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Abstract

Background: Cryo-electron tomography (cryo-ET) enables 3D imaging of macromolecular structures. Reconstructed
cryo-ET images have a “missing wedge” of data loss due to limitations in rotation of the mounting stage. Most
current approaches for structure determination improve cryo-ET resolution either by some form of sub-tomogram
averaging or template matching, respectively precluding detection of shapes that vary across objects or are a priori
unknown. Various macromolecular structures possess polyhedral structure. We propose a classification method for
polyhedral shapes from incomplete individual cryo-ET reconstructions, based on topological features of an

extracted polyhedral graph (PG).

Results: We outline a pipeline for extracting PG from 3-D cryo-ET reconstructions. For classification, we construct a
reference library of regular polyhedra. Using geometric simulation, we construct a non-parametric estimate of the
distribution of possible incomplete PGs. In studies with simulated data, a Bayes classifier constructed using these
distributions has an average test set misclassification error of <5 % with upto 30 % of the object missing,
suggesting accurate polyhedral shape classification is possible from individual incomplete cryo-ET reconstructions.
We also demonstrate how the method can be made robust to mis-specification of the PG using an SVYM based
classifier. The methodology is applied to cryo-ET reconstructions of 30 micro-compartments isolated from E. coli

bacteria.

Conclusions: The predicted shapes aren’'t unique, but all belong to the non-symmetric Johnson solid family,
illustrating the potential of this approach to study variation in polyhedral macromolecular structures.

Keywords: Polyhedron graph, Incomplete polyhedra, Classification from incomplete data, Cryo electron

tomography, Bacterial microcompartment

Background

Cryo electron microscopy (cryo-EM) involves imaging
biological samples flash frozen at cryogenic temperatures
using a transmission electron microscope (TEM). Cryo-
genic freezing in a frozen-hydrated state prevents the
biological sample from structurally deforming during
sample preparation [1]. Unlike traditional TEM or X-ray
crystallography, which also offer molecular to atomic
level resolution, cryo-EM thus enables the imaging of
macromolecular complexes, assemblies, cells and even
tissues in a near native state [2].
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Cryo-electron tomography (cryo-ET) collects data by
exposing the sample to an electron beam over multiple
tilting angles (Fig. 1 a), enabling 3-D reconstruction of
individual objects from the resulting 2-D projections.
This reconstruction, which involves inversion of the 3-D
Radon transform, does not require a priori assumptions
about the objects structure [2]. However, there are a
number of factors which limit the resolution of cryo-ET
reconstructions. First, due to limitations in the degree of
tilt of the mounting stage, the incomplete range of view
angles causes a “missing wedge” in the Fourier (projec-
tion) domain data [2]. This in turn causes resolution of
the 3-D reconstruction perpendicular to the sample sur-
face to be worse than in the plane of the sample surface
(Fig. 1b). Secondly, the total amount of radiation damage
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Fig. 1 Cryo-EM tomography: a Schematic of single axis cryo-EM tomography. The (small) sample placed on a stage which is progressively tilted
along a plane in a typical range of + 60°, while exposed to an electron beam. Each tilt angle generates a planar projection image, which are
collectively processed using an algorithm such as filtered back projection to generate a 3-d reconstruction of the original object. Due to the
limited range of tilt angles, the reconstruction doesn't have uniform resolution across the object. Typically, opposite ends (top and bottom) of the
3-d reconstruction in one direction have poor contrast resolution. b Mid-level cross-section from a 3-d cryo-EM reconstruction of an E. Coli cell.
The small enclosures (black arrows) are micro-compartments (MC). The red arrow shows the cell membrane. Note that part of the cell membrane
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is proportional to the number of view angles times the
radiation dose of the incident beam at a single view
angle [2]. This multiplicative effect imposes strict con-
straints on intensity of the incident beam [3]. The conse-
quently low and uneven resolution means that it can be
difficult to identify the structure of individual objects
from their cryo-ET reconstructions.

Here we investigate the structure of bacterial micro-
compartments (BMC): thin walled protein enclosures in-
side bacterial cells which separate certain metabolic
pathways from the remaining cytoplasm [4]. Previous
cryo-ET analyses of a class of BMCs known as carboxy-
somes, in two other strains of bacteria suggest that they
have a polyhedral, specifically icosahedral, external struc-
ture [5, 6]. Visual inspection of reconstructed slices
(Fig. 1b) and 3-d volume rendering (Fig. 2f) for our
BMCs also suggest a convex polyhedral structure. In

recombinant BMCs in E.coli, we demonstrate large vari-
ation in size and shape across copies within the same
bacteria.

Previous methods identifying structure from cryo-ET
reconstructions with missing wedge involves extracting
multiple subvolumes (subtomograms) of the structure of
interest, and then ‘averaging’ them, after appropriate
alignment, to improve the resolution [7]. Another ap-
proach is by matching subtomograms against a high
resolution template [8]. The limitations of present
methods are thus: i) the structure of the template needs
to be known/guessed in advance or ii) subtomogram
averaging fails to capture variation of shapes across mul-
tiple copies of the object. Instead, we propose to realize
the full potential of cryo-ET by identifying shapes using
data from individual objects, without averaging of any
sort or a priori assumptions about its shape. Further,
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Fig. 2 Extraction of polyhedral graph from cryo-EM reconstructions: a Upper level cross-sectional slice showing an MC with boundary partially
visible due to poorer resolution. The scale bar is 50 nm. b Hand-drawn segmentation showing interior (deep green), exterior (yellow). Light green
indicates a conservatively drawn region of uncertainty (caused by poor resolution) in which we suspect the object boundary lies. This region of
uncertainty is used to constrain the 3-d reconstruction. ¢ Stacked hand drawn boundaries from slices along the z-axis. Note that boundary
information is completely missing for slices above and below this stack. d Volume rendering of regularized least squares reconstruction of object
using data from stack in (b). Note missing wedge on right hand side. e Volume rendering of regularized least squares reconstruction of object
using data from stacks of slices along x, y and z-axis. f Ball and stick diagram of polyhedral graph (PG) for object in (e), drawn using Chimera. Blue
balls are observed vertices. Red lines are completed edges. Yellow lines are incomplete edges. Green balls are ends of incomplete edges

