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Abstract

Background: Amplicon-based targeted resequencing is a commonly adopted solution for next-generation sequencing
applications focused on specific genomic regions. The reliability of such approaches rests on the high specificity and
deep coverage, although sequencing artifacts attributable to PCR-like amplification can be encountered. Between these
artifacts, allele drop-out, which is the preferential amplification of one allele, causes an artificial increase in homozygosity
when heterozygous mutations fall on a primer pairing region.
Here, a procedure to manage such artifacts, based on a pipeline composed of two steps of alignment and variant
calling, is proposed. This methodology has been compared to the Illumina Custom Amplicon workflow, available on
Illumina MiSeq, on the analysis of data obtained with four newly designed TruSeq Custom Amplicon gene panels.

Results: Four gene panels, specific for Parkinson disease, for Intracerebral Hemorrhage Diseases (COL4A1 and COL4A2
genes) and for Familial Hemiplegic Migraine (CACNA1A and ATP1A2 genes) were designed.
A total of 119 samples were re-sequenced with Illumina MiSeq sequencer and panel characterization in terms of
coverage, number of variants found and allele drop-out potential impact has been carried out. Results show that 14 % of
identified variants is potentially affected by allele drop-out artifacts and that both the Custom Amplicon workflow and
the procedure proposed here could correctly identify them.
Furthermore, a more complex configuration in presence of two mutations was simulated in silico. In this configuration,
our proposed methodology outperforms Custom Amplicon workflow, being able to correctly identify two mutations in
all the studied configurations.

Conclusions: Allele drop-out plays a crucial role in amplicon-based targeted re-sequencing and specific procedures in
data analysis of amplicon data should be adopted. Although a consensus has been established in the elimination of
primer sequences from aligned data (e.g., via primer sequence trimming or soft clipping), more complex configurations
need to be managed in order to increase the retrieved information from available data. Our method shows how to
manage one of these complex configurations, when two mutations occur.
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Background
In the last 30 years, Sanger sequencing has been the gold
standard technique in molecular diagnostics. Recent years
have witnessed the advent of Next Generation Sequencing
(NGS) technologies that have greatly improved sequencing
capability, while dramatically decreasing the cost per se-
quenced base. NGS techniques generate high-throughput
genomic data and specific analysis procedures (called bio-
informatic pipelines) are currently developed to extract the
information of interest from the extremely large amount of
raw data generated as output from NGS experiments.
While whole-genome and whole-exome sequencing exper-
iments are exploited to investigate the entire genetic heri-
tage of an individual, targeted re-sequencing applications
have been introduced for those investigations where only
small, user-defined portions of the genome need to be se-
quenced. This last approach is widely employed to study
single- or multi-gene disorders [1].
Amplicon-based applications for targeted re-sequencing

are a commonly adopted solution [2, 3]. These approaches
are based on the design of synthetic oligonucleotides (or
probes), with complementary sequence to the flanking
regions of the target DNA to be sequenced.
Commercial gene panels are available to investigate

widely studied diseases (e.g.: Illumina TruSeq Amplicon
Cancer Panel, Illumina TruSight Myeloid Amplicon
Panel), while customized gene panels can be designed to
meet the specific requirements (e.g.: Illumina TruSeq
Custom Amplicon, Life Technology’s AmpliSeq). Multi-
gene custom panels for neurological diseases are today cur-
rently employed in both research and diagnostics [2, 4, 5].
Amplicon-based sequencing approaches are character-

ized by high specificity and deep coverage [1] and have
been successfully employed both with good-quality DNA
sources such as blood or frozen tissues and with more
challenging samples extracted from formalin-fixed and
paraffin-embedded tissues [6]. Since amplicon-based
sequencing is still based on PCR amplification, some of
the artifacts that can be encountered in traditional
Sanger sequencing are still present, such as nucleotide
misincorporation by polymerase, chimera formation
(amplicons containing motifs from different alleles) and
allelic drop-out (ADO, preferential amplification of one

allele, causing an artificial increase in homozygosity
values) [7–10].
Several efforts to manage such artifacts have been

attempted, including the progressive development of gold
standard rules for PCR, based on the use of independent
amplification reactions, the reduction of PCR cycle num-
ber, the increase of elongation time and the addition of a
reconditioning step [11, 12]. Other approaches are based
on the modification of experimental design by introducing
additional redundant overlapping amplicons to over-cover
the target regions [2].
Further methodologies include the use of replicated

amplicons and of a specific workflow to classify each
amplicon as a putative allele or an artifact [7]. Advances in
the bioinformatics field led to the creation and the devel-
opment of algorithms to manage such artifacts during the
analysis (e.g.: AmpliVar [13], TSSV [14] and Mutascope
[15]). AmpliVar is based on the reduction of the number
of input reads to be aligned to a reference genome by
grouping for primer sequence in a key-value structure,
where each group is analyzed independently [13]. TSSV is
a tool specifically designed to profile all allelic variants
present in targeted locus, able to detect and characterize
complex allelic variants, such as short tandem repeats
[14]. Mutascope is a software dedicated to the detection of
mutations at low-allelic fraction from amplicon sequen-
cing of matched tumor-normal sample pairs, based on
variant classification as somatic or germline via a Fisher
exact test [15]. New bioinformatic pipelines, based on pri-
mer trimming and perfected variant calling have also been
developed and tested on synthetic amplicon datasets [16].
Also, manufacturer’s proprietary software for the analysis
of amplicon-based data is available, like Ilumina MiSeq
Reporter Custom Amplicon workflow (Illumina, Inc., San
Diego, CA), based on primer sequence soft-clipping and
on the alignment of each read with the expected ampli-
con, thus obtaining a fast and reliable variant identifica-
tion procedure. AmpliVar and Mutascope performances
were compared to Illumina workflow on five separate
amplicon assays [13]: AmpliVar sensitivity was higher than
Mutascope and variant identification was in full accord-
ance with Illumina workflow. It is worth noting that none
of the previously described tools is designed to manage
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ADO artifacts, with the exception of Illumina workflow,
via primer sequence soft-clipping.
ADO entity is tremendously variable, depending on the

