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Abstract

Background: In recent years, many measures of gene functional similarity have been proposed and widely used in
all kinds of essential research. These methods are mainly divided into two categories: pairwise approaches and
group-wise approaches. However, a common problem with these methods is their time consumption, especially
when measuring the gene functional similarities of a large number of gene pairs. The problem of computational
efficiency for pairwise approaches is even more prominent because they are dependent on the combination of
semantic similarity. Therefore, the efficient measurement of gene functional similarity remains a challenging
problem.

Results: To speed current gene functional similarity calculation methods, a novel two-step computing strategy is
proposed: (1) establish a hash table for each method to store essential information obtained from the Gene Ontology
(GO) graph and (2) measure gene functional similarity based on the corresponding hash table. There is no need to
traverse the GO graph repeatedly for each method with the help of the hash table. The analysis of time complexity
shows that the computational efficiency of these methods is significantly improved. We also implement a novel
Speeding Gene Functional Similarity Calculation tool, namely SGFSC, which is bundled with seven typical measures
using our proposed strategy. Further experiments show the great advantage of SGFSC in measuring gene functional
similarity on the whole genomic scale.

Conclusions: The proposed strategy is successful in speeding current gene functional similarity calculation methods.
SGFSC is an efficient tool that is freely available at http://nclab.hit.edu.cn/SGFSC. The source code of SGFSC can be
downloaded from http://pan.baidu.com/s/1dFFmvpZ.
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Background
In the functional genomic era, measuring gene functional
similarity is a fundamental task because it is the founda-
tion of much essential research such as gene clustering
[1–4], protein-protein interaction prediction [5–8], gene
function prediction [9–12] and disease gene prioritisation
[13–15]. Comparing functional similarity between genes
provides more information for understanding the bio-
logical roles and functions of genes, although sometimes it
may be less objective compared with sequence and struc-
ture similarity [16].
Gene Ontology (GO) is a standardised and controlled

vocabulary of terms that comprises three orthogonal

ontologies: cellular component (CC), molecular function
(MF) and biological process (BP). These three ontologies
are structured as three directed acyclic graphs (DAGs),
which are also called GO graphs sometimes. Semantic
similarity applied to the GO annotations of gene prod-
ucts provides a measure of their functional similarity.
Therefore, functional similarity between genes can be in-
ferred from the semantic relationships of GO terms. In
this article, ‘functional similarity’ refers to the similarity
between genes or gene products, and ‘semantic similar-
ity’ refers to the similarity between two GO terms.
In recent years, many gene functional similarity calcu-

lation measures [15, 17–30] have been proposed and
widely used in biology research. They are mainly divided
into two categories: pairwise approaches and group-wise
approaches, both of which must rely on GO graphs [31].
Pairwise methods measure the gene functional similarity
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via two steps. The first step computes the semantic similar-
ities of GO term pairs using term comparison techniques.
The second step measures gene functional similarity be-
tween genes using the results of semantic similarity scores
from the first step. Maximum rule, average rule and best-
match average rule (BMA) are three kinds of strategies
widely used in the second step. The characteristics of the
three rules have been discussed in detail [16, 17]. In con-
trast, group-wise methods measure gene functional simi-
larity by comparing the terms that annotate the genes in
groups. Overall, there are three types of approaches for
measuring the functional similarities of genes: set, graph
and vector [31].
However, the common issue of current functional

similarity calculation methods is time consumption, espe-
cially when they measure similarity on a whole genomic
scale. There are two main reasons for the low computa-
tional efficiency, which becomes very prominent. One is
that more and more GO terms are added into the GO
graphs because of the daily evolution of the GO database.
The other is that the number of annotated genes in the
Gene Ontology Annotation (GOA) database has greatly
increased. Although some online tools [23, 25, 32–36]
have achieved great success on a variety of applications
such as constructing gene semantic similarity networks
[37, 38] and disease gene prioritisation [39–41], few of
them pay attention to the problem of computational effi-
ciency. Thus, improving the computational efficiency of
functional similarity methods has become a challenging
problem.
In the remainder of this section, we review seven typ-

ical methods that use the proposed strategy and some
other methods. These methods include those of Resnik
[20], Lin [19], Jiang and Conrath (hereafter referred to as
Jiang) [18], Pekar and Staab (hereafter referred to as
Pekar) [30] and Wang et al. (hereafter referred to as
Wang) [21], which are pairwise approaches, and simUI
[29] and simGIC [23], which are group-wise approaches.
It should be noted that we emphasise the analysis of se-
mantic similarity between terms for pairwise approaches
and highlight functional similarity between genes for
group-wise approaches.
The methods of Resnik, Lin and Jiang belong to node-

based approaches, which rely on comparing the proper-
ties of terms in the GO graph. One concept commonly
used in these approaches is information content (IC),
which gives a measure of how specific and informative a
term is. The IC of a term t can be quantified as the
negative log likelihood:

IC tð Þ ¼ − log p tð ÞÞðð ð1Þ

where p (t) is the probability of occurrence of t in a spe-
cific corpus (such as the UniProt knowledgebase) being

normally estimated by its frequency of annotation [31].
According to Eq. (1), terms that are more genetic will
have a larger p (t) and hence a smaller IC value. When
applying this traditional measure, one important prob-
lem is that the specificity of a term is fully dependent on
the number of genes taken in a given annotation corpus
[24]. The detail definition of p (t) can be represented by
Eq. (2).

p tð Þ ¼
annotation tð Þ þ

X
d∈descendent tð Þ annotation dð Þð ÞX

c∈descendent rootð Þannotation cð Þ
ð2Þ

Here, annotation (t) is the number of genes annotated
by term t, and descendent (t) is a term set that contains
descendants of t in the GO graph.
Resnik [21] elaborated that edges do not represent the

same uniform distance in the GO graph because the
terms at the same level do not have the same specificity.
Some terms in the GO graph have more children even
though they belong to the same level. Therefore, an IC
value of the term t in the GO graph can be used as a
metric to measure the relationship between terms.
Resnik defined the similarity between two terms t1 and
t2 as the IC value of the lowest common ancestor term
(LCA), which was given as follows:

simResnik t1; t2ð Þ ¼ IC LCA t1; t2ð Þð Þ ð3Þ

According to Eq. (3), the similarity between two terms
only depends on the IC value of their LCA. Sometimes,
LCA is also called the most informative common ancestor.
Lin [19] pointed out one serious drawback of the

Resnik method, which is that two different pairs of terms
that locate on different levels in the GO graph will have
the same LCA, so they have the same similarity value.
Apparently, this is not a reasonable result that meets the
human perspective. Therefore, both Lin and Jiang invented
two other measures, which are formulated as Eqs. (4) and
(5), respectively:

simLin t1; t2ð Þ ¼ 2�IC LCA t1; t2ð Þð Þ
IC t1ð Þ þ IC t2ð Þ ð4Þ

simJC t1; t2ð Þ ¼ 1− IC t1ð Þ þ IC t2ð Þ−2� IC tLCAð Þð Þ
ð5Þ

As is pointed out by Wang [21], the methods of both
Lin and Jiang have the problem of “shallow annotation”,
i.e. if two genes are well annotated near the root of the
ontology, their semantic similarity will always be measured
very highly (close to 1), and their semantic distance will al-
ways be computed close to nil, thus providing a mislead-
ing result.
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In contrast, edge-based approaches are also popular in
measuring semantic similarity between GO terms. Pekar
[30] proposed a measure based on the length of the lon-
gest path between the lowest common ancestor of two
terms and the root, and on the length of the longest path
between each term and their common ancestor. This is
given by the following expression:

simPS t1; t2ð Þ ¼ δ ta; rootð Þ
δ ta; rootð Þ þ δ t1; rootð Þ þ δ t2; rootð Þ

ð6Þ
where δ(t1, t2) denotes the longest distance between term
t1 and term t2 in the GO graph, and ta is the LCA of t1
and t2. Three distances are used in Eq. (6), and thus the
functional similarity computed by this method is more
reasonable than that of Resnik’s results. In addition,
Cheng et al. [27] proposed a maximum common ances-
tor depth measure and weighted each edge to reflect its
depth. Wu et al. [26] introduced the distance to the
nearest leaf node of a term and the distance to the LCA
to take the specificity of terms into account.
Wang [21] developed a hybrid method in which the

edge was assigned a fixed weight named the semantic
contribution factor (ωe) according to the type of relation-
ship in the GO database. A GO term A is represented as a
DAG DAGA = (A,TA, EA), a sub-graph of GO where TA is
the set of all ancestors for term A, and EA is the set of cor-
responding links. The contribution of any term t to the se-
mantics of a term A is defined as the S-value of the term t
related to term A, which can be represented by

SA tð Þ ¼ 1 if t ¼ A
SA tð Þ ¼ max we�SA t′ð Þ t′∈ chilrenof tð Þ��� �

if t ≠ A

�

ð7Þ
where (ωe) is the semantic contribution factor for edge
e∈EA linking term t with its child term t′ [23]. Then, we
calculate the semantic value of the GO term A, SV(A),
which is represented as:

SV Að Þ ¼
X
t∈TA

SA tð Þ ð8Þ

Given DAGA = (A,TA, EA) and DAGB = (B,TB, EB) for
GO terms A and B, respectively, the semantic similarity
between them, SGO(A, B), is defined as:

SGO A;Bð Þ ¼

X
t∈TA∩TB

SA tð Þ þ SB tð Þð Þ

SV Að Þ þ SV Bð Þ ð9Þ

where SA(t) is the S-value of GO term t related to term
A, and SB(t) is the S-value of GO term t related to term
B. There are two main disadvantages of Wang’s method.
One is that the semantic contribution factor (ωe) is fixed

according the linking types of GO terms, and the other
is that the semantic contribution only depends on the
maximum products of all of the paths linking the two
terms. According to Eqs. (7) and (8), computing the SV(A)
and SV(B) is difficult because they have to traverse their
corresponding DGAs of term A and B, respectively.
As for group-wise approaches, Pesquita et al. [31]

pointed out that purely set-based approaches are not
common because few measures consider only direct an-
notations, whereas graph-based approaches are suitable
for computing the similarity with the help of graph
matching. Indeed, simUI and simGIC are two typical
group-wise methods that measure gene functional simi-
larity from the graph-based perspective.
To compute gene functional similarity, these methods

usually make use of Tversky’s ratio model or its variants.
Genes g1 and g2 are annotated with term sets Ag1 = {t1,
t2,⋯ tm} and Ag2 = {t1, t2,⋯ tn}, respectively. Therefore,
simUI calculates similarity as the number of GO terms
shared by two genes divided by the number of GO terms
they have together. The functional similarity between g1
and g2 is

simUI g1; g2ð Þ ¼ jAg1∩ Ag2j
Ag1∪ Ag2

�� �� ð10Þ

According to [42], simGIC is an expansion of simUI
that sums the IC value of annotation terms. For two
genes g1 and g2, simGIC is given by

simGIC g1; g2ð Þ ¼
X

ti∈Ag1∩ Ag2
IC tið ÞX

tj∈Ag1∪Ag2
IC tj

� � ð11Þ

Although simUI does not consider the specificity of
the term in the GO graph, simGIC takes the IC value of
a term as its specificity. As pointed out by Teng et al.
[16], simGIC ignores the shared IC value of two terms
in the GO graph and may also result in misjudgements
of gene functional similarity. Teng et al. [16] proposed a
new method called SORA (semantic overlap ration of
annotation) to overcome the limitations of simGIC.
However, obtaining A(g1) and A(g2) from the GO graph
directly for group-wise methods is also difficult and time
consuming.
The rest of this paper is organised as follows. In the

Methods section, we begin by analysing the problems
leading to high time consumption of each method. In
the following subsections, we describe how to speed the
gene functional similarity calculation methods based on
hash tables. Then, taking Wang’s method as an example,
we show how to establish the hash table and measure
the functional similarity with the table. Finally, complex-
ity analysis is presented for each method. In the Results
section, we present the experimental results, including
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the running times to establish hash tables and measure
the semantic similarity between GO terms and the func-
tional similarity between genes. We also compare the de-
veloped Speeding Gene Functional Similarity Calculation
tool (SGFSC) with other online tools. In the Discussion
section, we discuss the implications and limitations of our
method, and finally, we draw our conclusions in the
Conclusions section.

Methods
In this section, we first analyze what factors affect com-
putational efficiency and establish a hash table to speed
the gene functional similarity calculation for each method.
Then we take Wang’s method as an example to show how
to speed the computing process using the proposed strat-
egy. Finally, we present a complexity analysis for each
method adopting our proposed strategy.

Analysing the problems leading to time consumption for
each method
Methods that measure gene functional similarity must
traverse the GO graph repeatedly to obtain the information
they need. However, traversing the GO graph is time con-
suming because the topological structure of the GO graph
is complex due to multiple inheritances of GO. In addition,
the problem of low computational efficiency tends to be
more prominent, especially when gene functional similarity
needs to be measured on the genomic scale.
To speed the gene functional similarity calculation, we

should analyse the calculation process of each method
and then determine the key information that affects the
computational efficiency. It is need to calculate key in-
formation that lead to traversing the GO graph repeat-
edly for these methods. The key information for each
method is listed in Table 1. IC(t) denotes the IC value of
term t; LCA(t1, t2) denotes the lowest common ancestor
of terms t1 and t2; Dep(t) denotes the deepest depth of
term t in the GO graph; SV(t) denotes the semantic

value of term t; and A(g) denotes the term set containing
all of the terms that annotate gene g.
For example, with the Resnik method, determining the

LCA of terms t1 and t2 from the GO graph requires tra-
versing of the DAGs of t1 and t2, respectively. The
method also has to calculate the IC of each term in the
DAGs to obtain the IC of LCA(t1, t2). Therefore, the key
information that affects computational efficiency in the
Resnik method is LCA(t1, t2) and IC(LCA (t1, t2)). The
key information for the other methods is also listed in
Table 1.

Speeding the gene functional similarity calculation for
each method
As we know, traversing the GO graph repeatedly is the
main reason for the reduced computational efficiency of
each method. Therefore, if we can avoid traversing the
GO graph repeatedly, the computational efficiency for
each method will improve greatly. Hence, we can con-
vert the storage form of information from the GO graph
into a hash table. Then, these methods could measure
the functional similarity based on the hash tables instead
of traversing the GO graph, eventually reaching the goal
of improving computational efficiency.
As a result, we propose a novel two-step computing

strategy: (1) establish hash tables to store essential infor-
mation that is obtained from the GO graph and (2)
measure gene functional similarity based on the hash ta-
bles. The flowchart of our proposed strategy is shown in
Fig. 1. For ease of description, two definitions are given
below.
DEFINITION 1. Direct information: information that