we examine how accurately shapes can be identified With a polyhedral structure in mind, we represent ob-
from reconstructions of poor resolution using this ject shapes as incomplete polyhedral graphs (PG), ie. a
methodology. set of vertices connected by edges. We have developed a
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pipeline for extracting the PG from cryo-ET reconstruc-
tions. We also identify a library of reference polyhedra
to which these objects should belong. Shape identifica-
tion can thus be achieved by classifying the observed in-
complete PG (which can be subject to measurement
error) to one of the reference polyhedra. Apart from
BMC:s, these techniques could potentially also be applied
to other biological objects exhibiting polyhedral struc-
ture, such as several types of viruses [1, 7, 9, 10] and
protein complexes such as clathrin [11].

Developing optimal classification rules in this setting
raises a number of methodological questions. Firstly, we
need an appropriate stochastic model for PGs. Stochastic
models for graphs typically assume that their edges are
generated by a random process, e.g. Gaussian graphical
models [12], exponentially generated random graphs
[13] or stochastic block models [14]. In our library, two
regular polyhedra can differ from each other in only a
face or two. It would be complicated to define a stochas-
tic model at edge level which could capture such small
differences. Instead, we propose to model the observed
PG as an incompletely sampled version of an underlying
deterministic complete PG. Based on this model, we
propose a method for estimating the sampling distribu-
tion of an incomplete PG for cryo-ET reconstructed im-
ages. Given that PGs are typically high dimensional, a
general non-parametric density estimate would appear
to suffer from the curse of dimensionality [15]. However,
the highly structured form of PGs allows us to treat the
sampling distribution like a discrete random variable
with limited support, enabling convergence of the pro-
posed density estimate at the parametric rate.

A second issue relates to how to incorporate informa-
tion from edges that are only partially visible due to poor
resolution (e.g. Fig. 2a): we can only identify one vertex
of such an edge. Such edges cannot be incorporated into
the adjacency matrix, which is commonly used to en-
code and analyse graphs [16]. To address this, we de-
velop statistics for incomplete PGs, somewhat analogous
to those used for right censored data.

Finally, previous approaches to classification with incom-
plete data involve a strategy of data augmentation, writing
the posterior density as: p(y,|xf) = [p(y;|«f, x7)p (i |x7)dx",
where y; is the i-th class label, 4 and «x" are the observed
and missing features respectively [17]. The difficulty in
implementing this approach lies in constructing an appro-
priate model for p(x}"|x7). Because the PG is uniquely speci-
fied by the polyhedron type, it is natural to first condition
on y; ie. obtain p(x;’|y;x7) and then take an expectation
over the polyhedron class, ie. p(x]"|x7) = Zp;"|y; x))p(v;).
The marginal probability p(x;”|x{) thus becomes dependent
on the class of polyhedra chosen, making it a circular for-
mulation. Instead, we propose a simpler procedure based
solely on observed (incomplete) data. By modelling the
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incompleteness as a censoring mechanism, we propose a
simulation based estimate of the probability density p(x7|y;).
We construct the Bayes classifier using this density estimate
and demonstrate that this classifier is accurate for most
polyhedra.

Extraction of the PG from tomographic reconstruc-
tions involves a number of processing steps such as ver-
tex and edge identification, which are potentially liable
to error, e.g. missing vertices and edges. We show the
accuracy of the Bayes classifier seriously deteriorates in
the presence of such errors. We propose two strategies
for robust inference in this setting: i) selection of PG fea-
tures, such as local topology, which are nearly preserved
despite random missing edges or vertices ii) use of dis-
tance based classification methods, such as support vec-
tor machines (SVM), which can recognize near
preservation. The methodology is illustrated by applica-
tion to a set of E. coli MCs and the results are compared
to those obtained for other types of bacteria.

Methods

Polyhedron models

We consider four families of convex polyhedral models,
possessing varying degrees of symmetry, for the pur-
poses of classifying data obtained from BMCs, namely
the Platonic, Archimedean, Catalan and Johnson solids.
Digital 3-d models of each of this library P of 123 poly-
hedra were constructed using a vertex enumeration algo-
rithm [18]. The vertices and edges of each polyhedron
were plotted using the UCSF Chimera (https://
www.cgl.ucsf.edu/chimera/) to generate ‘ball-stick dia-
grams, as shown in Fig. 6b. These ball stick diagrams
were used to create meshes for each face of the polyhe-
dron in MATLAB (www.mathworks.com). The meshes
were combined to give a 3-d volume rendering of the
polyhedron (see [19] for details).

