets, the rRF dis-
tance between the tree inferred under GTR+TI" and the
tree inferred under the respective optimal model is zero,
there is a substantial number of outliers. For more than
5 % of the tree inferences the rRF distance is larger than
10 % which represents a notable topological difference.

Differences between AlCc, BIC, AIC

In the following, we quantify the differences in tree
topologies and also in inferred models between the dif-
ferent criteria (AIC, AICc, BIC). To simplify the presenta-
tion, we only use AICc-S and BIC-S, since the number of
sites is commonly used as sample size.

For comparing the inferred models, we used the model
that yielded the best-scoring ML tree under AIC, AICc-
S, and BIC-S, respectively. We found that AIC and AICc-
S propose the same model for 1181 out of 1368 dataset
configurations (38 datasets times 36 independent runs per
dataset). Further, AIC and BIC-S select the same model in
683 out of 1368 cases. Finally, AICc-S and BIC-S suggest
the same model for 731 out of 1368 dataset configurations.

For the cases where the proposed models between
the criterion pairs (i.e., AIC/AICc-S, AIC/BIC-S, AICc-
S/BIC-S) are different, we then also quantified the dif-
ferences among tree topologies. For this purpose we
provide histograms (Figs. 8, 9 and 10) of the pair-wise
RF-distances between the best-scoring trees for the three
aforementioned criterion pairs (note the log scale on the
y-axis).

We observe that, in cases where the proposed models
differ, this difference can induce notable rRF distances
among the inferred trees.

10000

5000 [\

T

2000

1000

T

500 i

Execution time (s)

200

Loo i ;

Measured speedup —+—
Optimal speedup -

1

123 6 12

of MPI processes

Fig. 2 Speedup of model evaluation. Comparison of the theoretical and practical speedup of our application

24 48

Hoff et al. BMC Bioinformatics (2016) 17:143 Page 8 0f 13

100 g

0.01 || | |
20 30 0 50

0 10 4 60
relative RF distance [%]

Fig. 3 GTR+T" model - AIC Histogram of occurences of relative RF distances between the GTR+I" model and the best model according to AIC

occurences [%]
(=
T

100 g
10 H 3

,c\? E
‘o
[}
2
g 1H 3
=1 F E
9 F 1
o r 1
L I

| ‘ ‘ ‘ ‘ |

001 | 1 1
0 10 20 30 40 50 60
relative RF distance [%]
Fig. 4 GTR4T" model - AlCc-S Histogram of occurences of relative RF distances between the GTR+I" model and the best model according to AlCc-S

10 H

0.1 H ||
0.01

0 1

occurences [%]
=]
T

0 20 30 40 50

60
relative RF distance [%]

Fig. 5 GTR+I" model - AICc-M Histogram of occurences of relative RF distances between the GTR+I" model and the best model according to AlCc-M

Hoff et al. BMC Bioinformatics (2016) 17:143

Page 90of 13

Fig. 6 GTR+TI" model - BIC-S Histogram of occurences of relative RF distances between the GTR+I" model and the best model according to BIC-S.

0.01

occurences [%]

100

10

0.1

0.01

T T T T T

T T

Lo

Lol Lol

Lol

0

1

relative RF distance [%]

20 30 40 50

(o)}
o

Fig. 7 GTR+TI" model - BIC-M Histogram of occurences of relative RF distances between the GTR+I" model and the

occurences [%]

100

10

0.1

0.01

T T T T T

T

Lo

Lol Co il

ol

10

relative RF distance [%]

20 30 40 50

(o))
o

best model according to BIC-M

Fig. 8 AIC - AlCc-S Histogram of occurences of relative RF distances between the best model according to AIC and the best model according to

AlCc-S

occurences [%]

100

10

0.1

0.01

T T T

T T T

Lo

Lol Lol

Co il

10 20 30

relative RF distance [%]

40

50

o))
o

Hoff et al. BMC Bioinformatics (2016) 17:143

Page 10 of 13

10 H

occurences [%]
-
I

0 1

Ool || | |
0 20 30

relative RF distance [%]

Fig. 9 AIC - BIC-S Histogram of occurences of relative RF distances between the best model according to AlIC and the best model according to BIC-S

40 50 60

Impact of sample size definition
In these analyses, we determined the impact of the sam-
ple size definition on the models selected by the AICc and
BIC criteria. When comparing the model inferred for the
respective best-scoring ML tree for AICc-S versus AICc-
M, we found that they yielded different models for 187
out of 1368 datasets. Analogously, for BIC-S versus BIC-M
different models were proposed in 261 out of 1368 cases.