type and on the position of the primer-sequence mis-
match. Single nucleotide mismatches occurring at the 3’
terminus of a primer can dramatically affect amplification
efficiency (with a yield reduction up to 100-fold), depend-
ing on mismatch position (e.g.: last four bases are the
most affecting amplification efficiency) and on mismatch
nature (e.g.: A:G, G:A and C:C are the worst com-
binations) [17–20]. Widely used, online available tools for
primer design show that a single nucleotide mismatch can
lower primer melting temperature up to 18 °C [21], with
serious impacts on process efficiency. Nucleotide inser-
tion/deletions have an even more disruptive effect.
In this paper, we have considered the exemplificative

configuration of a single nucleotide mismatch and hy-
pothesized the worst-case configuration of a yield reduc-
tion up to 100-fold, but drawn conclusions can be
extended to more favorable cases with mitigated yield
reduction and to more general cases with insertions or
deletions falling on primer-matching sequence.
An exemplificative configuration in which ADO-

related artifacts can affect variant discovery is reported

in Fig. 1a. Here, two alleles are represented, one of them
containing a single nucleotide variant (C > T, green). The
wild type allele (on the left) perfectly pairs with both the
red and blue primer couples, generating both blue and red
amplicons, not containing the mutation. The mutated
allele (on the right) perfectly matches the red primer
sequence only, thus generating the red amplicon, contain-
ing the mutated sequence. The blue amplicon is rarely gen-
erated by the mutated allele, since, we suppose, imperfect
sequence matching between primer and sequence biases
amplicon formation towards wild-type allele. During vari-
ant calling step, the reads containing the mutation account
for a fraction that is often neglected by variant callers
(<25 % of total reads), thus resulting in a false homozy-
gosity. An even more complex configuration is represented
in Fig. 1b, where an additional mutation (G >A, purple) is
present. This mutation is present in heterozygous state, on
the same allele containing the mutation illustrated above
(C > T, green). Although not falling on a primer matching
sequence, this second mutation is hidden and variant call-
ing issues are the same as illustrated before.
We designed a methodology to prevent ADO artifacts,

based on a first step of alignment and variant calling
after primer sequence trimming (Fig. 1c) and on a

Fig. 1 Allele Drop-Out related artifacts in variant identification. a One mutated (C > T, in green) and one wild type allele are shown. Only amplicons
originated from primers pairing a non mutated region (in red) are randomly generated by both alleles, while primers pairing the mutated region (in blue)
preferentially amplify the wild type allele. b In this configuration, a second mutation (G > A, in purple) is also present on the mutated allele. This mutation
is masked by ADO effects, since the mutated allele is never amplified by blue primers. c Primer trimming (i.e., the removal of primer sequences from
reads) restores the balance of aligned bases in the mutated position. d Primer trimming in this context is not sufficient to restore a balanced number of
reads in the position relative to the second mutation. In order to do this, one possible approach is the removal of blue reads, generated by the amplicon
affected by ADO-artifacts
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second step, after removal of reads generated from
primers matching a sequence containing a mutation
identified at the first step (Fig. 1d). This methodology
exploits the redundancy of amplicon coverage on target
regions to maximize the retrieved information from
available data. The procedure is summarized in Fig. 2.
With this methodology, we have analyzed 119 samples,

obtained from four newly designed Illumina TruSeq
Custom Amplicon gene panels related to neurological
diseases. Results have been compared with the MiSeq
Reporter Custom Amplicon workflow output and a
subset of putative representative mutations identified via
this procedure, considered by genetists to be clinically
relevant for the studied phenotype, has been validated
via Sanger sequencing. A synthetic dataset has also been
constructed to allow the comparisons of these method-
ologies for variant calling when two mutations (single
nucleotide mismatch or insertion) are present on the
same allele. A synthetic dataset corresponding to a
representative configuration was also analyzed with
AmpliVar tool [13].

Methods
TruSeq Custom Amplicon gene panels and sequencing
experiments
Illumina TruSeq Custom Amplicon Kit was used to cap-
ture all exons, intron–exon boundaries, 5’- and 3’-UTR
sequences and 10-bp flanking sequences of target genes
(RefSeq database, hg19 assembly).
Four different gene panels, related to neurological dis-

eases, were de-novo designed, as shown in Table 1.
Parkinson panel is composed by ten known causative

genes for Parkinson disease, both for the autosomal
dominant and recessive forms [22–24].
Both CACNA1A and ATP1A2 panels are monogenic.

Mutations in CACNA1A gene determine two allelic
disorders with a dominant-autosomic transmission:
Spinocerebellar Ataxia 6 and Episodic Ataxia 2 [25].
Furthermore, mutations have been described in patients
with alternating hemiplegia and recurrent ischemic
stroke [26]. Mutations in ATP1A2 are reported in case
of alternating hemiplegia [27]. Both genes are causative
for familial and sporadic hemiplegic migraine [28, 29].
COL4 panel contains COL4A1 and COL4A2 genes, the

mutations of which contribute to a broad spectrum of dis-
orders, including myopathy, glaucoma and hemorrhagic
stroke [30–32].
For the four studied gene panels, probes were designed

using DesignStudio (http://designstudio.illumina.com/)
and amplicon length averaged 250 base pairs (2×150
base pairs reads length in paired-end mode). Amplicon
number varied from 57 to 368 (see Table 1).
For this work, 119 patients with suspected diagnosis for

the studied diseases have been recruited at “C. Mondino”
National Institute of Neurology Foundation (Pavia, Italy)
and from other clinics in Italy.
Peripheral blood samples were collected after obtain-