Extraction of the polyhedral graph (PG)

Imaging and reconstruction

A single colony of E.coli cells expressing recombinant
microcompartments was inoculated into NCE minimal
medium supplemented with 1 % (w/v) succinate, 5 g/litre
of yeast extract, 50 mM 1,2-propanediol, 20 pg/ml of
tetracycline, 30 pg/ml of cefsulodin. Cells were grown at
37 °C with shaking for 24 h. The culture OD600 was ad-
justed to 0.5 with NCE minimal medium, mixed with
10 nm colloidal gold and applied to holey carbon grids
without any centrifugation. Excess solution was blotted
away with filter paper in a 100 % relative humidity cham-
ber and grids were then plunge-frozen in liquid ethane
and propane mixture (37:67) with a Vitrobot (FEI
Netherlands). The sample was imaged using single-axis tilt
angle cryo-ET at 300 kV on FEI G2 Polara transmission
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electron microscope. Images were collected on a lens
coupled 4 k x 4 k UltraCam (GATAN, Pleasanton, CA).

During imaging, the sample tilts around a single axis
from -60° to +60° with 1° intervals, yielding projection
images at each orientation (Fig. 1a). These 121 projec-
tions were aligned and digitally reconstructed by invert-
ing a Radon transform with cone beam geometry using
least squares based filtered backprojection in the IMOD
etomo module [20]. The reconstructed 3-d volumes have
multiple BMCs in the field of view (Additional file 5:
Figure S11), which were isolated as subtomograms using
the IMOD trimvol module (Fig. 1b). Our goal is to iden-
tify the vertices and edges on each of these recon-
structed BMCs and from this, construct their PG. Our
identification algorithm has two steps: i) Obtain ‘cleaned’
3-d volume renderings for each of the objects in the field
of view. ii) Identify edges and vertices from the cleaned
volume renderings.

Segmentation and volume rendering

Ideally, we would like to apply an automated segmenta-
tion algorithm to objectively isolate the 3-d volume of
each BMC. But BMC boundaries in the 3-d recon-
structed volumes are sometimes indistinct and they also
possess internal texture (Fig. 2a), meaning that auto-
mated segmentation using standard approaches such as
edge detection, seeded region growing etc. [13] yield
poor results. To suppress texture and maximize edge
contrast, we adopted a two step approach to segmenta-
tion: a) extraction of slicewise object boundaries in dif-
ferent orientations; b) reconstruction of object surface
from the collection of object boundaries. For step a), the
3-d volume was re-sliced in 3 orthogonal directions (ap-
proximately 100 slices each in the x, y and z directions)
using Amira (www.amira.com). Object boundaries were
marked by manual tracing on each slice using MATLAB
(Fig. 2b), yielding a point-cloud of the surface (Fig. 2c).
Although this exercise is quite tedious and time con-
suming (tracing for each object took about 6 h), we
undertook re-slicing in orthogonal directions because
the optimal direction for edge-contrast can vary depend-
ing on the 3-d orientation of the normal vector at any
given point on the surface.

In step b), for each set of x, y and z slices, we define
directional profiles f.(x,52), f,(x%2) and f;(x%2z). On a
given slice, the interior profile is defined to be=1 for
points inside the convex hull of the boundary points
(Fig. 2b). When the object boundary is closed, the exter-
ior profile is defined to be = 0 for points outside the con-
vex hull of the boundary points (the exterior). When the
object boundary isn’t closed (i.e. not completely visible),
the exterior is obtained by extending either end of the
visible boundary intersected by a bounding box (Fig. 2b).
Points which are neither in the interior or the exterior
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on the slice are defined as missing (Fig. 2b). To recon-
struct the object, flx,),z), we use the least squares fitting
criterion L(x,y,2) = (fx, , 2) - folx, 9, 2)* + (fx, , 2) = f (%,
,2) + (flx,y, 2) - (%9, 2))*) which yields the pointwise
mean of f,, f, and f; as the least squares estimate of . To
account for missing data, the least squares estimate is
modified to be the mean of all non-missing f,, f, and f,
values (Fig. 2d). The estimate is then post processed using
a Gaussian filter (Fig. 2e).

Measuring size and shape of reconstructed micro-
compartments

Volumes of the reconstructed BMCs were measured by
counting voxels in their interior, i.e. n =#W, where W
is a matrix whose rows are 3-d points {(x,5,2) : flx,y,2) >
0.5}. The gross shape of the BMCs was studied by fit-
ting an ellipsoidal model. Their sphericity was assessed
using sp, =r,/r; and sps =rs/ry, where r3<r,<rj, are
the lengths of the principal axes of an ellipsoid, ob-
tained as the eigenvalues of W’ W, obtained from least
squares fitting of an ellipsoid to the point set defined
by the rows of W [21]. For a spherical object, we expect
spa =sps3=1. Given this variability, in this paper we
focus on the combinatorial structure of a polyhedron,
which is invariant with respect to invertible affine
transformations, such as changes in scale, rotation,
translation, shear, similarity etc. In particular, straight
lines and planes, which form the edges and faces of a
polyhedron, are preserved under invariant affine trans-
formations [22].

