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Abstract

Efforts such as International HapMap Project and 1000 Genomes Project resulted in a catalog of millions of single
nucleotides and insertion/deletion (INDEL) variants of the human population. Viewed as a reference of existing
variants, this resource commonly serves as a gold standard for studying and developing methods to detect genetic
variants. Our analysis revealed that this reference contained thousands of INDELs that were constructed in a biased
manner. This bias occurred at the level of aligning short reads to reference genomes to detect variants. The bias is
caused by the existence of many theoretically optimal alignments between the reference genome and reads
containing alternative alleles at those INDEL locations. We examined several popular aligners and showed that these
aligners could be divided into groups whose alignments yielded INDELs that agreed strongly or disagreed strongly
with reported INDELs. This finding suggests that the agreement or disagreement between the aligners’ called INDEL
and the reported INDEL is merely a result of the arbitrary selection of one of the optimal alignments. The existence of
bias in INDEL calling might have a serious influence in downstream analyses. As such, our finding suggests that this

phenomenon should be further addressed.
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Introduction
The International HapMap Project and 1000 Genomes
Project [1, 2] produced over 10 million single nucleotide
variations (SNV) and approximately one million inser-
tion/deletion (INDEL) of the human population. This
resource has been utilized to develop a nearly complete
map of haplotypes of the human genome [3] and to dis-
cover the great extent to which diseases are affected by
human genetics. Various approaches for detecting vari-
ants have been developed [4-12]. These variant callers
often rely on external tools which align short reads to a
reference genome to detect genetic variants. For example,
the popular variant caller framework GATK [4] often used
an external aligner known as BWA-SW [13] to align reads
to reference genomes.

Although methods of aligning reads to genomes are
diverse, they are essentially based on two important steps:
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finding seeds (which are exact matches between a sub-
string of a read and substrings of the genome) and extend-
ing seeds into full alignments. Further, the extension of
seeds into a full alignment often utilizes a technique
based on the local pairwise sequence alignment [14]. Vari-
ant callers utilized alignments produced from aligners to
call genetic variants that are different from the reference
genome. In essence, each difference (substitution or gap)
in a correct alignment results in a variant call (SNP or
INDEL). Unfortunately, the basic algorithm of pairwise
alignment does not account for multiple optimal align-
ments, each of which might result in different variant calls.
From the theoretical point of view, each of the optimal
alignments is equally likely to be the correct biological
alignment. Thus, the choice of one optimal alignment over
another is purely arbitrary.

In this paper, we demonstrate that many popular align-
ers can be divided into two groups. The first group of
aligners produce alignments that would result in INDEL
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calls that agree with those reported in existing vari-
ant profiles, such as the resources curated by the 1000
Genomes Project. The second group of aligners pro-
duces alignments and INDEL calls that disagree with those
reported in existing variant profiles. This finding implies
that thousands of INDELs that have been reported in
public resources were constructed based on algorithmic
bias of alignment strategies. This source of bias adds to
the list of biases in variant calling caused by sequencing
technologies or coverage [15, 16]. It presents a problem
for researchers who presume existing resources of human
genetic variants as a gold standard for studying genetic
variants.

Methods

Methods that determine genetic variants from NGS data
by and large rely on computational methods that align
short reads to reference genomes and detect differ-
ences between them. The task of aligning short reads to
genomes consists of two separate steps: (1) mapping reads
to correct chromosomal locations and (2) aligning reads
correctly to those chromosomal locations. A read can be
correctly mapped and incorrectly aligned. Misalignment
at a correct chromosomal location can affect the determi-
nation of insertion-deletion variants (INDEL). An INDEL
is represented in the form x;|x3| - - - |x¢, which means that
at that location the string x; appears in the reference
genome, and any of x1,%2 - - can appear in another
genome at that location.

To see how a read can be correctly mapped and incor-
rectly aligned, consider an example, in which the read
TCAGG is correctly mapped to the genome at location p,
and that the substring starting at this location of length
8 is TCACACAG. Depending on the model of alignment,
there are two or three different optimal alignments:

TCACACAG TCACACAG TCACACAG
T--CA--G TCA----G T----CAG

The first alignment results in 2 INDEL calls: TCA|T
at location p and ACA|A at location p + 4. The second
alignment results in an INDEL call ACACA|A at location
p + 2. And the third alignment results in an INDEL call
TCACA|T at location p.