ing written informed consent (approved by the Ethics
Committee) from all the participants and genomic DNA
was purified by automatic extraction (Maxwell® 16 Blood
DNA – Promega).
The TruSeq Custom Amplicon sequencing assay

was performed according to manufacturer’s protocol
(Illumina, Inc., San Diego, CA). All DNA samples
were diluted to the same initial concentration
(25 ng/μl). In order to artificially increase the genetic
diversity, 10 % DNA from phage PhiX was added to
the library of genomic DNA before loading on the
flow-cell [3].
Sample normalization has been performed according

to Illumina manufacturer protocol to get a concentration
of 10 nM per sample. PAL (Pooled Amplicon Library)
preparation has been performed according to manufac-
turer’s protocol. 6 μl of PAL were diluted in 600 μl of
DAL (Diluted Amplicon Library) and then loaded on the
flow cell.

Fig. 2 Schematic representation of trimming algorithm, based on
two separate steps of alignment and variant calling. The first step is
characterized by primer sequence trimming, the second step by the
removal of reads generated by primer pairs that pair in a mutated
region, with the mutation identified during the first step of variant
calling. Variants obtained in the two different steps are merged,
annotated, and provided as output from this pipeline
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Runs were performed on Illumina MiSeq sequencer
with V2 flow cell. Reagent cartridges were purchased
from Illumina (MS*300 V2 series).
Six sequencing experiments have been carried out,

with an average sample number of 34 samples per run
(min: 23, max: 63). Five experiments have involved a
single gene panel, while in one experiment samples
analyzed with CACNA1A and ATP1A2 panels have been
pooled. In this case, in the final pool realization, a
normalization on the amplicon number was performed
in order to have the same expected average coverage for
all the samples, although CACNA1A and ATP1A2
panels already have similar dimension.
When specified, candidate genes were amplified by PCR

using primers located in adjacent intronic regions from
genomic DNA. The amplicons were screened for se-
quence variations by direct sequencing using the Big-Dye
Terminator v3.1 sequencing kit (Applied Biosystems,
Milan, Italy) and ABI 3130 Genetic Analyzer (Applied
Biosystems, Milan, Italy). The alignment to reference
sequence has been performed using Sequencher 4.8
software.

Bioinformatic data analysis
Primary analysis
Data collected from NGS experiments were analyzed in
order to identify single nucleotide variants and small
insertions/deletions.
The first steps of bioinformatic analysis (including

base calling and demultiplexing) have been performed
using MiSeq provided software (Real Time Analysis RTA
v.1.18.54 and Casava v.1.8.2, Illumina, Inc., San Diego,
CA). FastQ files provided for each sample, containing
mate paired-end reads after demultiplexing and adapter
removal, were used as input for two different pipelines.

MiSeq pipeline
First, FastQ files were processed with MiSeq Reporter
v2.0.26 using the Custom Amplicon workflow (hereinafter
called “MiSeq pipeline”). This analytical method requires
as input both FastQ files with forward and reverse reads
and a “Manifest file” containing information about the
sequences of primer pairs, the expected sequence of the

amplicons and the coordinates relative to the reference
genome (Homo sapiens, hg19, build 37.2). As output, a
VCF file is generated, containing the list of the identified
mutations. Briefly, each read pair is separately processed to
individuate the corresponding primer pair (allowing one
mismatch) and then aligned to the expected amplicon se-
quence (primers excluded) via banded Smith-Waterman al-
gorithm, accepting gaps up to one third of its length (http://
support.illumina.com/content/dam/illumina-support/
documents/documentation/chemistry_documentation/
samplepreps_truseq/truseqcustomamplicon/truseq-custom-
amplicon-15-reference-guide-15027983-02.pdf). The align-
ment BAM file thus obtained is then provided as input to
GATK variant caller (Genome Analysis ToolKit, v1.6 [33])
that generates a VCF file for each sample.

Trimming pipeline
The second bioinformatic pipeline (hereinafter called
“trimming pipeline”) implements the algorithm shown in
Fig. 2 and receives as input both FastQ files (forward and
reverse reads) and Manifest file. First, a quality control
check is implemented with FastQC tool [34] and only
samples with sufficient number of reads and base quality
are considered. These thresholds were a posteriori empir-
ically determined based on the 20 % of samples for each
panel showing the smaller number of uncovered regions
and considering the average quality and number of reads
per sample as a reference. Samples with average reads
quality lower than 30 % of the reference or total number
of reads lower than 10 % of the reference were excluded.
Then, a primer sequence trimming step is performed
(Fig. 1c) via ad-hoc developed Perl scripts (generate_
primer_list.pl and trimming.pl). Here, forward and
reverse oligonucleotide sequences (called Upstream and
Downstream Locus Specific Oligos, ULSO and DLSO, re-
spectively) are extracted from manifest file and used to
match read pairs. Only read pairs matching a primer pair,
accepting one mismatch per read and no gaps, are main-
tained and used for further analysis. More in detail, the
first read mate is aligned against the forward primer
sequence. If the primer sequence entirely matches the first
bases of the reads, allowing one mismatch and no gaps, it
is trimmed off from the read. If no primer sequence is

Table 1 The four gene panels designed and adopted in this study

Genes Number of amplicons Cumulative target (bps) Number of samples

Parkinson panel GBA, ATP13A2, PARK7, PINK1, EIF4G1,
UCHL1, SNCA, PARK2, LRRK2, VPS35