Identifying vertices and faces

Our algorithm for identification of vertices and faces on
the object involves two steps. i) Visual identification of
potential vertices and edges ii) Validation. Identification
and labelling was done in the UCSF Chimera software
[23], which allows for convenient 3-d visualization and
annotation of edges and vertices. The annotation distin-
guishes between complete and incomplete edges (Fig. 2f).
For validation, we exploit the fact that a polyhedron is
composed of planar faces. Given a set of vertices V7,
Va,..., Vi that purport to form a face, i.e. edges between
these vertices form a cyclic graph, we compute the 3x 3
matrix VV? where V= (V3, Va..., V3) is a 3 x k matrix
comprising co-ordinates of the vertices. Next we com-
pute the eigen-values A; >, > 15 of VV7. If the points
are exactly co-planar, we expect A3 =0. To test the hy-
pothesis Hy: Vertices are co-planar vs. Hy: Vertices are
not co-planar, we compute distribution of the test statis-
tic T =13 /)12 The null and alternate distribution of the
test statistic are computed respectively from i) visually
identified quadrilateral faces and ii) four vertex sets
comprising adjacent triangular faces (Fig. 3a). Using
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Fig. 3 a Distribution of coplanarity test statistic (As/A,) for observed non-triangular faces across 30 MCs. Note that As/A, =0 if the ‘face” is indeed
planar. b Distribution of coplanarity test statistic obtained by combining pairs of adjacent triangular faces. Since adjacent faces of a convex
polyhedron aren't planar, we expect As/A, > 0. Based on these distributions, any identified ‘face’” with A3/, > 0.1 was declared non-planar and
additional edges were added. ¢ Distribution of observed edges for 30 MCs. The x-axis is no. of edges per face

the rule to reject Hy if 7> 0.1, we identified 68 quad-
rilateral or pentagonal faces and 717 triangular faces
in the 30 BMCs. Based on this identification, the 30
BMCs had between 10 and 18 faces each, with the
median being 15 (Additional file 1: Table S4). Most
BMCs had 1-2 quadrilateral faces, with the rest being
triangular faces (Fig. 3c). The non-degenerate face

type distribution suggests that a Platonic model may
not be appropriate for BMCs.

Regularity of faces

We measure the regularity of an identified face using
1. = s./€, where € and s, are the sample mean and standard
deviation of all edge lengths in the face. This is a
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dimensionless measure: if a face is a regular polygon, we
expect r, = 0. For an isosceles triangle with edge lengths 1,
2 and 2, r,=0.34. The r,; statistic was analyzed across
identified faces j within BMCs i =1,..., 30, using the model
Teij = fh + Mj + &5, where (1 is the overall mean regularity, m1;
is the effect of BMC and ¢;; is the within BMC variability,
both assumed to have independent random Gaussian distri-
butions with mean 0 and SD o,, and o respectively. This
analysis yielded ji = 0.22, 67 = 0.10 and &, = 0.03, sug-
gesting that i) faces are non-regular polygons ii) the degree
of non-regularity varies within an object. Both these con-
clusions point to the difficulty of using metric properties,
i.e. lengths, distances and angles of the BMCs to predict
their structure with a polyhedron model. Consequently, we
focus solely on their topological properties.

Topological features of a polyhedron graph

Steinitz’s theorem states that any (3D) convex polyhe-
dron is isomorphic to a planar graph, known as the poly-
hedral graph (PG) [22]. The structure of a graph is
captured by its adjacency matrix A = ((a;)), where a; =1
if there is an edge between the i-th and j-th vertices, 0
otherwise. Important global properties of a graph in-
clude the number of vertices V, edges, E and faces F
[16]. For incomplete polyhedra, we note that each of
these measures is right censored. Further, because edges
could be counted when vertices are missing, Euler’s well
known relation for convex polyhedra, V - E+ F=2 does
not hold for incomplete data.

We also consider local topological properties L such as
the distribution of face types (Fs, Fy, Fs, Fg) i.e. count of
the number of triangles, quadrilaterals, pentagons and
hexagons in each BMC (Fig. 3¢c) and the distribution of
vertex degree (V3, Vy, Vs, V), i.e. the number of edges con-
nected to a vertex (Additional file 2: Figure S7). We
also consider higher order topological properties, namely
i) edge adjacency matrix, EV, where EVj;=# edges with
vertices of degree i and j at either end and ii) face adja-
cency matrix, FV, where FV;; = # edges with faces compris-
ing i and j vertices on either side. These local topological
features can be informative about the choice of polyhedral
model from incomplete observations: we have already
noted how the non-degenerate face type distributions can
help rule out Platonic solids. Similarly, the non-degenerate
vertex degree distribution of BMCs helps rule out Archi-
medean solids (Additional file 2: Figure S3 and S7).

Local topological properties are recorded in two ver-
sions: complete and incomplete. The complete version is
based on only those features which are completely ob-
served, e.g. a closed triangular face with all three edges
completely visible. A limitation of the adjacency matrix
is that it cannot accommodate edges where one vertex is
missing (Fig. 2f). To capture this information, we
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propose extensions of topological features for incom-
plete data, e.g. a face with three edges visible and one
side open (Fig. 2f): it could be a face with 3, 4 or 5 (or
more) edges. To reflect this ambiguity, we create a cumu-
lative right censored version of the face type distribution:
(F34, Fay, Fs4, Fs.), where F3, is the number of faces with
at least 3 edges, etc. An analogous distribution (V3,, Vy,,
Vs, Vey), is created for vertex degree. The collection of all
these features is termed the topological profile (TP) of a
polyhedron (Table 1). The list of all features for the 123
solids in P is shown in Additional file 3: Table S3 and for
the 30 BMCs in Additional file 1: Table S4.