occurs in corresponding equations for each method. For
example, the IC values of LCA(t1, t2), IC(t1) and IC(t2)
are direct information for Eq. (4).
DEFINITION 2. Essential information: information

that will be stored in the corresponding hash tables. For
example, the ancestors of term t1, t2 and their corre-
sponding IC values are essential information for Eq. (4).
It is important to note that the essential information

should have the ability to substitute the GO graph. This
is critical for the proposed strategy. Therefore, before
using our proposed strategy, each method must first
analyse the direct information and extract the essential
information from the original GO graph.
The direct information and essential information of

pairwise approaches for measuring semantic similarity
between t1 and t2 are shown in Table 2. T(t) denotes the
ancestor set of term t including t itself. SA(t) is the S-
value of GO term t related to term A. The direct infor-
mation and essential information of group approaches
for measuring functional similarity between genes g1 and
g2 are also shown in Table 2. A(g) denotes a term set

Table 1 Key information affecting computational efficiency for
each method

Methods Key information affecting computational efficiency

Resnik LCA(t1,t2) and IC(LCA(t1,t2))

Lin LCA(t1,t2) and IC(LCA(t1,t2))

Jiang LCA(t1,t2) and IC(LCA(t1,t2))

Pekar LCA(t1,t2) and Dep (LCA(t1,t2))

Wang SV(t1) and SV(t2)

simUI A(g1) and A(g2)

simGIC A(g1) and A(g2)

For pairwise approaches, we focus on the semantic similarity between t1 and
t2. For group-wise approaches, the functional similarity between gene g1 and
g2 requires special attention
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containing all of the terms that annotate gene g. In the
next subsection, we take the Wang method as an example
to show how to establish the hash table for each method.
Finally, why do we select the hash table as the data

structure to store the essential information extracted
from the GO graph? A hash table is a commonly used
data structure that satisfies the requirement for quick
searches. Its search efficiency is very high, and its struc-
ture is also convenient to program and implement.
What’s more, with the help of the hash tables, there is
no need to repeatedly traverse the GO graph to obtain
direct information. Each method can obtain essential
information from the hash table and calculate the dir-
ect information by making use of the essential informa-
tion. As a result, the computational efficiency increases
dramatically.

Speeding the calculation of functional similarity for the
Wang method
In this subsection, we take Wang’s method as an example
to show how to speed the functional similarity calculation.
The main idea is illustrated in Fig. 2. The proposed strat-
egy comprises two main steps.
Step one: Establish a hash table for the Wang method
According to Eq. (9), measuring the semantic similar-

ity between two terms A and B is only based on three
parts: SV(A), SV(B) and the numerator of Eq. (9). With
further analysis, we fortunately find that the values of
SV(A) and SV(B) are only dependent on the S-values for
all terms in DAGA and the S-values for all terms in
DAGB, respectively. Besides, the numerator of Eq. (9)
can also be calculated quickly based on the S-values of
terms A and B.
From the analysis above, SA(t), t ∈ T(A) and SB(t), t ∈

T(B) are essential information for Eq. (9). To adopt the
proposed strategy for calculating Eq. (9), we can compute
all of the S-values of A and B in their corresponding
DAGs and then store the results into a hash table. The S-
values for GO:0043231 are listed in Table 3. The hash
table is established based on Fig. 2a.

Step two: Measure the gene functional similarity based on
the hash table
Once the hash table is established, measuring the semantic
similarity is based on the hash table instead of the GO
graph. In other words, because the hash table contains all
of the essential information that Eq. (9) needs, the Wang
method can obtain the information needed directly from
the hash table. After obtaining the semantic similarity be-
tween GO pairs, it can use the BMA rule to further meas-
ure the functional similarity between two genes.
In Fig. 2a represents a DAG for the GO term Intracellu-

lar Membrane-bound Organelle: 0043231, and (b) repre-
sents the hash table established on the basis of (a). The
semantic contribution factors for the ‘is-a’ and ‘part-of ’

Fig. 1 The flowchart of the proposed strategy

Table 2 Direct information and essential information for each method

Method Direct information Essential information Explanation

Resnik IC(LCA(t1,t2)) IC(t), t ∈ T(t1), IC(t), t ∈ T(t2) The IC values of t, t ∈ T(t1)
The IC values of t, t ∈ T(t2)

Lin IC(t1), IC(t2), IC(LCA(t1,t2))

Jiang IC(t1), IC(t2), IC(LCA(t1,t2))

Pekar Dep (LCA (t1, t2)), Dep(t1), Dep(t2) Depth (t), t∈ T(t1)
Depth (t), t∈ T(t2)

The depth of t, t ∈ T(t1)
The depth of t, t ∈ T(t2)

Wang ∑(St1(t) + St2(t)), t ∈ Tt1 ∩ Tt2
SV(t1), SV(t2)

St1 tð Þ; t∈T t1ð Þ
St2 tð Þ; t∈T t2ð Þ The S-values of t, t ∈ T(t1)