368 76,146 54

COL4 panel COL4A1, COL4A2 157 31,842 23

CACNA1A panel CACNA1A 83 16,837 27

ATP1A2 panel ATP1A2 57 10,244 15

For each panel, the genes involved are reported, together with the total number of amplicons per panel and the dimension of the target regions in base pairs.
For each panel, the number of sequenced samples is reported
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identified, the entire read pair is discarded. The mate read
is also aligned against the reverse primer sequence. In case
of sequence matching (with the same criteria admitted
above), also the reverse primer sequence is trimmed off
and the trimmed mate pair reads are saved, otherwise both
reads are discarded. Trimmed FastQ files are provided as
input for the first step of alignment and variant calling.
Burrows-Wheeler transformation-based alignment is

performed with BWA software v7.5a [35], and BAM files
are obtained using samtools v1.19 [36] and Picard-tool
v1.95 (http://broadinstitute.github.io/picard/).
GATK V3.1 is used for insertions/deletions re-

alignment (with RealignTargetCreator, IndelRealigner
and BaseRecalibrator) and variant calling (with Unified-
Genotyper) according to GATK Best Practices recommen-
dations [37, 38].
A second round of alignment and variant calling is then

applied, with the aim of individuating those mutations
present on the same allele affected by allele drop-out,
downstream of the primer sequence and covered by an-
other amplicon (Fig. 1b). In this second round, reads gener-
ated from primers containing a mutation (both on the
forward or the reverse sequence) are discarded (Fig. 1d)
and the remaining reads are provided as input to the align-
ment and variant calling pipeline described above. The
newly identified variants are merged with the ones obtained
in the previous step to provide the final set of identified
variants. The reads removal step has been implemented
via an ad-hoc developed Perl script (ReadsRemoval.pl).

Coverage evaluation
Coverage evaluation was performed with GATK Depth-
OfCov and via an ad-hoc developed Perl script to find
adjacent regions with average coverage (in terms of
number of aligned reads) less than 30x. This threshold has
been established according to [39]. The determination of
uncovered or low-coverage regions in NGS applications is
required when a complete sample sequencing is desired.
Uncovered regions can be sequenced via other sequencing
techniques (e.g.: Sanger sequencing or more accurate
NGS techniques).

Variant annotation
Variant annotation was performed via Annovar software
(table_annovar.pl, [40]). Mutations were considered pa-
thogenic if they were absent from controls (i.e., dbSNP,
and 1000 Genomes databases), predicted to alter the
sequence of the encoded protein (nonsynonymous, non-
sense, splice-site, frameshift, and insertion/deletion mu-
tations) and to adversely affect protein function, with
the use of in silico prediction software (SIFT, PolyPhen,
LRT, MutationTaster and MutationAssessor).
Sanger sequencing was used for variant validation in

the target genes and to cover all non-covered regions.

Amplivar pipeline
AmpliVar was downloaded from https://github.com/
alhsu/AmpliVar and installed following the instructions.
The hg19 version of the human genome in 2bit format
(hg19.2bit) for Blat gfServer configuration was down-
loaded from the University of California, Santa Cruz
online repository (https://genome.ucsc.edu/).

Synthetic dataset generation
A synthetic dataset (called SD1) was created to simulate
the configuration shown in Fig. 1b, where two single
point mutations are present on the same allele, the first
falling on a primer-matching region and the second
downstream and covered by another amplicon.
First, a real dataset with a mutation on a primer-

pairing region was identified. The region of interest was
covered by two overlapping amplicons, here called A
and B, as shown (see Additional file 1: Figure S1A).
Reads generated from these amplicons were isolated
and, as expected, only reads originated by A, whose
primers matched a non-mutated region, contained the
mutation with a percentage of about 50 %. Amplicon B,
originated by primers pairing a mutated sequence, was
affected by ADO and all the reads were obtained by the
non-mutated allele, so that less than 1 % contained the
mutation (see Additional file 1: Figure S1B). Following
this procedure, FastQ files containing 3186 reads from
amplicon A and 5484 reads from amplicon B were
constructed.
Synthetic datasets were in silico constructed via

Matlab R2015a software (Mathworks, Natick, MA). In
all the reads generated by amplicon A and containing a
mutation, a second mutation falling 5 bps downstream
(not falling on primer pairing region and covered both
by A and B amplicons) was introduced with a probability
of 90 % (from not reported experiments, no significant
difference is observed varying this percentage between
70 % and 100 %). In order to simulate the unbalanced
amplifications of A and B (observed also in real experi-
mental data, where the ratio between A and B reads was
almost 37:63), synthetic datasets were constructed by
randomly combining read pairs from both amplicons in
different proportions from 0 % to 100 %, as described in
Additional file 1: Table S1.
Similarly, a second synthetic dataset (called SD2) was

constructed to simulate the presence of a single nucleo-
tide insertion in the primer matching region. This data-
set was identical to SD1 in terms of mutation percentage
and amplicon composition (as described, see Additional
file 1: Table S1), with the only exception that the single
nucleotide mismatch in the primer matching region was
replaced by a single nucleotide insertion.
All datasets were analyzed with both MiSeq and trim-

ming pipelines.
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Results and discussion
Coverage evaluation
A total of 119 samples were sequenced with TruSeq
Custom Amplicon kit on MiSeq sequencer.
The average number of reads per sample varied from

385,919.3 [340,659.4÷431,180.4] for samples belonging
to ATP1A2 panel to 499,105.6 [439,199÷559,012.2] for
COL4. No correlation was observed between the total
number of reads generated per sample and the panel
dimension (R2 < <0.1, see Additional file 1: Figure S2A
and Table S2 for details), nor with the number of sam-
ples loaded on the flow-cell per run (data not shown).
Coverage was evaluated as defined in Methods section

and the percentage of not covered base pairs varied from
3.4 % (for COL4 panel) to 9.2 % (for Parkinson panel),
showing an increasing trend with panel dimension
(R2 = 0.5222, see Additional file 1: Figure S2B and
Table S2 for details).

