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Abstract

Background: Metagenomic sequencing studies are becoming increasingly popular with prominent examples
including the sequencing of human microbiomes and diverse environments. A fundamental computational problem
in this context is read classification; i.e. the assignment of each read to a taxonomic label. Due to the large number of
reads produced by modern high-throughput sequencing technologies and the rapidly increasing number of available
reference genomes software tools for fast and accurate metagenomic read classification are urgently needed.

Results: We present cuCLARK, a read-level classifier for CUDA-enabled GPUs, based on the fast and accurate
classification of metagenomic sequences using reduced k-mers (CLARK) method. Using the processing power of a
single Titan X GPU, cuCLARK can reach classification speeds of up to 50 million reads per minute. Corresponding
speedups for species- (genus-)level classification range between 3.2 and 6.6 (3.7 and 6.4) compared to multi-threaded
CLARK executed on a 16-core Xeon CPU workstation.

Conclusion: cuCLARK can perform metagenomic read classification at superior speeds on CUDA-enabled GPUs. It is
free software licensed under GPL and can be downloaded at https://github.com/funatiq/cuclark free
of charge.
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Background
Metagenomic read classification is a common and
increasingly important bioinformatics technique where
short DNA reads stemming from a genomic sample are
automatically annotated with a taxonomic label such as
species or genus identifiers by mapping them onto a
large set of reference genomes. Metagenomic sequencing
studies are gaining popularity with prominent examples
including the sequencing of human microbiomes [1] and
diverse environments like seawater [2] in order to analyze
their composition and to study their temporal variation.
Precise knowledge about the individual components of a
sample enables researchers to understand the interaction
with surrounding environments or to gain information
about the integrity of the analyzed system.
With DNA sequencing becoming faster and cheaper, the

amount of recorded data is expected to rapidly grow in
the foreseeable future. As an example, online services such
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as μBiome (see https://ubiome.com) are currently
performing the sequencing and analysis of a human gut
sample for less than US$ 100. Thus, the design and imple-
mentation of exceedingly fast and precise metagenomic
read classification algorithms remains an important topic
for academic research and commercial solutions.
A number of approaches have been proposed to solve

the read classification problem by employing machine
learning techniques on top of nearest neighbor infor-
mation between probed reads and reference genomes.
BLAST [3] and BLAST-based methods like MEGAN [4]
use inexact alignment of the sequences. PhymmBL [5]
uses BLAST in combination with probabilistic models,
while NBC [6] examines the composition of a sequence
in consideration of Bayes’ rule. Unfortunately, these
approaches are too slow for classifying the huge amounts
of reads produced by current next-generation sequencing
(NGS) technologies.
The recently introduced Kraken [7] and CLARK [8]

methods represent a major improvement in terms of
classification speed (running almost three orders-of-
magnitude faster than alignment-based approaches such
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asMegaBLAST). Both tools analyze each read by querying
its k-mers against a pre-built database. In case of Kraken,
this database contains all k-mers of the considered refer-
ence genomes, which are subsequently mapped to their
lowest common ancestor (LCA) in a taxonomic tree. For
each input read a subtree containing all its k-mer’s LCA
taxa is constructed and examined to classify a read.
CLARK employs a pre-built database of target genomes
exclusively consisting of unique k-mers. Ambiguous k-
mers shared amongmultiple targets are ignored. Note that
a target can consist of multiple genomes, e.g. by treating
genomes from the same genus as a single target. Finally,
the best fitting candidate of the target genomes is used to
label the input sequence.
CLARK and Kraken can be run in several user-defined

classificationmodes. For example the full mode of CLARK
provides a complete analysis of the input sequences and
therefore reaches the highest sensitivity. Further it pro-
vides confidence scores, which allow to abstain from
uncertain classifications thus increasing precision. The
remaining modes skip parts of the work to speedup the
classification procedure at the cost of sensitivity. Apart
from the aforementioned modes the user can specify a
sampling factor controlling the ratio of target k-mers to be
considered during classification.
A recent benchmark study [9] showed that k-mer based