The S-values of t, t ∈ T(t2)

simUI |A(gi) ∩ A(gj)|, |A(gi) ∪ A(gj)| A(gi), A(g2)

simGIC
X

IC tð Þ; t ∈ A gið Þ ∩ A gj
� 	

X
IC tð Þ; t ∈ A gið Þ ∪ A gj

� 	 IC t1ð Þ; t1 ∈ A gið Þ
IC t2ð Þ; t2 ∈ A gj

� 	 The IC values of t, t ∈ A(gi)
The IC values of t, t ∈ A(gj)
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relations are 0.8 and 0.6, respectively. We use Eq. (7) to
calculate all of the S-values for term GO:0043231 and
list the results in Table 3. The storage form for term
GO:0043231 is listed in the last row of Fig. 2b. For the
other terms in Fig. 2a, the handling process is similar to
term GO:0043231. The results are also listed in Fig. 2b. It
is noteworthy that the order of records shown in Fig. 2b
may differ from the actual order because of the special
storage features of hash tables.

Example: Measuring the semantic similarity for the Wang
method
We take two terms GO:0043227, named A, and
GO:0005622, named B, as an example to measure the
semantic similarity based on the hash table. The rela-
tionship between A and B can be obtained from Fig. 2a.
The semantic similarity of the two terms A and B is

calculated in three steps based on the hash table as
follows:

SV Að Þ ¼ 1:0þ 0:8þ 0:64 ¼ 2:44

SV Bð Þ ¼ 1:0þ 0:6þ 0:48 ¼ 2:08
X

t∈TA∩TB

SA tð Þ þ SB tð Þð Þ ¼ SA 0005575ð Þ þ SB 0005575ð Þ

¼ 0:48þ 0:64 ¼ 1:12

Therefore, the semantic similarity between terms A
and B is:

SGO A;Bð Þ ¼

X
t∈TA∩TB

SA tð Þ þ SB tð Þð Þ

SV Að Þ þ SV Bð Þ ¼ 1:12
2:44þ 2:08

¼ 0:25

Because the S-values of terms A and B can be obtained
directly from the hash table represented in Fig. 2b, there
is no need to search the DAGs of terms A and B. There-
fore, the computational efficiency of measuring the se-
mantic similarity has sharply improved. The proposed
strategy has achieved the desired result.
To obtain the corresponding hash table from the GO

graph for the Wang method, we design an algorithm for
establishing the hash table, namely EHT. The algorithm

Fig. 2 The main idea of the proposed strategy adopted for the Wang method. a Depicts a DAG for GO term Intracellular Membrane-bound
Organelle: 0043231. b Depicts the hash table established from (a). Each row in (b) is called a record. For each record, the key of the record is the
ID of the GO term, and the value of the record is a link list that contains all of the S-values of the key. For each term in (a), there is a corresponding
record in (b). We can obtain the essential information from the hash table directly instead of from the DAG in (a). The proposed strategy converts the
storage form of information from the GO graph into hash tables to speed the calculation process

Table 3 S-values for GO terms in the DAG for intracellular
membrane-bound organelle: 0043231

GO terms 0043231 0043229 0043227 0005622

S-value 1.0 0.8 0.8 0.48

GO terms 0005623 0043226 0005575

S-value 0.288 0.64 0.512

Tian et al. BMC Bioinformatics  (2016) 17:445 Page 6 of 14



is described in Fig. 3. To simplify the description of the
algorithm, we briefly explain the notations used in the
algorithm. An adjacency matrix M represents one of
three GO graphs MF, BP and CC. RHT represents the
hash table that stores the essential information extracted
from the GO graph. DDec(t) represents a set that con-
tains all of the direct descendants of term t, and DAnc(t)
represents a set that contains all of the direct ancestors
of term t.

Complexity analysis
Without loss of generality, suppose there are m pairs of
genes that require computation of their functional simi-
larities. Each gene has been annotated by an average k
GO terms. There are n GO terms in the GO graph to-
tally. Each pairwise approach uses the BMA rule to
measure gene functional similarity. The time complexity
for the seven methods is listed in Table 4.

In step one, we can find that the time complexity for
each method has no relationship with m. The time com-
plexity for establishing the hash table is relatively low. In
step two, once the hash tables are established, the effi-
ciency of measurement of the gene functional similarity
will be improved. It is noteworthy that the total time
complexity for each gene functional similarity method
equals the time complexity of step two as long as the
GO graph remains unchanged. To further differentiate
SGFSC from other tools in terms of time complexity, we
also list the time complexity when our proposed strategy
is not adopted. From the Table 4, we can find that, if
m≫ n, SGFSC has a higher computational efficiency
comparing with other methods that don’t adopt the pro-
posed strategy.
Regarding space complexity, the proposed strategy

occupies some memory space to store the hash tables.
Suppose the storage space of a GO term is l, then the

Fig. 3 The algorithm for establishing a hash table from the GO graph for the Wang method
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space complexity for storing the hash table is O(n*k*l).
The actual amount of memory required to store the
hash table is about 5 MB, which has been verified
through experimentation. There is no doubt that it will
be quicker to store and read the hash table on a laptop
computer.