As before, we then calculated the rRF distances between
trees inferred under models proposed by AICc-S/AICc-
M and BIC-S/BIC-M, but again only for those datasets
where the models differed. The respective rRF distance
histograms are provided in Figs. 11 and 12 (note the log
scale on the y-axis).

As in previous experiments, there are a few dataset
where the definition of the sample size yields trees that
exhibit large topological distances exceeding 10 %.

Selected models

Another noteworthy observation is that, regardless of the
criterion deployed, the subset of models that were finally
selected (only 37 out of 203 possible models) is compar-
atively small. The type and frequency of models selected
by each criterion is depicted in Fig. 13. This observation
could be used for accelerating model selection by only
using this subset of 37 promising candidate models.

Significance of results

To assess the significance of our results we conducted 50
distinct ML searches under the respective best-fit model
and 50 ML searches under the GTR+I" model for each
dataset. We then calculated the pair-wise rRF distances
between all pairs of trees from the first (best-fit model)
and second (GTR+I") tree set. Thereafter, we compared
the average rRF distance among these tree pairs with the

10 H

occurences [%]
-
I

0 1

relative RF distance [%]

Fig. 10 AICc-S - BIC-S Histogram of occurences of relative RF distances between the best model according to AICc-S and the best model according

to BIC-S

0.01 | || I I
0 20 30

40 50 60

Hoff et al. BMC Bioinformatics (2016) 17:143

Page 11 0f 13

100 ¢

10 H

occurences [%]
=
I

0.1 H

0.01

according to AlCc-M

10 20 30

relative RF distance [%]

Fig. 11 AICc-S - AlCc-M Histogram of occurences of relative RF distances between the best model according to AlCc-S and the best model

40 50 60

random expectation for each empirical dataset. The ran-
dom expectation is defined as the average rRF distance
among all pairs of the 50 trees obtained from the searches
under GTR+I". We observed significantly higher average
rRF distances than the random expectation between the
trees inferred under the best-fit model and GTR+I" in
14 out of 41 datasets (p < 0.01). Inversely, for 16 out
of 41 datasets, we observed differences that were signif-
icantly lower than the random expectation (p < 0.01).
For the remaining 11 datasets, the inferred ML topology
was identical, regardless of the model and the tree search
replicate.

Model selection accuracy under simulation

In order to further evaluate the accuracy of our model
selection process, we created 100 synthetic alignments
based on the two empirical datasets (alignment with 27

taxa and 1949 sites from [16], and lice dataset from
[5]) which exhibit the highest topological variance. To
simulate, we initially determined the best-fit model, best-
known ML tree, and optimized the model parameters for
the two datasets. We then deployed INDELible [18] to
generate simulated alignments.

Table 2 summarizes the results of our simulations.
For single tree searches under the respective best fit
model according to our model selection criteria and under
GTR+I" we quantify accuracy by showing average values
(over 100 simulation replicates) for (i) recovery rate of
the true topology, (ii) RF distance to the true topology,
(iii) branch score (BS) difference to the true tree, and (iv)
recovery rate of true, generating model.

The perfect topology was recovered more slightly more
frequently with selection criteria using the sequence
length times the number of taxa as sample size (0.10

100 ¢
10 H

= 2

wn

(0]

2

& 1

3

19

1%

o

H*

relative RF distance [%]

Fig. 12 BIC-S - BIC-M Histogram of occurences of relative RF distances between the best model according to BIC-S and the best model according to

BIC-M

0.01 | | | 1 | | 1 | 1 1
0 10 20 30 40 50

60

Hoff et al. BMC Bioinformatics (2016) 17:143

Page 12 0f 13

AIC mmmm AlCc-M m==m= AICc-S mmmmm BIC-M mmmm BIC-S =

45

40

35 -

30 [~

25 -

selections

NN T ® = - ®FT = N O W
T O NN®OONNNT T TS
YIYT S0 dooab

Fig. 13 Actual subset of models selected by the distinct information criteria. The histogram shows the number and type of models selected by each
information criterion for all datasets. Note that, the vast majority of possible time-reversible models was never selected

vs. 0.09). Inferences conducted under model determined
by BIC show lower BS distances than the other criteria
or GTR+T (0.54 — 0.55 vs. 0.57 — 0.59). However, these
differences are not significant given the number of simula-
tion replicates. We also observed that, when using only the
sequence length as sample size, the true generating model
was recovered more frequently (0.51 vs. 0.34 — 0.40).