In an alignment model where gap extensions and open-
ings are equally penalized, these three alignments are all
optimal because the gaps in each alignment equate to a
deletion of 4 bases. In a model such as the affine gap
model, in which a gap opening is penalized more than a
gap extension, however, there are only two optimal align-
ments (the second and third) because the first alignment
would be penalized more than the other two. So, even
in the more sophisticated affine gap model, there can be
multiple optimal alignments, resulting in different INDEL
calls. And if an aligner picks one of these based on some
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algorithmic bias, this bias will end up in a biased calling of
INDEL.

The goal of this work is to examine known INDEL
locations and determine if those locations permit mul-
tiple optimal alignments. Further, for INDEL locations
that permit multiple optimal alignments, we aim to exam-
ine the possibility that they were constructed in a biased
manner based on biased alignments of many popular
short-read aligners.

Pairwise alignment

The mechanism by which aligners can create a biased
alignment can be seen more easily by an examination of
the basic pairwise alignment algorithm [14]. Although dif-
ferent alignment methods have different ways to speed
up the mapping of reads to genomes, e.g. using an FM
index or a hash table, the alignment itself is essentially the
same formulation of optimal pairwise alignment, based on
dynamic programming.

In a simple alignment model with no penalty for gap
opening, an optimal alignment between x = x1 - - - x,, and
Yy = y1---Ym is found by constructing a matrix M, in
which M[ i, /] is the score of an optimal alignment between
x1---x;and yy -y, forl <i<mand1l <j < m. With
M[i,0] = i and M[O0,j] = j, the matrix M is constructed
based on the following relation:

M[i—1,j — 1]+ match (x;, ;)

Mli—1,j]+e€ (1)
Mlij—1]+e€

M[i,j] = max

where match(x;, y;) is the cost of substituting x; for y; and
€ is the cost of deleting x; or inserting y;.

In the affine gap model, finding an optimal alignment
between x and y depends on the computation of three
matrices M, X, and Y. Here, M[i,/] is the score of an opti-
mal alignment between x1 - - -x; and y; - - - 5, where x; is
aligned with y;. X[i, ] is the score of an optimal alignment
in which x; aligns with a gap. And, Y[, ] is the score of an
optimal alignment in which y; aligns with a gap. The com-
putation of the three matrices can be done based on the
following relations:

M[i—1,j— 1]+ match (x;, ;)

M[i,j] = max § X[i,]] (2)
Y]

X[i,j] = max { f[[ii:ll}ﬁ]:e(e +p) (3)

Y[i,j] = max { ]}\,/I[[ii}j:ll]]je(e +0) (4)

where € is the cost of inserting or deleting a base, and p
is the cost of inserting or deleting the first base (i.e. the
penalty for gap opening).
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Constructing all optimal alignments

In Egs. 1-4, when there exist more than one ways to
achieve a maximal value, the choice adopted by an align-
ment algorithm will be arbitrary. Further, each arbitrary
choice of maximal value of each step will lead to a specific
optimal alignment. Thus, given the existence of more than
one maximal cases to choose from in Eqgs. 1-4, there will
necessarily be multiple optimal alignments, which all have
the same alignment scores despite being slightly different
from one another.

To construct all optimal alignments under the non-
affine gap model after the matrix M is filled, one starts
from the entry with the highest cost and retraces all
steps at which optimal decisions (as specified in Eq. 1)
are made. The following procedure constructs all optimal
alignments in the non-affine model, after the matrix M is
computed:

1: Find (i, /) such that M[,] is maximum.
2: return Trace(M, i, )

As described in Algorithm 1, the call Trace(i, j) returns
all optimal alignments ending at x; and y;. Trace is done by
identifying whether each of the three conditions in Eq. 1 is
optimal. If the condition is optimal, Trace is called recur-
sive to obtain all optimal alignments starting at that entry.
By induction, the three recursive calls return all possible
optimal alignments just before x; and y;. Then, the algo-
rithm correctly returns the union of all of the optimal
alignments ending at x; and y;.