All samples had a sufficient number of reads (so that
the average coverage per base was always greater than
500x). A negative correlation was found between average
coverage (varying from 1398 for Parkinson panel to
9418 for ATP1A2 panel) and panel dimension, probably
due to the unvaried average number of reads for all
samples (R2 = 0.86, see Additional file 1: Figure S2C and
Table S2 for details).

Variant identification with trimming and MiSeq pipelines
Variant calling step was performed with both MiSeq and
trimming pipelines.
MiSeq pipeline identified an average number of vari-

ants per sample per panel ranging from 16.1 [14.7-17.5]
for CACNA1A panel to 69.4 [64.9-74] for COL4 panel
(see Fig. 3a and Additional file 1: Table S3 for details),
while trimming pipeline identified a systematically
higher number of variants (from 30.3 [28.7-32] to 89.2

Fig. 3 Comparison between trimming and MiSeq pipelines in terms of number of identified variants. All variants are shown in panel a, while only
single nucleotide variants, insertions and deletions are shown in panel b, c and d, respectively. Dots represent the average on samples belonging
to the same panel; error bars represent the 95 % confidence intervals. Solid line represents the linear regression fitting and equation and R2 are
displayed in the plot
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[84.1-94.3], respectively, see Fig. 3 and Additional file 1:
Table S3). The total number of variants identified with
MiSeq and trimming pipelines was correlated (R2 = 0,98,
see Fig. 3a) and the systematically higher number identi-
fied with trimming pipeline could be explained by less
stringent filtration criteria on variant quality. Most of
these variants were single nucleotide variations and less
than 18 % were small insertions or deletions (see
Additional file 1: Table S3). The correlations for single
nucleotide variants, insertions and deletions are shown
in Fig. 3b, c and d, respectively. The 99.5 % of MiSeq
variants was also detected by trimming pipeline.
Interestingly, about 14 % of variants per sample fall on

a primer-pairing region, thus highlighting the high im-
pact of ADO-related artifacts in presence of one single
nucleotide variation (see Additional file 1: Table S3).
This percentage is not negligible and emphasizes that
bioinformatics approaches, together with improvement
and optimization of capturing kits, are indispensable to
reduce artifacts.
The new discovery rate of trimming pipeline, ex-

pressed as percentage of mutations identified from trim-
ming pipeline not found with MiSeq pipeline, is 64,8 %
[64,8 %-70,8 %] for insertions and deletions and 26,6 %
[24 %-29,3 %] for SNVs.
Samples belonging to the same panel share a large num-

ber of mutations. In Fig. 4, variants present in at least
80 % of samples of the panel are shown in grey and in
50 % of the panel in orange, while the percentage of vari-
ants present in less than 50 % of samples (and considered
as unique) is represented in blue. This phenomenon is
common in both analytical methods.

In order to explore the nature of these shared muta-
tions, we randomly selected ten of these variants that
were sequence-verified via Sanger sequencing for all the
samples of the panel (three from COL4 panel, three
from CACNA1A, and three from ATP1A2 and one for
Parkinson). All of them showed to be false positives, prob-
ably due to sequencing artifacts. Considering these shared
variants as artifacts, the percentage of unique candidate
variants ranges from 29,6 % [28.5 %-30.6 %] for COL4
panel to 61.5 % [59.2 %-63.1 %] for CACNA1A panel.
This finding suggests that highly shared variants may

be candidate to be false positive, although these results
are not conclusive and further investigations would be
required to reveal the nature of such artifacts.
The number of predicted pathogenic variants in each

cohort of patients varied between 0 (for ATP panel) and
36 for Parkinson panel (see Additional file 1: Table S4).

Identification of a novel damaging-predicted variant for
CACNA1A gene
A novel predicted damaging mutation on CACNA1A
gene (NM_001127221:c.T4535C:p.I1512T) was present
in one of CACNA1A samples and was correctly iden-
tified with both analytical procedures and Sanger se-
quence confirmed (see Fig. 5a). This mutation falls on a
primer-pairing region and is covered by an additional
amplicon. This configuration is shown (see Additional
file 1: Figure S1A). As expected, reads generated from
the primer pair that matches the mutated sequence
(amplicon B) do not contain the mutation in the specified
position, being identical to the reference for 99 %, while
reads generated from the other overlapping amplicon

Fig. 4 Percentage of shared variables between samples belonging to the same gene panel. In blue, the variants present in less than 50 % of the
sample, in orange variants present in more than 50 % and less than 80 % of the samples and in grey variants present in more than 80 % of samples
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(amplicon A) contain the mutation for 44 %. Relative
abundances of reads from amplicon A and B are
5484 and 3186, respectively.
The alignment obtained with MiSeq and trimming

pipelines are shown in Fig. 5b. In case the alignment is
performed without the trimming step, the mutation is
present in less than 20 % of reads and it is not detected
during variant calling.

Comparison of MiSeq and trimming pipelines
performances on synthetic data
In order to evaluate the performances of MiSeq and
trimming pipelines on a more complex configuration,
not found in experimental data, an in silico evaluation
procedure has been carried out.
Synthetic datasets have been in silico constructed

as described in Methods section to reproduce the

configuration where two single point mutations or an in-
sertion and a single point mutation occur (see Fig. 1b).
In Table 2, the number of identified variants as a func-

tion of the percentage of reads belonging to amplicon A
is shown. While trimming pipeline always identified the
second mutation, the MiSeq pipeline could identify it in
SD1 only if the percentage of reads coming from ampli-
con A was above 50 %, thus showing a threshold effect.
Furthermore, MiSeq pipeline has similar performances
to the first round of variant calling of trimming pipeline,
while the second step is required to correctly determine
the mutation. MiSeq performances improved for SD2,
being able to detect the second mutation also if present
at lower percentage.
Sample 1 of the synthetic dataset SD1 containing two

single point mutations (Table 2 and Additional file 1:
Table S1) was also analyzed with AmpliVar tool [13] and

Fig. 5 Newly identified CACNA1A mutation. a The newly identified heterozygous CACNA1A mutation NM_001127221:c.T4535C:p.I1512T was
confirmed via Sanger sequencing on both DNA strands. b The mutation was correctly identified by both trimming and MiSeq pipelines. The first
alignment results from MiSeq pipeline, while the second from trimming pipeline. Alignment qualities and parameters are highly similar between
the different pipelines
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it provided identical results than MiSeq pipeline, being
able to determine only the first variant, falling on primer
matching region. It should be noted that AmpliVar is
not designed to manage complex configurations, as
the ones reported in this work, and issues in variant
calling, if variants overlap primer region, are a known
limitation of the tool, due to the lack of primer soft-
clipping [13].