approaches performed among the best in a comparison of
14 tested tools in terms of both read assignment accuracy
at genus/phylum level and classification speed. Kraken
and CLARK can process NGS data with a speed of around
1 million reads per minute (depending on the read length)
on a single CPU core. However, as metagenomic sequenc-
ing transcends from research labs to clinical and industrial
applications even higher processing speeds are needed.
For example, the estimation of species abundance in DNA
sequences from a metagenomic sample usually requires a
statistical method running on top of a read-level classi-
fier where this classifier needs to be called excessively as a
subroutine [10].
Graphics processing units (GPUs) can provide up to one

order-of-magnitude higher peak performance compared
to CPUs through massive fine-grained parallelism at a
highly competitive price-performance ratio. Using pro-
gramming languages such as CUDA, they can be used
for general-purpose applications. Successful examples of
GPUs applied to NGS read analysis include read mapping
[11], RNA-Seq spliced alignment [12], error correction
[13], k-mer counting [14], and assembly [15]. In this paper,
we show how CUDA-enabled GPUs can be used to accel-
erate metagenomic read classification. The limited size of
video RAM attached to a GPU makes the storage of large
databases challenging: they have to be distributed among
several GPUs or split into smaller parts that are queried
successively. Among the two considered methods (Kraken

and CLARK), CLARK uses a smaller database and further
allows to partition the database into smaller parts, which
can be queried in batches. As a result, we have chosen the
CLARK method as candidate for our GPU parallelization.
This work presents the design and implementation of

computation schemes for massively parallel accelerators
in order to accelerate read classification. Our software
tool, cuCLARK, features support for multiple GPUs and
further provides a light version allowing for the execution
on legacy workstations with only 4 GB of RAM and 1 GB
of video RAM. Using a number of datasets we show that
cuCLARK running on a single Titan X GPU can classify
up to 50 million reads per minute. It outperforms multi-
threaded CLARK for species- (genus-)level classification
running on a high-end 16-core Xeon E5-2683 v4 CPU by
a factor between 3.2 and 5.1 (3.7 and 5.2) including all
data transfers over the relatively slow PCIe bus, which is
often a bottleneck for accelerators. Note that classification
results of cuCLARK and CLARK are identical except for
the ordering of equally scored targets.

Implementation
cuCLARK provides similar functionality and usability
to CLARK producing compliant output to CPU-based
CLARK’s full mode. It produces output in the same for-
mat and thus enables the user to take advantage of the
post-processing scripts bundled with CLARK. Moreover,
cuCLARK provides the same command line flags spec-
ifying common parameters such as k-mer length and
database sampling factor in order to facilitate the easy
integration into already existing bioinformatics pipelines.
In contrast to that, a number of implementation details

of CLARK’s classification algorithm had to be modified.
In order to fully utilize the compute capabilities of a mod-
ern GPU, the execution needs to be highly parallel and
make use of all its available resources. Efficient mem-
ory access and management are key for accelerating read
classification, since the algorithm is dominated by ran-
dom accesses to a large reference genome database. This
database typically exceeds the amount of memory avail-
able on a single GPU. cuCLARK supports classification on
a workstation with a single GPU and compute nodes with
multiple GPUs.
Despite the differences in implementation, CLARK and

cuCLARK produce the same target scores for each input
object. The only discrepancy in the output derives from
the case where multiple targets reach the same score for
the same object. It can therefore happen that the pro-
grams choose different assignments if two or more targets
reach the highest score. In these cases it is not possible to
determine which target is the right one to choose as classi-
fication result and cuCLARK (as well as CLARK) reports
the same lowest possible confidence score (which depends
on the two highest target scores). Users may request the
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extended output which includes all target scores for each
object for further analysis.