Characterizing distribution of truncated
polyhedra

In order to compare the PG of a BMC to that of a poly-
hedral model, we need to account for the effect of miss-
ing sections in a polyhedral model on its PG. As seen in
Figs. 1a and 2d, the effect of the missing sections can be
approximated by slicing off two end sections of the poly-
hedron by parallel planes (Fig. 4a). The structure of the
resulting PG, as well as features derived from it, e.g. the
number of vertices, edges etc. as well as face types, de-
pends on i) the orientation ¢ of the plane(s) ii) the per-
pendicular distance d of the plane from the centroid of
the polyhedron y (Fig. 4b). Since truncation is a geomet-
ric operation, we operate on the matrices formed by the
Cartesian co-ordinates of the vertices: Vp = (V1,.,Vn), a 3
x m matrix and discretized edges of a polyhedron model
Ep = (E4,..E}.), a 3 x le matrix, where e is the number of
edges and each edge i.e. line segment is discretized into
a set of [ equispaced points in 3-d. Any pair of truncat-
ing planes can be obtained by specifying two quantities:
a) the perpendicular distance d between the plane and
the centroid of vertices of the PG, yy=m" lym V. The
distance d represents the amount of truncation which is
determined by the imaging protocol and the size of the
object. The normalized truncation percentage is ob-
tained as 200*(1 — d/dn..), where dy,,=max [|V; —
uvl|, i = 1,...., m. b) the random orientation ¢ of the nor-
mal to the truncation plane, which is obtained by sam-
pling ¢ = (¢, ¢y) ~ U[0, 21] x U[O, 2m]. The vertices and
edges of the rotated polyhedron are obtained as RVp =
Ry Vp and REp =Ry Ep where Ry is the 3 x 3 rotation
operator matrix with rotation angle ¢. The vertices and
edges of the truncated and rotated polyhedron are ob-
tained by excluding all vertices TRVp={RV;: ||RV; —
uvl| >d, i=1,..., n} and all portions of discretized edges
TREp=A{RE;p: ||REx; — | >d, k=1,...,1 i=1,...,e}.

The PG of the truncated polyhedron, constructed from
TRVp and TREp. Its topological profile is denoted as a
truncated topological profile (T7TP). To determine how
many orientations 7 need to be sampled to ensure ad-
equate coverage of all possible truncated polyhedra
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Table 1 Categorization of features in the topological profile (TP)
of a polyhedral graph (PG)

Feature type

Topological profile Dimension Complete Incomplete Global Local
component

V,EF 3 X X

Face type 6 X X
distribution

Vertex degree 6 X X
distribution

At least face type 8 X X
distribution

At least vertex 8 X X
type distribution

Edge adjacency 10 x 10=100 x X
matrix

Face adjacency 10x 10=100 x X

matrix

Total 231

arising from a given polyhedron ®€P, we examined the
dependence of number of unique T7Ps on n. As there
were very few or no new unique 77Ps being generated
beyond 7 = 4500 sampled orientation for most polyhedra
(Fig. 5a), we decided this was adequate. The relatively
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small number of unique profiles also indicates that prob-
ability distribution of TTPs, T, for a given polyhedron ©
€P, p(T|®) has limited finite support. It follows that
p(T|®) can be estimated by the empirical discrete dens-

ity function: p(T|®) = n‘IZI(TPi =T), where () is
i—1

the indicator function. Using the properties of the Bernoulli
distribution, we note that p(7|®) is an unbiased estimate
of the density p(T | ®) and converges to it at the usual
parametric rate, with variance ™ 'p(T|®) (1 - p(T|®)). The
finite support suggests that the T7TP are a form of indexing
or hashing of the underlying truncated polyhedra.

Bayes classifier

Given the estimated TTP distributions p(7|®) for all
polyhedra ©eP, the Bayes classifier can be estimated as
O(T) = argmax j (O|T), where the posterior density is
obtained as:

H(O|T) = p(T|0)p(6) (1)

> B(T10)p(6)

The accuracy of the classification rule is evaluated
by generating an independent set of truncated test

I

b
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Fig. 4 Truncation of polyhedra to simulate the missing wedge and its effect on the polyhedral graph (PG): a A cube (Platonic polyhedron
originally with V=8, E=12, F=6) truncated by two parallel planes, resulting in V=6, E=6, F=0 (completely observed), fF3 +=F,+=6
(incompletely observed faces). b Effect of varying the orientation of the truncation planes. (i) Original hexagon V=6, E=6, V,=6 (i) V=4, E=2,
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profiles T2, i=1,2,..., nt for all polyhedra ®cP. The
rank of the matrix of training set features TP (effect-
ive dimension) was 44. We identified 8 pairs of
solids in P which share the exact same (complete) poly-
hedral profile (Additional file 3: Table S3). For identifiabil-
ity, we will identify these pairs as the same solid during
classification, leaving us with 115 solids. We assume a
non-informative uniform prior over these 115 solids. Mis-
classification occurs if the classification rule predicts the
wrong structure based on the observed polyhedral graph
of the object. The overall misclassification error is de-

m(0) ZZII(@(T?)::@) and confusion
matrix My g = ZZII(@(T?) —0) VO, ocPp.

Since simulated data are generated from a known polyhe-

fined as

dral model, it is possible to estimate average misclassifica-
tion errors in this setting by generating many replicates
datasets from the same polyhedron model.