Algorithm 1 Trace(M, i, j)

1: ifi < 0 orj < O then

2:  return {J
3. if M[i,j] == M[i— 1,j — 1] +match(x;, y;) then
4 m < Trace(M,i—1,j — 1)
5. Append (x;,7;) to each alignment in m
6 if M[i,j] == M[i— 1,j] +€ then
7
8
9

i < Trace(M,i— 1,j)
. Append (x;, —) to each alignment in i
. if M[i,j] == M[i,j — 1] +¢ then
10 d <« Trace(M,i,j—1)
11:  Append (—, ;) to each alignment in d
12: return mUiUd

To construct all optimal alignments under the affine gap
model, the process is similar. After the matrices M, X, and
Y are filled, one starts from the entry of M with maximum
value and retraces all the steps at which optimal decisions
(as specified in Egs. 2, 3, 4) are made. The only techni-
cal difference is that we need to specify the appropriate
matrix (either M, X, or Y) in each recursive call.
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Experimental design

We hypothesize that the usage of an aligner to detect
variants will result in incorporating the aligner’s bias into
the construction of a variant profile. Specifically, this
bias will exhibit itself at INDEL locations that have mul-
tiple optimal alignments. In our analysis the reference
human genome, obtained from NCBI, build GRCh37, and
the known variant profile obtained from the Integrated
Variant Set release from the 1000 Genomes Project Con-
sortium, we found that among 1,442,639 INDEL locations,
6,685 of them had multiple optimal alignments.

To demonstrate that many of these INDELs were cre-
ated based on the bias of some alignment algorithms, we
set out to reverse engineer the process of determining
these INDELSs based on various alignment algorithms. In
the reverse engineering process, we create a set of reads
‘R that bear alternative alleles from INDEL locations with
more than one optimal pairwise alignments and use each
aligner to align these reads to the reference genome. The
alignment of each read in R to the correct INDEL loca-
tion gives rise to a variant call. By recording the number
of variant calls that agree with the known variant profile,
we can compare the aligners’ degrees of agreement with
known variant profiles and detect aligners’ bias, if there is
any. Specifically, the process works as follows:

1. Suppose that the INDEL location i has two known
alleles: A and ACGA, where A is in the reference
genome, and ACGA is an alternative allele.

2. Suppose the reference genome g is represented as
xAy (giis A).

3. Let u be a suffix of x, and v be a prefix of y. (Both
presumably have length k). In other words, u and v
are k-substrings of the genome that are on the left
and the right of the allele A.

4. We will create a string r = uACGAv. The string r is
presumed to be the substring of another genome that
differs from the reference genome at the exact
location i with allele ACGA. We varied the length of
u and v between 25 and 50. Thus, the length of the
read r is around 50 to 100. (The actual length is equal
to the length of u or v plus the length of the INDEL
allele at location ).

5. Now if we align r to the reference genome, and if r is
correctly mapped to location i, then two possible
optimal alignments can be observed:

UA---V u---Av
UuACGAV uACGAV

6. Of these two optimal alignments, the one on the left
resulted in the variant A|JACGA, which agrees with
the known profile. The other alignment resulted in a
variant call at location i — 1 that is different from the
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known profile. In general, there can be many optimal
alignments but only one of them results in a variant
call that agrees with the known variant profile.

7. If there are multiple alternative INDEL alleles at
location i, each string r is created for each alternative
allele.

8. Let R be the set of strings r’s that are constructed as
we have described. For each INDEL location with
more than one optimal pairwise alignments, there
are exactly 10 reads with length between roughly 50
to 100, as described above, yielding a 10x coverage at
those INDEL locations. To test whether the existing
variant profile consists of INDELSs that might have
been constructed based on a bias alignment method,
we employed several popular short-read aligners to
all strings in R.

Result

To map and align reads in R to the reference genome, we
considered several popular aligners: Bowtie2 [17], BWA-
SW [13], CUSHAW?2 [18], Smalt [19], SRmapper [20],
SHRiMP2 [21], RazerS [22], GASSST [23], SeqAlto [24],
Masai [25], and Soap2 [26]. Most aligners employed a
seed-and-extend strategy, which first finds exact matches
(seeds) between reads and the genome, and then extend
such seeds to full alignments between reads and the
genome. While these aligners adopt a wide range of algo-
rithmic techniques in building indexes to facilitate effi-
cient seed finding, the extension phase of their methods
is based on the basic local alignment strategy, which is
described in Introduction. We eliminated four aligners
SeqAlto, Masai, Soap2, and SRmapper, due to their inabil-
ity to map reads in R to their correct positions. Possible
reasons include: (1) reads in R are relatively short and
aligners might have been designed to work effectively with
long reads, and (2) these reads might have been mapped to
multiple chromosomal locations, and these aligners might
have decided not to map any of them due to such confu-
sion. For BWA, we used the BWA MEM version that is
designed to work with both short and long reads.