Database construction
Initially, a database is build in a pre-processing step. This
is achieved by creating an index of all k-mers contained
in the target (reference genome) sequences and collecting
their number of occurrences per target. After all tar-
gets have been processed, any k-mers that are shared
by multiple targets are removed from the index. The
remaining k-mers are therefore called target-specific or
discriminative. In the classification stage, the k-mers of
the input objects (reads) are compared to these specific
k-mers.
The database construction method of cuCLARK mod-

ifies the CLARK database structure as follows. Instead of
storing each k-mer or its reverse complement depending
on which appears first, we always choose the canonical
k-mer which is the lexicographically smaller of the two.
This choice is also done for each k-mer of a query read
during the classification stage. Instead of querying the k-
mer first and the reverse complement in case of a miss,
we always determine the canonical k-mer, which helps
to avoid branch divergence of the parallel execution. The
database files which are stored on disk have the same for-
mat as CLARK’s and can be used instead of its own. Note
that, cuCLARK’s database files can be used with CLARK
but not vice versa.
While the creation process of the database is almost

the same as in CLARK, we have changed the database
pre-loading for classification. The hash table of CLARK
consists of key-value pairs in a vector for each bucket.
The buckets are themselves stored in a large vector. This
nested container format is unsuitable for CUDA accelera-
tors. Our approach uses an array for all keys and another
one for all values. Values are accessed by pointers calcu-
lated by a prefix sum of the bucket sizes from the original
hash table. This not only enables fast loading because the
database files are already laid out the same as the arrays,
it also allows for cache friendly traversing of consecutive
keys when querying the database. This compressed form
of the hash table is possible because the buckets do not
change in size after their initial construction. Our data
layout provides an additional advantage: If the database
does not fit into the memory of a single GPU, it will
need to be split up into several parts. This can be easily
achieved by dividing the arrays in chunks and calculat-
ing the value pointers accordingly. Figure 1 shows the
database structure of cuCLARK.
We use page-locked host memory to store the database

in RAM to improve the transfer bandwidth to the graphics
memory over the PCIe bus. The program is able to make
use of multiple accelerator cards and adjusts the size of the
database chunks according to their memory sizes. If the

Fig. 1 Database Structure of cuCLARK. The quotients of the
discriminative k-mers and the corresponding targets are loaded into
one large array each. For each k-mer remainder we calculate the
pointer to the first element of its hash table bucket

combined memory of all available cards is not sufficient
to hold the whole database, we have to query the parts in
separate stages.

Classification process
Before we can put the GPU to work, the input files need
to be processed by the CPU. CLARK divides the input
by the number of CPU threads if executed in multi-core
mode. We have taken the idea one step further and parti-
tion the files into a user-defined number of batches. It is
advisable to choose a multiple of the number of threads
in order to achieve good load balancing. The benefit of
smaller batches is a lower memory consumption per input
chunk. This enables us to use most of the graphics mem-
ory for the database itself when processing batches on the
GPU.
FASTA or FASTQ are accepted input file formats.

First the length of the contained DNA sequences is
determined in order to allocate sufficient memory for
both input sequences and classification results. We
again use page-locked host memory to achieve higher
throughput.
Next, base-pair symbols {A,C,G,T} are encoded into a

two-bit representation. If a sequence contains an ambigu-
ous character (N) it is split into the parts preceding and
following this character. Sequences or sequence parts
which are shorter than k and therefore do not contain
any complete k-mer are disregarded. Next, the sequence
data of a batch is transferred to graphics memory for
classification.
Aside from higher transfer speeds the use of page-

locked memory allows for batches to be processed asyn-
chronously by the GPU. This means after a CPU thread
has prepared all sequence data of a batch, the batch is
scheduled for classification on the GPU and the CPU can
continue with the next batch without having to wait for
the GPU to finish (see Fig. 2).
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Fig. 2 Asynchronous execution on the GPU. The processing on the GPU can be performed asynchronously to the CPU. Memory transfers (green
arrows) and classification are handled by the GPU while the CPU already prepares the next batch

The classification process consists of multiple steps.
First each GPU queries the batches against the database
part it currently holds. Subsequently, the results of all indi-
vidual GPUs are collected. If the database doesn’t fit into
graphics memory in one piece, we swap database chunks
and query the batches again. The number of cycles we
need depends on the database size and the amount of
available GPUmemory. After the whole database has been
consulted and the results have been merged, we find the
two best targets for each NGS read. Identical Analogous
to CLARK, we use the target with the most hits to clas-
sify a read and calculate the confidence score from the hit
counts of the best and second best target. Figure 3 illus-
trates the classification cycle for a single batch on four
GPUs.