Results
In this section, we provide the running time to establish
the hash table from the GO graph first. Then by using
the proposed strategy, the time needed to measure the
semantic similarity between term pairs is listed in
Table 5. The results of measuring gene functional simi-
larities on the whole genomic scale for model organisms
are listed in Table 6. The results of comparisons with
other tools are listed in Tables 7 and 8.

Running time to establish hash tables for each method
The key goal of the strategy is to extract the essential in-
formation from the GO graph and then establish a hash
table to replace the GO graph. Therefore, we provide
the running times to establish the hash table for each
method in Table 9.
From the results, we can find that SGFSC can establish

the hash table within a few minutes. For example, the
running times for the Resnik method on BP, CC and MF
ontologies are 441 s, 264 s and 379 s, respectively. The
running times of the other methods are close to those of
the Resnik method, indicating that the computational ef-
ficiency of the proposed strategy for establishing the
hash table is high. SGFSC is efficient in updating the
content of the hash tables. Therefore, SGFSC is well
adapted to the daily evolution of the GO database, which

may change with the deletion of obsolete terms and the
addition of new terms. It should be noted that the hash
tables for the Resnik, Lin and Jiang methods are the
same. The experiments were conducted on Windows with
an i5-2600 K CPU @ 3.30 GHz with 16 GB memory.

Running time to measure semantic similarity for each
method
For pairwise approaches, measuring the functional simi-
larity between genes is mainly dependent on the sematic
similarity between term pairs. Therefore, the computa-
tional efficiency of sematic similarity plays a key role in
the pairwise methods. We randomly select 106 term
pairs that are related to all of the terms in the corre-
sponding GO graphs for the BP, MF and CC ontologies.
The computing time for each method on BP, MF and
CC graphs is listed in Table 5. For example, the running
times for the Wang method on BP, CC and MF ontol-
ogies are 5.9 s, 2.5 s and 4.4 s, respectively. Because the
BP ontology has the most terms, its running time is lon-
ger than that of the MF and CC ontologies. The results
show that SGFSC can complete the calculation within a
few seconds. In addition, the bar plots of running time
for each method are presented in Fig. 4. We can clearly
find that the computation time is within 10s.

Running time to measure gene functional similarity for
each method
To give a comprehensive comparison of the computa-
tional efficiency of each method, we select annotation data
of five organisms representing Human, Arabidopsis, Yeast,
Rat and Oryza. In Table 6, the number of annotated genes,
number of average annotations for each gene, number
of gene pairs and the running time in seconds for seven
typical methods are presented for the corresponding
ontologies of BP, CC and MF of five organisms.
The experiments select annotation data for five model

organisms: Human, Arabidopsis, Yeast, Rat and Oryza. The
UniProt-GOA data for each species were downloaded from
http://geneontology.org/page/download-annotations in
August 2015. Number of gene pairs refers to the number

Table 4 Time complexity for measuring gene functional similarity of each method

Method Time complexity with the proposed strategy Time complexity without the proposed strategy

Step one Step two

Resnik O(n3) O(m*k2*n*logn) O(m*n3*k2*n*logn)

Jiang O(n3) O(m*k2*n*logn) O(m*n3*k2*n*logn)

Lin O(n3) O(m*k2*n*logn) O(m*n3*k2*n*logn)

Pekar O(n4) O(m*k2*n*logn) O(m*n4*k2*n*logn)

Wang O(n4) O(m*k2*n*logn) O(m*n4*k2*n*logn)

simUI O(n3) O(m*k2*n*logn) O(m*n3*k2*n*logn)

simGIC O(n3) O(m*k2*n*logn) O(m*n3*k2*n*logn)

Table 5 Time in seconds required to establish the hash table
for each method on BP, CC and MF ontologies

Type Resnik Pekar Wang simUI simGIC

BP 441 876 181 84 562

CC 264 46 2.3 1.6 267

MF 379 179 4.9 4.7 384
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of gene pairs that will be measured for gene functional
similarity using SGFSC. We obtain the gene pairs by com-
bining all of the annotated genes in the GOA database.
The experiments were conducted on Linux with an
E5-2609 CPU @2.40 GHz and 64 GB memory.
For each organism, SGFSC computes the respective

functional similarity on BP, CC and MF ontologies. For
the whole genomic scale of human, the experimental re-
sults show that the computing time for each method is no
more than 11 h. For the other organisms, the computing
time is shorter (within a few hours) because the number
of gene pairs and the number of average annotations of
genes are relatively smaller. For example, the number of
annotated genes for the human in BP ontology is 39337,
whereas that for yeast is 5906. Therefore, the running time
for the two organisms is greatly different. However, the
running times of SGFSC for all selected organisms are
within an acceptable range. Therefore, SGFSC shows its
outstanding advantage for measuring functional similarity
on the genomic scale. Even more, it has the ability to
measure the similarity of a combination of all annotated
genes in the GOA database for the model organisms. The

proposed strategy thus can effectively solve the problem of
large-scale computing of gene functional similarity.
To represent the experimental results more intuitive,

we add two bar plots which are depicted using Figs. 5
and 6. Figure 5 is the bar plots for running time using
Wang method on selected organisms. Wang method can
finish the gene functional similarity calculation on the
genome scale for all selected organism in a relatively short
time. Figure 6 shows the running time for each selected
method on human genome scale. Results also indicates
that all these methods can complete the calculation in an
acceptable period of time.