Results

Features of polyhedral models

At the highest level of symmetry are the 5 platonic
solids, which have all faces congruent and an equal
number of edges meet at each vertex. Thus both the dis-
tribution of number of edges per face and number of
edges per vertex (vertex degree) is degenerate for these
solids (Additional file 2: Figure S1 and S2). All 5 platonic
solids have been used as models for molecular and crys-
tal structure. In particular, the icosahedron has been
identified as the structure for BMCs occurring in two
other strains of bacteria [5, 6]. At the next level of sym-
metry are the 13 Archimedean solids, which have a
unique vertex degree, but two types of faces (Additional
file 2: Figure S3 and S4). Nine of the Archimedean solids
can be obtained by truncation of Platonic solids, so they
are plausible candidates, given the truncated nature of
the observed data. Their counterparts are 13 Catalan
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solids, which are duals of the Archimedean solids, in the
sense that they have a unique face type, but two types of
vertex degree. At the lowest level of symmetry are the
Johnson solids, which have regular polygons as faces,
but there is no restriction on which faces can appear on
a polyhedron. It was proved that there are only 92 such
convex polyhedra possible [24]. The distribution of both
the vertex degree and face type is non-degenerate for
Johnson solids (Additional file 2: Figure S5 and S6).

Size and shape of reconstructed micro-compartments
Objects whose largest cross-sectional slices were found
too small to visually trace edges were were excluded due
to difficulty in segmentation. The remaining 30 seg-
mented BMCs range in volume from 0.04 to 3.35 attoli-
tres (=107'® litre), with a mean of 1.15 attolitres. In the
30 BMCs, mean (SD) of sp, was 0.81 (0.1) and of sps
was 0.62 (0.09). The variation in size and aspect ratios
sp, and sps across the segmented BMCs clearly suggests
variability in their gross makeup, although the shape
changes could also be due to deformation during image
acquisition or reconstruction.

Classification with simulated data

The key result of this paper is that average overall mis-
classification error m(®) is small (< 0.04) for a typical
polyhedral shape © in our library P (Fig. 5b). However,
it can be larger (upto 32 %) for some solids. As expected,
the misclassification error increases with the degree of
truncation.

Classification with real data

We found an exact match between the topological pro-
files of observed BMCs and TTPs generated from the li-
brary P for only 7/30 cases. This prompted us to
examine other classification methods which are not reli-
ant on an exact match, but least distance from training
data. To this end, we considered two commonly used
classification procedures, linear discriminant analysis
(LDA) [25] and support vector machines (SVM) [26].
The idea is to use the TTPs generated from P as a train-
ing set (with labels) to develop decision rules and to
evaluate them on the independent test set, as done for
the Bayes classifier. Implementing the SVM classifier
with on all solids presented a computational problem, as
the space and time requirements increase rapidly with
training set size [27]. We therefore restricted the SVM
computation to all solids with 20 vertices or less, with
the justification that the maximum number of observed
vertices in BMCs was 10 and for the Bayes classifier,
Mg o < 0.003 if ® has > 20 vertices, while ® has 10 or
less. To assess the performance of the SVM and LDA
classifier, we compute their regret function, relative to
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the optimal Bayes classifier, as rsya(©®) = mgsyp(O) -
Mpayes(©) and analogously for LDA. The mean (SD) re-
gret over the 54 solids in the library P with 20 vertices
or less, was 0.004 (0.01) for SVM and 0.15 (0.12) for
LDA at 20 % truncation. This suggests that SVM may be
able to deliver very similar performance to the Bayes
classifier, with the added advantage of not requiring an
exact profile match.

Robustness of results

Given the large number of processing steps involved in
obtaining the PG from raw cryo-ET data, it is possible
that the PG contain some errors. We have examined
each step of the processing pipeline to examine their im-
pact, as outlined below.

Application to simulated structures

We have established that with simulated polyhedral
structures, we can achieve very accurate classification.
To do this, we generated 3-d mesh models of polyhedra
from our library of 128 structures (Additional file 2:
Figure S8 (a)-(d)). The polyhedron was truncated in
at either end in one orientation to mimic the effect of un-
even resolution due to reconstruction. Each truncated
polyhedron model was sliced in 3 orthogonal directions.
Segmentation was performed on each slice using an auto-
mated edge detection algorithm in MATLAB. Unlike real
data, manual segmentation was not necessary due to the
improved contrast resolution. The 3-d object was then ‘re-
constructed’ from the segmented boundaries using the
volume rendering algorithm we have developed. Subse-
quently, we manually identified the edges and vertices in
the form of a ‘ball and stick diagram’ (Additional file 2:
Figure S8 (e)) to construct the incomplete polyhedral
graph (PG) of the structure. When we applied our SVM
based classification algorithm to the features extracted
from this PG, we obtained classification accuracy which
was similar to that shown in Additional file 2: Table S2.

Robustness in image processing

With real data, when there is no independent determin-
ation of the structure available, it is not possible to ex-
ternally validate the final classification result. Instead, we
internally validate intermediate steps in the pipeline and
examine the sensitivity of our results to perturbations in
the data or tuning parameters of the algorithm. The first
step we examined was tomographic reconstruction. Here
we examined the sensitivity to ‘slice thickness; a key tun-
ing parameter which controls the resolution the recon-
structed volume in the IMOD eTOMO module (see
http://bio3d.colorado.edu/imod/doc/etomoTutorial. html
for details). We found acceptable contrast resolution for
slice thickness values in the range from 200 to 500 slices
(in steps of 100). The second step we examined was
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segmentation and volume rendering: here we examined the
sensitivity of volume rendering to using data from only 1 or
2 orthogonal directions as opposed to 3. We observed that
while the rendering was unaffected in regions close to the
sample plane, there was an appreciable effect in regions af-
fected by the missing wedge. The third step we examined
was visual identification of the polyhedral graph. Here we
made use of the interdependence between vertices, edges
and faces of a polyhedron. Where vertices were identified,
we cross-checked that they were connected to at least 3
edges and when both vertices and edges were identified, we
performed principal component analysis to ensure that no
two adjacent faces were co-planar.