For the second dataset (lice), we did not observe notable
differences in any of our topological accuracy measures

Table 2 Accuracy of model selection for 100 simulations based
on two ‘difficult’ empirical datasets

TTR RF BS TMR
AlC 0.10 0.176 0.057 0.34
AlCc-S 0.09 0.179 0.057 040
AlCc-M 0.10 0.176 0.057 0.34
Dataset 1
BIC-S 0.09 0.176 0.055 0.51
BIC-M 0.10 0.174 0.054 040
GTR+T 0.09 0.173 0.059 0.00
AlC 035 0.036 0.001 049
AlCc-S 0.35 0.036 0.001 048
AlCc-M 0.35 0.036 0.001 049
Dataset 2
BIC-S 0.35 0.036 0.001 0.14
BIC-M 0.35 0.036 0.001 0.02
GTR+I" 0.35 0.037 0.001 0.00

TTR = fraction of recovery of true topology, RF = average relative Robinson-Foulds
distance to the true tree over 100 simulation replicates, BS = average branch score
difference to the true tree over 100 simulation replicates, TMR = fraction of true,
generating model recovery

neither under the models selected by our criteria nor
under GTR+T".

All selected best-fit models as well as the GTR+I" model
recovered the true topology with the same frequency
(0.35). However, AIC performed much better than BIC
in recovering the true generating model (0.48 — 0.49
vs. 0.02 — 0.14). For this dataset though, the recovery of
the true model does not affect topological accuracy.

Discussion

We implemented, parallelized, and make available an effi-
cient tool for determining the best nucleotide substitution
model among all 203 possible models using the AIC,
AICc, and BIC criteria. Apart from achieving our teach-
ing goals, and beyond the computational speed of the
tool, we addressed the question if nucleotide model selec-
tion matters topologically. To the best of our knowledge,
this question has not been addressed using such a large
collection of empirical datasets and taking into account
all possible models before. Furthermore, we analyzed the
topological differences between trees inferred under mod-
els proposed by the three standard criteria and assessed if
these differences are significant. Finally, we also assessed
to which extent the definition of the sample size in the cri-
teria has an effect on the selected models and inferred tree
topologies.

Conclusions

Overall, we find that, everything matters topologically.
In particular, our experiments suggest that, selecting the
best-scoring out of 203 nucleotide substitution model

Hoff et al. BMC Bioinformatics (2016) 17:143

changes the final ML tree topology (compared to an infer-
ence under GTR+TI") by over 10 for 5 % of the tree
inferences we conducted. Thus, clearly, such a model test
should be executed prior to starting tree inferences.

With respect to the observed topological differences
induced by using distinct information criteria and sam-
ple size definitions, the effect is less pronounced since it
affects a smaller fraction of datasets. Nonetheless, in some
cases we did obtain substantial topological differences.
However, whether one should use AIC, AICc, and BIC and
how one should define the sample size is still subject to
on-going statistical debates. Thus, we are not in a position
to make a clear statement here. What we can state though,
is that, the statistical discussions are justified based on the
differences we observed.

Code & data availability
The code, test datasets, and results are available under
GNU GPL at https://github.com/team-pltb.

Endnotes

1 A lower score indicates a better model

% intercommunicator reduce operation

3 _Wall -Wextra -Wredundant-decls -Wswitch-default
-Wimport -Wno-int-to-pointer-cast
-Whbad-function-cast -Wmissing-declarations
-Wmissing-prototypes -Wnested-externs
-Wstrict-prototypes -Wformat-nonliteral -Wundef

4 “Weverything -pedantic

Additional file

Additional file 1: Supplementary information. (PDF 120 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

MH, SO, and BR (the students) implemented the tool and conducted the
experiments. AS taught the course and designed as well as supervised the
programming task. DD provided support, including bug fixes, for the PLL and
also helped with the information criteria. All authors contributed to drafting
and writing the manuscript.

Acknowledgments

We wish to thank John Huelsenbeck for providing the test datasets from the
original paper, Andre J. Aberer for providing additional test datasets, and Lucas
Czech for implementing an initial prototype version for the task to verify if it
was ‘doable’.