Comparison with other tools
To compare the computational efficiency of SGFSC with
other tools, we select two tools: GFSAT [23] and GOSem-
Sim [33]. These two tools can be conveniently installed on
a laptop, and therefore, we can accurately measure run-
ning times. It is difficult to accurately measure the run-
ning times of other tools because they can only be used
online. Therefore, we decided to compare running time of
these two tools only.

Table 6 Running time to measure semantic similarity between term pairs for three ontologies

Method # of term pairs BP MF CC

# of related terms Time (s) # of related terms Time (s) # of related terms Time (s)

Resnik 106 27,864 5.9 9,943 2.5 3,817 4.4

Jiang 106 27,864 6.7 9,943 2.9 3,817 3.8

Lin 106 27,864 6.0 9,943 2.7 3,817 3.6

Wang 106 27,864 6.2 9,943 2.6 3,817 4.1

Pekar 106 27,864 5.8 9,943 2.6 3,817 3.7

Table 7 Time in seconds to measure gene functional similarity of five organisms

Organism Type # of annotated genes # of average annotations # of gene pairs Time Resnik Time
Jiang

Time
Lin

Time
Wang

Time
Pekar

Time
simUI

Time
simGIC

Human BP 39337 4.35 7.74 × 108 36702 36487 36366 36427 36972 19088 19762

CC 35975 2.56 6.47 × 108 5843 5815 5814 5810 5869 4921 5815

MF 38404 2.32 7.37 × 108 323 326 327 321 326 4519 4828

Arabidopsis BP 25532 3.24 3.26 × 108 6945 6957 5948 6956 6953 5238 5590

CC 17683 2.00 1.56 × 108 812 808 841 816 816 962 989

MF 20305 1.92 2.06 × 108 632 616 619 622 628 1048 1091

Yeast BP 5906 3.20 1.74 × 107 578 580 586 583 579 353 383

CC 5660 2.22 1.60 × 107 143 146 145 146 144 432 142

MF 5902 2.30 1.74 × 107 66 64 66 65 64 94 100

Rat BP 23319 4.62 2.65 × 108 13650 13690 13641 13714 13705 7219 7954

CC 22217 2.60 2.47 × 108 2319 2314 2299 2411 2319 1911 2083

MF 23065 2.49 2.66 × 108 1334 1315 1351 1339 1330 1750 1874

Oryza BP 1909 1.44 1.82 × 106 8 8 7 8 8 13 13

CC 39995 1.06 8.00 × 108 1262 1343 1307 1258 1254 2976 3115

MF 2041 1.60 2.08 × 106 5 5 5 4 5 9 10
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We use the running time to compute the similarities
of a large number of term pairs and gene pairs to evalu-
ate the computational efficiency of these three tools. In
the experiment, we use SGFSC, GFSAT and GOSemSim
to compute the similarities of three sets of term pairs
and gene pairs, respectively. The numbers of term pairs
and gene pairs in these sets are both 102, 104 and 106,
respectively. The experiments were conducted on Win-
dows with an i5-2600 K CPU @ 3.30 GHz and 16 GB
memory.
The GO data in Table 7 were downloaded in August

2015, and the term pairs were randomly generated from
the MF ontology. The Wang method was used for each
tool. The GOA data in Table 8 of Arabidopsis was down-
loaded in August 2015. We selected the well-annotated
genes and then generated gene pairs for testing. The
Wang method was also used for each tool. ‘X’ in Tables
7 and 8 indicates that the process took >12 h.
The running time of each tool to measure the seman-

tic similarity results is listed in Table 7. The running
times of GFSAT and GOSemSim to measure the seman-
tic similarity of 104 term pairs were 6387 s and 3634 s,
respectively, whereas that for SGFSC took only 2 s. Fur-
thermore, the running times of both GFSAT and
GOSemSim to calculate 106 term pairs were greater than
12 h, whereas that for SGFSC was only 9.4 s.
The running time of each tool to measure gene func-

tional similarity is listed in Table 8. Similar to the findings
for semantic similarity, SGFSC performed considerably
better than the other two tools on the similarity calcula-
tion of gene pairs. The running time of SGFSC was 29 s
for 104 gene pairs, whereas GFSAT and GOSemSim re-
quired 36154 s and 13056 s, respectively. As the results
clearly show, in comparison with the other two tools,
SGFSC has a considerable speed advantage especially
when calculating a large number of gene pairs. Besides, we

add one merged bar plots Figure for Tables 7 and 8.
Figure 7a and b show the running time of measuring
semantic similarity on 102 and 104 term pair datasets.
Figure 7c and d depict the running time of measuring
gene functional similarity on 102 and 104 gene pair data-
sets respectively. All of the four subfigures clearly show
the advantages of SGFSC in the computation time. There-
fore, our proposed strategy achieves the desired results in
speeding up the gene functional similarity calculation.