We examined the sensitivity of our methods to object
size and image resolution. For this purpose, we applied
our method to another dataset based on a different type of
BMC, but acquired with the same instrument as the data-
set presented here. This new dataset had a pixel size of
12.24 A x 1224 A, while a typical central slice was ap-
proximately 800 A in diameter. By way of comparison, the
data set we analysed with the recombinant BMCs had a
pixel size of 9.62 A x 9.62 A and typical central slice diam-
eter of approximately 1300 A. Although the contrast reso-
lution of edges was similar in both datasets, we found that
it was much harder to identify vertices and edges from the
volume renderings of objects in the new dataset due to
relatively smaller size. For the same reason, we excluded
smaller BMCs from analysis in the dataset presented here.
This sensitivity analysis highlights a critical limitation of
the proposed methodology, in that it can only be applied
to objects that are sufficiently large (> 1100 A), particu-
larly in the type of imaging setup used for here.

Robustness to mis-specification in the PG

The fact that there are so few exact matches between the
TTP from the BMC and the TTP of the model polyhedra
suggests that there may be errors in the BMC TTPs. Given
the large number of processing steps required to obtain
the PG, there are many potential points at which errors
could arise. Ideally, we would like the classification pro-
cedure to be robust with respect to such errors. Due to
our method for validating marked edges, it is more likely
that we might miss a vertex or edge than to identify one
that doesn’t exist. To examine robustness, we introduced
perturbations in the test set profiles by randomly deleting
a vertex and linked edges from the truncated polyhedron
and recomputing the corresponding 77TP. Note that most
TTP features are affected by this deletion. The training
data still consisted of the original 77Ps. As very few exact
TTP matches were found in the test set, S0 715,e5(0®) ~ 1.
At 20 % truncation, the deterioration in migy(®) was
more modest (mean of 0.25 and max of 0.54) (Fig. 5¢),
while the corresponding m1;p4(®) had a mean of 0.36 and
max of 0.89. Detailed analysis of the confusion matrix
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Mg o, shows that even with a mis-specified PG, the
chance of misclassifying a Platonic solid as a Johnson solid
is very small (< 0.054, Additional file 2: Table S1).

The importance of global, local and incomplete topology
We computed classification rules based solely on feature
subsets defined in Table 1. For correctly specified truncated
topological profiles, just the local and complete features ap-
pear to be similarly accurate as all features (Fig. 5¢). How-
ever, when the PG is mis-specified, i.e. with random vertex
dropped, the importance of incomplete and global features
becomes more apparent, as the average regret for complete
features is 0.06 and for local features is 0.04 (Fig. 5d). These
figures also illustrate the inadequacy of the global features
alone in accurately classifying from truncated polyhedra.

Application to micro-compartment data

The solids predicted by the SVM classifier for 30 BMCs
were all Johnson solids, with the most common being
the sphenocorona (J86) and the elongated pentagonal bi-
pyramid (J16) (Fig. 6b, Additional file 1: Table S4 and
Additional file 3: Table S3). The consistency in predic-
tions across assumed levels of truncation ¢ and s, =
10 %, 15 %, 20 %, 25 % or 30 %, t=#s, was measured

using the estimated match probability p)i =307

30 Ao R R
Zj:11(®175¢@1~f)’ where 0, and ©,, are the respective

predicted polyhedra. The mean (SD) for pi: was 0.81
(0.12), suggesting good agreement, although it expect-
edly decreased as a function of |t — s|. The positive pre-
dictive =~ value  was  estimated as PPV =

P(B|6) =1-Mg />, ;Mg - At 20 % truncation,
the estimated average PPV based on mis-specified
(random vertex deletion) test PGs was 0.7 (Additional
file 2: Table S2), suggesting moderately high confi-
dence in the predictions.

Methodological discussion

We have demonstrated that it is possible to accurately
classify polyhedral shapes from truncated versions using
features of their polyhedral graph (PG) within a large li-
brary of polyhedra. There are a few shapes which are
harder to classify, because their PG is either identical or
very closely resembles the PG of another polyhedral shape
in the class. For typical solids, the degree of accuracy is
minimally affected by the degree of truncation, within a
range of 10 % to 30 % truncation. Even when the PG is
mis-specified by randomly dropping vertices, most shapes
in the library can be classified with reasonable accuracy.
In conjunction, these results establish the feasibility of
predicting polyhedral shapes from individual incomplete
3-D reconstructions obtained using cryo-ET. Our results
indicate that even when two of these BMC share a
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common polyhedral structure, they can vary widely in
size, aspect ratios (Additional file 2: Figure S9). Fur-
ther there is significant variation in edge lengths
within a face. Together, these imply that there is no
straightforward way to appropriately align any pair of
these BMCs. Consequently physical averaging of sub-
tomograms, as a strategy to improve resolution, is not
feasible here. This result emphasizes the utility of a
single object analysis approach for studying hetero-
geneity of shape and asymmetry, both of which might
be masked by sub-tomogram averaging.