Analysis of INDELs with multiple optimal alignments

The set of reads R surrounding known INDEL locations
were aligned by all aligners to the reference genome. For
each aligner, we recorded the percentage of reads in R
that the aligner was able to map to their correct loca-
tions. By design, each read covers a specific INDEL. A
read is mapped correctly if it overlaps with the INDEL
location that it is supposed to covers. Given that a read is
mapped correctly, the alignment between the read and the
genomic region gives rise to a unique variant call at that
INDEL location. If there are more than one optimal pair-
wise alignments, the choice of which optimal alignment
depends on the specifics of each alignment algorithm. As
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a result, the resulting variant call may or may not be the
same with the reported variant profile that was created
based on a different alignment algorithm.

As shown in Table 1, most aligners were able to map
most reads in R to their correct INDEL locations with
mapping percentages range from 88 to 97 %. Mapping a
read to its correct INDEL location means that the read
is mapped to a chromosomal location that overlaps the
INDEL that the read was designed to cover. A correct
mapping of a read does not mean that the alignment
of the read to this location will yield a variant call that
agrees with (or matches) the known variant profile. When
there are multiple optimal alignments between a read and
genomic fragment, each optimal alignment results in a
different INDEL call. An alignment agrees with the exist-
ing information, if it produces an INDEL that is the same
as the existing known INDEL. Table 1 reveals that these
aligners can be divided into 3 groups:

1. Aligners whose correctly mapped reads (to INDEL
locations with multiple optimal alignments) are
aligned in high agreement with the known variant
profile, about 99 % in agreement. These aligners
include Bowtie2, BWA (MEM version), and
SHRIiMP2;

2. Aligners whose correctly mapped reads are aligned in
moderate agreement with the known variant profile
(between 70-75 %). These include RazerS and
CUSHAW?2; and

3. Aligners whose correctly mapped reads are aligned in
high disagreement with the known variant profiles
(less than 10 %). These include GASSST and Smalt.

To analyze if there exists alignment bias in reported
variant profiles, we compare an aligner’s degree of
agreement with reported variant profiles to the expected
agreement if the algorithmic choice happens by chance.
Suppose that at INDEL location i, there are n; optimal
pairwise alignments (under the affine-gap model), then
the probability p; that an aligner produces an alignment

Table 1 Percentage of correct mapping, actual and expected
alignment by aligners

Aligners  Correct Actual Expected p-value
mapping % agreement %  agreement %

Bowtie2 96 99 30 0.0000546
BWA 93 99 30 0.0000550
SHRIMP2 97 99 31 0.0001491
RazerS 88 75 31 0.0001631
CUSHAW?2 97 70 31 0.0000562
GASSST 91 8 17 0.0015892
Smalt 96 5 31 0.0003852
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that yields a call in agreement with the known variant
profile is n% The expected number of agreed calls is also
n%. Summing over all events, we find that the expected
number of instances that agree with the known variant
profile is Zfil nii, where N is the number of INDEL loca-
tions with multiple pairwise alignments that the aligner
can map correctly reads in R to.

The last column of Table 1 shows the expected percent-
age of agreement by each aligner (% Zfil ni, . We can
see that across all aligners, there is a significant differ-
ent between the expected percentage of agreement and
the actual agreement. For example, with Bowtie2, the
expected percentage of alignment is 30 % compared to
the actual percentage of agreement, which is 99 %. This
vast difference between the expected and actual degree of
agreement suggests that variant calls at these INDEL loca-
tions were obtained by alignment algorithms that were
very similar to those aligners in the first groups (Bowtie2,
BWA, SHRiMP2) whose actual percentage of agreement
is more than 3 times the expected percentage of agree-
ment. To compute the likelihood of this difference, we
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calculated the probability that the difference between the
actual agreement and expected agreement (as happened
by chance) is as much as or even more extreme than
what we observed. This p-value can be bounded by the
Chebyshev-Cantelli’s inequality, P(X — p < 1) < (:ZGW’
where X is the observed difference between actual and
expected agreement, .« and o are the expected agreement
and its variance. As described above, u = ZN L Fur-

i=1 7
2 N 1
ther, 0° = =17 1—

n%) The very small p-values
shown in the last column of Table 1 suggest that the dif-
ference in actual and expected agreement is extremely

unlikely caused by chance.