Received: 26 February 2016 Accepted: 9 March 2016
Published online: 24 March 2016

References

1. Felsenstein J. Evolutionary trees from dna sequences: a maximum
likelihood approach. J mol evol. 1981;17(6):368-376.

2. JukesTH, Cantor CR. Evolution of protein molecules. Mamm protein
metab. 1969;3:21-132.

Page 13 0f 13

Tavaré S. Some probabilistic and statistical problems in the analysis of dna
sequences. Lect math life sci. 1986;17:57-86.

Hasegawa M, Kishino H, Yano T-a. Dating of the human-ape splitting by
a molecular clock of mitochondrial dna. J mole evol. 1985;22(2):160-174.
Huelsenbeck JP, Larget B, Alfaro ME. Bayesian phylogenetic model
selection using reversible jump markov chain monte carlo. Mol Biol Evol.
2004;21(6):1123-1133.2012. doi:10.1093/molbev/msh123. http://mbe.
oxfordjournals.org/content/21/6/1123 full pdf+html.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S,
Larget B, Liu L, Suchard MA, Huelsenbeck JP. Mrbayes 3.2: efficient
bayesian phylogenetic inference and model choice across a large model
space. Syst biol. 61(3):539-542.

Darriba D, Taboada GL, Doallo R, Posada D. jmodeltest 2: more models,
new heuristics and parallel computing. Nature methods. 2012,9(8):772-2.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O.
New algorithms and methods to estimate maximum-likelihood
phylogenies: assessing the performance of phyml 3.0. Syst biol.
2010;59(3):307-321.

Stamatakis A. Raxml version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinforma. 2014;30(9):1312-1313.
Flouri T, Izquierdo-Carrasco F, Darriba D, Aberer AJ, Nguyen LT, Minh
BQ, Stamatakis A. The phylogenetic likelihood library. Syst Biol.
2015;64(2):356-362.

. Grimm GW, Renner SS, Stamatakis A, Hemleben V. A nuclear ribosomal

dna phylogeny of acer inferred with maximum likelihood, splits graphs,
and motif analysis of 606 sequences. Evol Bioinforma Online. 2006,2:7.
Yang Z. Maximum likelihood phylogenetic estimation from dna
sequences with variable rates over sites: approximate methods. J Mole
Evol. 1994,39(3):306-314.

Ripplinger J, Sullivan J. Does choice in model selection affect maximum
likelihood analysis? Syst Biol. 2008;57(1):76-85.

Huelsenbeck JP, Crandall KA. Phylogeny estimation and hypothesis
testing using maximum likelihood. Annu Rev Ecol Syst. 1997;28:437-466.
Posada D, Buckley TR. Model selection and model averaging in
phylogenetics: advantages of akaike information criterion and bayesian
approaches over likelihood ratio tests. Syst biol. 2004;53(5):793-808.
Lakner C, van der Mark P, Huelsenbeck JP, Larget B, Ronquist F. Efficiency
of markov chain monte carlo tree proposals in bayesian phylogenetics.
Syst Biol. 2008;57(1):86-103. doi:10.1080/10635150801886156. http://
sysbio.oxfordjournals.org/content/57/1/86 full.pdf+html.

Robinson D, Foulds LR. Comparison of phylogenetic trees. Math Biosci.
1981;53(1):131-47.

Fletcher W, Yang Z. INDELible: A flexible simulator of biological sequence
evolution. Mole Biol Evol. 2009;26(8):1879-1888.
doi:10.1093/molbev/msp098.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
e We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BioMed Central

https://github.com/team-pltb
http://dx.doi.org/10.1186/s12859-016-0985-x
http://dx.doi.org/10.1093/molbev/msh123
http://mbe.oxfordjournals.org/content/21/6/1123.full.pdf+html
http://mbe.oxfordjournals.org/content/21/6/1123.full.pdf+html
http://dx.doi.org/10.1080/10635150801886156
http://sysbio.oxfordjournals.org/content/57/1/86.full.pdf+html
http://sysbio.oxfordjournals.org/content/57/1/86.full.pdf+html
http://dx.doi.org/10.1093/molbev/msp098

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Algorithms
	Notation, terminology & properties
	Brute force approach
	Inductive algorithm

	Implementation
	Sequential implementation
	Parallel implementation
	Code quality assessment
	Static analysis
	Dynamic analysis

	Experimental setup
	Empirical test datasets
	Hardware platform

	Results
	Verification of model generation algorithms
	Speedups
	Topological analysis (RF distances)
	Differences between AICc, BIC, AIC
	Impact of sample size definition
	Selected models

	Significance of results
	Model selection accuracy under simulation

	Discussion
	Conclusions
	Code & data availability

	Endnotes
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgments
	References