Discussion
First, we emphasise that the aim of the proposed two-step
strategy is only to speed up the methods used to measure
gene functional similarity because these methods tend to
be time consuming if they are not implemented with a
proper data structure. The problem may be extremely
prominent especially when gene functional similarity
needs to be measured on the genome scale for some appli-
cations. Therefore, the proposed strategy for speeding up
the functional similarity calculation is quite meaningful.
Second, the proposed two-step strategy adopts hash ta-

bles as the data structure to store essential information to
avoid traversing the GO graph. Furthermore, the hash table
is used only to satisfy the requirement of a quick search.
Hence, the computational efficiency of these methods im-
proves significantly. We particularly highlight that the com-
putational efficiency for these methods varies widely
according to different data structures and implementation
strategies. Therefore, it is critical to choose an appropriate
implementation strategy to increase the computational effi-
ciency of these methods.
Third, we also implemented an online tool, SGFSC, for

adoption of the two-step strategy. The SGFSC could speed
the functional similarity calculation methods on the whole
genomic scale. However, there are some other issues need
to note.

Precision
SGFSC extracts the essential information for each method
from the GO graph and then establish hash tables, which
have a special structure to store the information. There-
fore, the precision of the final computing result is not lost
with SGFSC because the function of the hash tables is only
to store intermediate results to avoid repeatedly traversing
the GO graph for each method.

Correctness
SGFSC was implemented with seven typical methods. It
is not difficult to understand that SGFSC only achieves
the computation speeds with these methods when our
proposed two-step strategy is used. The computing
process of the original methods is unchanged. Therefore,
the computing results of SGFSC are identical to those of
other tools if the same versions of the GO and GOA

Table 8 Running time in seconds for each tool to measure
semantic similarity

Tool # of term pairs

102 104 106

SGFSC <1 2 9.4

GFSAT 68 6,387 X

GOSemSim 52 3,634 X

Table 9 Running time in seconds for each tool to measure
gene functional similarity

Tool # of gene pairs

102 104 106

SGFSC <1 29 768

GFSAT 163 36,514 X

GOSemSim 78 13,056 X
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databases are used. As a result, the computing results
are absolutely correct.

Space
Because SGFSC adopts a two-step computing strategy, it
first needs to read the hash table into memory. There-
fore, it occupies some additional memory space com-
pared with other tools that do not adopt the proposed
strategy. Experimentation showed that the memory
space for storing the hash table is about 5 MB. The con-
tinuing development of computer hardware technology

has made this a simple problem to solve. The core idea
of the strategy comes from making the best use of mem-
ory space to reduce the computing time, which is widely
used in computer science.

Application
SGFSC offers powerful computational capability to com-
pute gene functional similarity on a genomic scale. We
have provided a friendly online tool for the convenient
use of SGFSC. In addation, our proposed strategy also
offers good versatility for use in other research. For

Fig. 4 Bar plots of running time in measuring semantic similarity between term pairs

Fig. 5 Bar plots for running time in measuring gene functional similarity using Wang method on each organism
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Fig. 7 Bar plots for running time on different datasets using SGFSC, GFSAT and GOSemSim

Fig. 6 Bar plots for running time for each method in measuring functional similarity on human genomic scale
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example, in the area of natural language process re-
search, because the size of the WordNet is large, com-
puting the IC value of a concept is also time consuming.
Therefore, researchers measuring the semantic similarity
between concepts could adopt our proposed two-step
strategy to improve computational efficiency.

Drawback
To speed up the gene functional similarity calculation,
SGFSC first has to read the corresponding information hash
table into memory, which will take a few seconds. Therefore,
the computational efficiency of SGFSC is lower than that of
other tools if the number of gene pairs requiring measure-
ment of functional similarity is small. Therefore, the out-
standing advantage of SGFSC is in its measurement of gene
functional similarity for a large number of gene pairs.

Conclusion
First, a novel two-step computing strategy is proposed to
speed up gene functional similarity calculation. These
methods measure gene functional similarity based on hash
tables. Therefore, the time complexity is obviously decreased
because there is no need to traverse the GO graph repeat-
edly, which primarily affects the computational efficiency.
Second, we have implemented an online tool called

SGFSC that is bundled with seven typical gene functional
similarity calculation methods and is freely available at
http://nclab.hit.edu.cn/SGFSC. The computational effi-
ciency of SGFSC offers a significant improvement in com-
puting time. Our experiments show that SGFSC has a
great advantage in measuring gene functional similarity on
the whole genomic scale.
Third, the key point in our proposed strategy is the

transformative idea that the information required can be
obtained directly from the hash tables instead of the ori-
ginal GO graph. The proposed strategy converts the storage
form of information from a GO graph into a hash table
structure that can meet the requirements of a quick query.
As a result, the proposed strategy achieved a desired result.
The proposed strategy may also be applied to other areas of
bioinformatics to improve computational efficiency.
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