Characterization of INDEL complexity

The existence of multiple optimal alignments giving raise
to different INDEL calls is an inherent problem. We have
demonstrated that in many cases there are more than one
theoretically optimal alignment, each of which has the
same chance of being biologically correct. It is important
to note that there is no correct optimal alignment among
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Fig. 1 Distribution of INDEL complexity across human chromosomes
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all possible optimal alignments: they are all optimal and
thus equal probability of being the correct alignment. In
other words, it does not matter which optimal alignment
an aligner chooses and a variant caller utilizes the aligner’s
result, there must be inevitably some bias. The only way
to cope with this is for an aligner to report all optimal
alignments and for a variant caller to derive all alternative
possibilities of INDELs from these optimal alignments.
This is tedious and not being done in practice. Existing
variant profiles do not report alternative possibilities of
INDELSs; they only report one.

Thus, it is useful to examine known INDEL locations
and characterize the extent to which they are affected by
multiple optimal alignments. We define the complexity of
each INDEL location as the number of optimal alignments
that can be had when reads bearing alternative alleles
are aligned (under the affine-gap model) to the reference
genome at this location. Figure 1 shows the distribution
of INDEL complexity across human chromosomes. We
observed that chromosome Y has no INDEL with multi-
ple optimal alignments. Further, a closer examination of
the density of INDEL complexity on all chromosomes, as
shown in Fig. 2, suggests that these distributions are very
similar, with the peak occurs at around 3. A majority of
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these INDELs have 3 multiple optimal alignments. Addi-
tionally, chromosomes 2, 6, 15, and 16 stood out with the
most number of INDEL locations with multiple optimal
alignments. Larger chromosomes do not necessarily have
more complex INDELs. For example, compared to the
others, chromosome 1 has fewer INDELs with multiple
optimal alignments.

Discussions and conclusions

The accuracy of calling variants can be improved by
increasing coverage (i.e. using more reads) and realign-
ing reads that overlap INDEL locations. But we argue that
neither increasing coverage nor realigning reads around
INDELSs can help resolve the problem caused by multi-
ple optimal alignments. Increasing reads can reduce the
damaging effect of sequencing errors, which occur inde-
pendently across reads. While realigning reads around
an INDEL as described by Li [27] can achieve a better
multiple alignment of reads aligned to the INDEL, the
multiple alignment is still biased as it is based on one
of the optimal pairwise alignments. For instance, recall
the example given earlier, in which the read TCAGG is
correctly mapped to the genome and is aligned to the
genomic sequence TCACACAG. As we showed earlier,

03-
0.2-
2
7
=
[
o
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Fig. 2 Density of INDEL complexity across human chromosomes
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there are multiple optimal pairwise alignments. Let us
supposed that many reads are aligned to this region. It
is possible (due to different chromosomal positions), the
alignments of some reads might look like the first align-
ment in this example; the alignments of some other reads
might look like the second alignment; and the alignments
of the rest might look like the third alignment. The goal
of realigning reads [27], which were pairwise aligned, is to
obtain a consistent multiple alignment of reads. The result
of such realignment would be an adoption of the same
alignment for all reads aligned to this region to obtain
a high quality call. But the adopted multiple alignment
is still based on one of the three optimal pairwise align-
ments. As such, the realignment of reads still produces
biased results.

We have demonstrated that the current INDEL pro-
file constructed and curated by the 1000 Genome Project
exhibits a bias at certain INDEL locations. These locations
can be identified by counting the number of optimal align-
ments between reads containing alternative alleles to the
reference genome at those locations. The bias is essentially
an effect of either short-read aligners or variant callers
themselves having to choose one out of many equally the-
oretically optimal alignments. There is no obvious way to
“standardize” this phenomenon by designating one opti-
mal alignments as the “canonical” one. As such, it seems
the only way to deal with this is reporting all optimal align-
ments and consequently reporting all alternative INDEL
calls as the result of those alignments.

If this phenomenon is not addressed, there can be
potential serious problems relating to the analysis and
study of INDEL. For example, certain alignment tech-
niques will result in wrong calls at those INDEL locations.
Case in point is Smalt, which was able to map 96 % of
the reads, but very few of the alignments produced the
“correct” INDEL calls (as specified by the existing INDEL
information). At these location, Smalt was wrong simply
because it chooses a different optimal alignment from the
one based on which the INDEL was constructed.
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