Conclusions
Amplicon-based NGS techniques are gaining great im-
portance in the field of molecular-based diagnosis and
research. Based on the targeted amplification of small
portions of the genome, via sequence-specific probes,
they suffer from the typical problems of PCR-based
approaches, like nucleotide misincorporation, chimera
formation and ADO [2, 7].
In this work, we focused on ADO-related artifacts and

developed a bioinformatic methodology to manage such
issue, in order to maximize the retrieved information
from available sequencing data.
Our findings suggest that about 14 % of the mutations

per sample, identified via customized Illumina panels, is
potentially affected by this issue, since they fall on a pri-
mer matching sequence.
Different approaches have been proposed to address

such problems, based on the definition and stan-
dardization of PCR protocols [7, 11], on specific

bioinformatic pipelines for the analysis of such data and
on the development of ad-hoc tools [13–15].
Although the presence of a single heterozygous mutation

in a primer pairing sequence can be managed via primer
sequence trimming, in presence of at least one additional
amplicon covering the problematic region, more complex
situations are not managed by these approaches.
Issues related to the presence of a second mutation (e.g.,

a causative mutation occurring on the same allele of a
polymorphism falling on a primer pairing region) have
been addressed by Chong et al. [BRCAPlus] by modifying
the structure of the designed gene panel; while in a stand-
ard design one or two amplicons cover the region of
interest, Chong et al. designed custom primers to obtain
overlapping, redundant amplicons to over-cover target re-
gions. Although this approach effectively manages such
artifacts, more complex and expensive customized designs
are required, thus imposing a trade-off between panel
dimension and costs.
Our work allows increasing the amount of information

that can be retrieved from NGS data obtained with
amplicon panels without modifying probe design and,
for this reason, it cannot overcome intrinsic panel limi-
tations (e.g., allelic drop-out on regions covered by one
only amplicon, the presence of a second mutation not
covered by an additional amplicon). A trimming pipeline
has been developed, based on two subsequent cycles of
alignment and variant calling and has been compared to

Table 2 Pipeline performance evaluation on a synthetic dataset containing two mutations

% of reads from
amplicon A

SD1 SD2

Trimming pipeline MiSeq
pipeline

Trimming pipeline MiSeq
pipelineFirst step of

variant calling
Second step of
variant calling

First step of
variant calling

Second step of
variant calling

36.75 1 2 1 1 1 1

100 2 2 2 2 2 2

90 2 2 2 2 2 2

80 2 2 2 2 2 2

70 2 2 2 2 2 2

60 2 2 2 2 2 2

50 1 2 2 1 2 2

40 1 2 1 1 2 2

30 1 2 1 1 2 2

20 1 2 1 1 2 1

10 1 2 1 1 2 1

0 0 0 0 0 0 0

Results for both SD1 (two single nucleotide mutations) and SD2 (a single nucleotide insertion and a single nucleotide mutation) synthetic datasets are reported.
The number of mutations found with trimming pipeline (during the first and second variant calling step) is reported. MiSeq pipeline performances for SD1 are
comparable with the first step of variant calling of trimming pipeline and can identify the second mutation only if the percentage of reads from amplicon A
(not affected by ADO) is above 50 %. For lower percentages, only trimming pipeline with the second step of variant calling can correctly identify the second
mutation, even if amplicon A reads percentage lowers to 10 %. In SD2, trimming pipeline performances are identical to SD1, while MiSeq performances slightly
improve, being able to identify the second mutation in two additional configurations (30 % and 40 %)
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the proprietary Custom Amplicon workflow imple-
mented on Illumina sequencer (Miseq pipeline).
We sequenced and analyzed 119 samples with four dif-

ferent newly designed Illumina TruSeq Custom Amplicon
gene panels for neurological diseases. The percentage of
not covered regions (with a non-coverage threshold of
30x) varies from 3.4 % for COL4 samples up to 9.2 % for
Parkinson samples. Non-covered regions should be tar-
geted via other methods (e.g.: Sanger sequencing, more
specific gene panels, other sequencing techniques), thus
constituting an additional effort to be accounted for to
obtain the complete sequencing of the desired regions.
The performances of trimming and MiSeq pipelines

have been compared in terms of number of identified
variants and new discovery rate. Similar performances in
the identification of a new predicted damaging single
point heterozygous mutations on CACNA1A gene
(NM_001127221:c.T4535C:p.I1512T), affected by ADO
artifacts have been observed. The percentage of MiSeq
mutations also identified via trimming pipeline is 99.5 %,
thus suggesting that no loss of information occurs when
using trimming pipeline compared to MiSeq pipeline.
Trimming pipeline has also been validated in silico on

synthetic datasets, where a second mutation was intro-
duced. Here, trimming pipeline outperformed MiSeq
pipeline, correctly identifying the mutation even if the
percentage of ADO-affected amplicons covering the re-
gion of interest rises up to 90 %. Here a threshold effect
arises with MiSeq pipeline, being able to detect the
second mutation if ADO-affected amplicons percentage
is below 50 %.
Although the here described configuration has not been

encountered in the analysis of our data and is probably
not frequent, it is mandatory to adopt analytical proce-
dures to manage it, particularly in diagnostics applications
to avoid the clinical reporting of false negatives.
Although implemented for a specific platform (Illumina)

this method is suitable for all amplicon-based applications
and can be used both for paired-end and single-end reads.
Perl scripts for trimming pipeline implementation on

TruSeq Custom Amplicon data are available for down-
load at http://lab-bioinfo.unipv.it/index.php/it/dload.