Our results with simulated polyhedral structures in-
dicate that the pipeline accurately identifies the true
polyhedral structure when high resolution data is
available. We have introduced various cross-checks to
ensure that the PG is accurately identified. To guard
against possible errors that might creep in despite
these chesk, we have examined the impact of deleting
a random vertex on the sensitivity of the classification
process: it does result in a substantial increase mis-
classification error. Even in this setting, support vec-
tor machine based classification appears to vyield
reasonable misclassification error rates for most poly-
hedral shapes. We therefore recommend using the
SVM based classifier over either the exact Bayes clas-
sifier or linear discriminant analysis for this applica-
tion. For large scale processing and observer
independent results, it is desirable that the entire
pipeline is automated. With real data, we found that
many standard automated methods for segmentation
of object boundaries or recognition of edges produced
unacceptable levels of spurious results. Further work
is required in developing automated methods for de-
tecting edges in 2 and 3-d, which are suited to the
complex texture of cryo EM reconstructions.

We also developed an alternative approach to simpler
method for identifying shapes from incomplete polyhedra,
based on extending partially visible edges and predicting
missing vertices based on their points of intersection
(Chapter 5 of [19]). The results from that approach also
suggest that the shapes belong to the Johnson solids fam-
ily. However, we prefer the classification based approach,
because it allows us to quantify the uncertainty of predic-
tion. An important limitation of the proposed method is
that the single object analysis could only be applied to ob-
jects that are sufficiently large in maximal cross-sectional
diameter (> 1100 A). More broadly, the method is poten-
tially applicable to any macromolecular structure where a
polyhedral structure is suspected, such as virus caspids.

Conclusion

Results for recombinant micro-compartments (BMC) in
E.coli. indicate that they are all similar to Johnson solids in
shape: these are non-symmetric polyhedra (Additional file
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4: Figure S10). Secondly, the predicted shapes were not all
identical, though two shapes predominated. Our sensitivity
analysis indicates that even though there may be uncer-
tainty about the exact polyhedral structure of a particular
BMC (some Johnson solids are quite similar to each other),
we can confidently rule out the possibility that they have a
symmetric shape, i.e. a Platonic solid. This result contrasts
with previously published results for BMCs from other
types of bacteria, which suggest a unique symmetric icosa-
hedral shape [6, 28]. For molecular structures generated
from inhomogeneous elastic shells, i.e. those composed of
at least two types of molecules, such as BMCs, Vernizzi et
al. [29] have argued, using simulations based on minimum
energy principles, that such shells should spontaneously
buckle into non-symmetric polyhedral shapes within the
Johnson family. Further they have argued that the exact
shape would vary somewhat randomly. Our results provide
empirical validation of these simulation based results. The
heterogeneity of shape suggests two possible hypotheses; a)
there might be a diversity of functionality between the dif-
ferently shaped BMCs b) non-symmetric shapes may have
been favored by evolution because they provide a more op-
timal surface for catalytic operations than a symmetric
polyhedral or spherical shell. Further work will be required
to test these hypotheses.

Additional files

Additional file 1: Table S4. (in separate Excel spreadsheet due to size):
List of estimated polyhedral graphs for 30 micro-compartments of E. coli,
as represented by their topological profiles. (XLSX 33 kb)

Additional file 2: Figure S1. Distribution of number of edges per face
for Platonic solids. Figure S2. Distribution of vertex degree (number of
edges meeting at a vertex) for Platonic solids. Figure S3. Distribution of
vertex degree for Archimedean solids. Figure S4. Distribution of number
of edges per face for Archimedean solids. Figure S5. Distribution of
vertex degree for 6 Johnson solids. Figure S6. Distribution of number of
edges per face for 6 Johnson solids. Figure S7. The distribution of vertex
degree in MCs. Figure S8. Simulated standard Polyhedron and their view
after truncation - (a) A simulated icosahedron, (b) the icosahedron with
missing top, (c) A simulated sphenocorona, (d) the sphenocorona with
missing top and (e) the ball-stick diagram on (d). Figure S9: Distribution
of aspect ratios of reconstructed BMCs by identified shape. Table S1. Test
set misclassification error for SYM classifier summarised by class of solid.
This analysis is based on the set of 54 solids with 20 vertices or less.
Table S2. Predicted polyhedral shapes for 30 E. coli microcompartments
using the SVM classifier. The names of the solids corresponding the serial
numbers are given in Table S3 and all belong to the Johnson solids
family. The positive predictive value (PPV) is the chance that the correct
solid was identified, based on estimated misclassification errors obtained
using a mis-specified polyhedral graph test set. Table S5. Categorization
of features in the topological profile (TP) of a polyhedral graph (PG).

(PDF 702 kb)

Additional file 3: Table S3. (in separate Excel spreadsheet due to size):
List of 123 polyhedra in the library P, together with class and topological
profiles (TP). Polyhedral pairs with identical TP are noted. (XLSX 99 kb)
Additional file 4: Figure S10. (In separate file titled: 2D view of

complete tomograms.pdf) Tomograms showing objects selected for
reconstruction. (PDF 4567 kb)
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Additional file 5: Figure S11. (In separate file titled: Individual BMC
Shapes.pdf) 3-d volume renderings of individual reconstructed BMCs,
followed by 3-d volume renderings of identified polyhedral shapes.
(PDF 470 kb)
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