Additional file

Additional file 1: Supplementary figures and tables. (PDF 322 kb)

Acknowledgments
Not applicable.

Declarations
This article has been published as part of BMC Bioinformatics Vol 17 Suppl 12
2016: Italian Society of Bioinformatics (BITS): Annual Meeting 2015. The full
contents of the supplement are available online at http://bmcbioinformatics.
biomedcentral.com/articles/supplements/volume-17-supplement-12

Funding
This study and publication costs were funded by Ministero della Salute - Ricerca
Corrente 2013-2015 RC16013C.

Availability of data and materials
http://lab-bioinfo.unipv.it/index.php/it/dload.

Authors’ contributions
SZ, CC and PM conceived the study. SG, GG and MVA performed the
sequencing experiments, under the supervision of CC. SZ and MVI analyzed
data and implemented the algorithm, under the supervision of PM. SZ, CC and
PM wrote the manuscript. All authors read and approved the final manuscript.

Authors’ information
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Samples were collected after obtaining written informed consent (approved
by the Ethics Committee) from all the participants, approved by “C. Mondino”
National Institute of Neurology Foundation (Pavia, Italy).

Published: 8 November 2016

References
1. Xuan J, Yu Y, Qing T, Guo L, Shi L. Next-generation sequencing in the clinic:

promises and challenges. Cancer Lett. 2013;340(2):284–95.
2. Chong HK, Wang T, Lu HM, Seidler S, Lu H, Keiles S, Chao EC, Stuenkel AJ,

Li X, Elliott AM. The validation and clinical implementation of BRCAplus a
comprehensive high-risk breast cancer diagnostic assay. PLoS One.
2014;9(5):e97408.

3. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development
of a dual-index sequencing strategy and curation pipeline for the MiSeq
Illumina sequencing platform. Appl Environ Microb. 2013;79(17):5112–20.

4. Beck J, Pittman A, Adamson G, Campbell T, Kenny J, Houlden H, Rohrerd JD,
de Silvae J, Shoaib M, Uphilla J, Poultera M, Hardyb J, Mummeryd CJ,
Warrend JD, Schottd J, Foxd NC, Rossord MN, Collingea J, Mead S.
Validation of next-generation sequencing technologies in genetic diagnosis
of dementia. Neurobiol Aging. 2014;35(1):261–5.

5. Rehm HL. Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev
Genet. 2013;14(4):295–300.

6. Do H, Wong SQ, Li J, Dobrovic A. Reducing sequence artefacts in amplicon-
based massively parallel sequencing of formalin-fixed paraffin-embedded
DNA by enzymatic depletion of uracil-containing templates. Clin Chem.
2013;59(9):1376–83.

7. Sommer S, Courtiol A, Mazzoni CJ. MHC genotyping of non-model organisms
using next-generation sequencing: a new methodology to deal with artefacts
and allelic dropout. BMC Genomics. 2013;14(1):542.

8. Lam CW, Mak CM. Allele dropout in PCR-based diagnosis of Wilson disease:
mechanisms and solutions. Clin Chem. 2006;52(3):517–20.

9. Landsverk ML, et al. Diagnostic approaches to apparent homozygosity.
Genet Med. 2012;14(10):877–82.

10. Gupta A, Napisuri P, Das SK, Ray K. Simple and effective strategies for
detection of allele dropout in PCR-based diagnosis of Wilson disease.
Clin Chem. 2006;52(8):1611–2.

11. Lenz TL, Becker S. Simple approach to reduce PCR artefact formation leads to
reliable genotyping of MHC and other highly polymorphic loci—implications
for evolutionary analysis. Gene. 2008;427(1):117–23.

12. Kanagawa T. Bias and artefacts in multitemplate polymerase chain reactions
(PCR). J Biosci Bioeng. 2013;96(4):317–23.

13. Hsu AL, Kondrashova O, Lunke S, Love CJ, Meldrum C, Marquis-Nicholson R,
Corboy G, Pham K, Wakefield M, Waring PM, Taylor GR. AmpliVar: mutation
detection in high‐throughput sequence from amplicon‐based libraries.
Hum Mutat. 2015;36(4):411–8.

14. Anvar SY, van der Gaag KJ, van der Heijden JW, Veltrop MH, Vossen RH,
de Leeuw RH, Breukel C, Buermans HPJ, Verbeek JS, de Knijff P, den Dunnen JT,

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):339 Page 97 of 212

http://lab-bioinfo.unipv.it/index.php/it/dload
dx.doi.org/10.1186/s12859-016-1189-0
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-12
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-12
http://lab-bioinfo.unipv.it/index.php/it/dload


Laros JFJ. TSSV: a tool for characterization of complex allelic variants in pure
and mixed genomes. Bioinformatics. 2014;30(12):1651–9.

15. Yost SE, Alakus H, Matsui H, Schwab RB, Jepsen K, Frazer KA, Harismendy O.
Mutascope: sensitive detection of somatic mutations from deep amplicon
sequencing. Bioinformatics. 2013;29(15):1908–9.

16. Daber R, Sukhadia S, Morrissette JJD. Understanding the limitations of next
generation sequencing informatics, an approach to clinical pipeline
validation using artificial data sets. Cancer Genet. 2013;206(12):441–8.

17. Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, Sninsky JJ.
Effects of primer-template mismatches on the polymerase chain reaction:
human immunodeficiency virus type 1 model studies. Nucleic Acids Res.
1990;18(4):999–1005.

18. Lefever S, Pattyn F, Hellemans J. Single-nucleotide polymorphisms and
other mismatches reduce performance of quantitative PCR assays.
Clin Chem. 2013;59(10):1470–80. clinchem. 2013.203653.

19. Wu JH, Hong PY, Liu WT. Quantitative effects of position and type of
single mismatch on single base primer extension. J Microbiol Meth.
2009;77(3):267–75.

20. Datta K, Johnson NP, LiCata VJ, von Hippel PH. Local conformations and
competitive binding affinities of single-and double-stranded primer-
template DNA at the polymerization and editing active sites of DNA
polymerases. J Biol Chem. 2009;284(25):17180–93.

21. Owczarzy R, Tataurov AV, Wu Y, Manthey JA, McQuisten KA, Almabrazi HG,
Pederson KF, Lin Y, Garretson J, McEntaggart NO, Sailor CA, Dawson RB,
Peek AS. IDT SciTools: a suite for analysis and design of nucleic acid
oligomers. Nucleic Acids Res. 2008;36 suppl 2:W163–9.

22. Sundal C, Fujioka S, Uitti RJ, Wszolek ZK. Autosomal dominant Parkinson’s
disease. Parkinsonism Relat D. 2012;18:S7–S10.

23. Lubbe S, Morris HR. Recent advances in Parkinson’s disease genetics.
J Neurol. 2014;261(2):259–66.

24. Spatola M, Wider C. Genetics of Parkinson’s disease: the yield. Parkinsonism
Relat D. 2014;20:S35–8.

25. Pietrobon D. CaV2.1 channelopathies. Pflüg Arch Eur J Phy. 2010;460(2):375–93.
26. Carreño O, Corominas R, Serra SA, Sintas C, Fernández‐Castillo N, Vila‐Pueyo M,

Toma C, Gené GG, Pons R, Llaneza M, Sobrido MJ, Grinberg D, Valverde MA,
Fernàndez-Fernàandez JM, Macaya A, Cormand B. Screening of CACNA1A and
ATP1A2 genes in hemiplegic migraine: clinical, genetic, and functional studies.
Mol Genet Genomic Med. 2013;1(4):206–22.

27. Labrum RW, Rajakulendran S, Graves TD, Eunson LH, Bevan R, Sweeney MG,
Hammans SR, Tubridy N, Britton T, Carr LJ, Ostergaard JR, Kennedy CR,
Al-Memar A, Kullmann DM, Schorge S, Temple K, Davis MB, Hanna MG.
Large scale calcium channel gene rearrangements in episodic ataxia and
hemiplegic migraine: implications for diagnostic testing. J Med Genet.
2009;46(11):786–91.

28. Russell MB, Ducros A. Sporadic and familial hemiplegic migraine:
pathophysiological mechanisms, clinical characteristics, diagnosis, and
management. Lancet Neurol. 2011;10(5):457–70.

29. D’Onofrio M, Ambrosini A, Di Mambro A, Arisi I, Santorelli FM, Grieco GS,
Nicoletti F, Nappi G, Pierelli F, Schoenen J, Buzzi MG. The interplay of two
single nucleotide polymorphisms in the CACNA1A gene may contribute to
migraine susceptibility. Neurosci Lett. 2009;453(1):12–5.

30. Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C, Verpont MC,
Marro MSB, Desmettre T, Cohen SY, Roullet E, Dracon M, Fardeau M,
Van Agtmael T, Kerjaschki D, Antignac C, Ronco P. COL4A1 mutations and
hereditary angiopathy, nephropathy, aneurysms, and muscle cramps.
New Engl J Med. 2007;357(26):2687–95.

31. Jeanne M, Labelle-Dumais C, Jorgensen J, Kauffman WB, Mancini GM,
Favor J, Valant V, Greenber SM, Rosand J, Gould DB. COL4A2 mutations
impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke.
Am J Hum Genet. 2012;90(1):91–101.

32. Kuo DS, Labelle-Dumais C, Gould DB. COL4A1 and COL4A2 mutations and
disease: insights into pathogenic mechanisms and potential therapeutic
targets. Hum Mol Genet. 2012;21(R1):R97–R110.

33. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome
analysis toolkit: a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Res. 2010;20(9):1297–303.

34. Andrews S. FastQC: A quality control tool for high throughput sequence
data. PLoS One. 2012;7(2):e30619.

35. Li H, Durbin R. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

36. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics.
2009;25(16):2078–9.

37. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA,
del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM,
Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A framework for
variation discovery and genotyping using next-generation DNA sequencing
data. Nat Genet. 2011;43(5):491–8.

38. Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy‐Moonshine A,
Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D,
Gabriel S, DePristo MA. From FastQ data to high‐confidence variant calls:
the genome analysis toolkit best practices pipeline. Curr Protoc
Bioinformatics. 2013;43:11-10.

39. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, Friez MJ,
Funke BH, Hedge MR, Lyon E, Working Group of the American College of
Medical Genetics. ACMG clinical laboratory standards for next-generation
sequencing. Genet Med. 2013;15(9):733–47.

40. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res.
2010;38(16):e164.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

The Author(s) BMC Bioinformatics 2016, 17(Suppl 12):339 Page 98 of 212


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	TruSeq Custom Amplicon gene panels and sequencing experiments
	Bioinformatic data analysis
	Primary analysis
	MiSeq pipeline
	Trimming pipeline
	Coverage evaluation
	Variant annotation
	Amplivar pipeline

	Synthetic dataset generation

	Results and discussion
	Coverage evaluation
	Variant identification with trimming and MiSeq pipelines
	Identification of a novel damaging-predicted variant for CACNA1A gene
	Comparison of MiSeq and trimming pipelines performances on synthetic data

	Conclusions
	Additional file
	Acknowledgments
	Declarations
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