CUDA implementation
The CUDA programming model requires the use of ker-
nels, which can be executed in parallel by a large num-
ber of threads on the GPU. The threads are grouped in
blocks, where each block has access to a fixed amount
of shared memory. This fast but small memory can be
accessed simultaneously by all threads of a block for
caching data from the global graphics memory or to
store intermediate results. A significant speed-up can
be achieved compared to repeatedly accessing the same

global memory region. The drawback of the limited
amount of shared memory is that less blocks can be
processed concurrently if they require too much memory
each. In the following we describe the CUDA kernels
we have implemented for the classification described
above.

Query kernel
The query kernel uses one thread block for each sequence
(NGS read). The threads in the block first initial-
ize the counters for all targets (reference genomes) in
shared memory. Subsequently, they load the sequence
data into shared memory in a coalesced manner.
CUDA threads construct consecutive k-mers from the
sequence, where each thread is responsible for a sin-
gle k-mer at a time. Each thread compares the k-mer
with its reverse complement to determines the canon-
ical k-mer. The resulting k-mer is queried against the
database.
The query is successful if the k-mer has been found

in the part of the database currently available to the
GPU. In this case a target scores a hit and we incre-
ment the hit counter for this target. Here we have to
use an atomic add operation, because queries of multi-
ple threads might need to update the counter of the same
target. Each atomic operation covers two neighboring
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Fig. 3 Classification cycle for a single batch. Each GPU queries the batch against a different database part. Then we merge the query results of the
individual GPUs with the result of the previous cycle. After we merged all results in the last cycle, we can finally get the classification result. All
kernels are explained in Section CUDA implementation

counters, because CUDA atomics operate with at least
32 bits and we use 16-bit variables for the counters to
minimize shared memory consumption. The query kernel
is illustrated in Fig. 4.
After all k-mers have been queried, the threads per-

form a parallel compaction [16] of the target scores in
sharedmemory. This means that all non-zero counters are
grouped together to store them efficiently. All counters
of value zero offer no additional information and do not
need to be saved. The compact results are written to
global memory. This strategy greatly reduces the storage

space needed as well as the number of accesses to global
graphics memory.
In-between the steps we have to synchronize the threads

of a block to ensure that all threads have performed the
instructions up to this point.

Merge kernel
The merge kernel is used to combine the compacted tar-
get scores. Every call of the kernel merges the results of
two GPUs into one, so we can perform a parallel reduc-
tion of the results in O(log2 d) steps, where d is the

Fig. 4 Query kernel. (1) The threads load the sequence data, (2) construct the k-mers and (3) query the database. (4) Hits are scored in shared
memory first, (5) the compact results get transferred to global memory



Kobus et al. BMC Bioinformatics  (2017) 18:11 Page 6 of 10

number of GPUs we use for classification. Each thread
in the kernel processes the scores of one sequence. If we
have to swap database chunks, the combined scores for
each batch are stored in page-locked host memory. After
another part has been queried, the results are merged
with the previous scores. Themerge kernel is illustrated in
Fig. 5.

Result kernel
The result kernel concludes the GPU stage of the classifi-
cation process. After all database parts have been exam-
ined and the target scores have been merged, we identify
the two targets with the highest hit counts for each input
sequence. Similar to the merge kernel, we use one thread
per sequence to scan the scores (see Fig. 6). After the result
kernel has finished, the results are copied back to the host
for printing.

Printing results
After the CPU has scheduled all batches for GPU process-
ing and managed all database swaps, it is ready to print
results to an output file. The printing can start after the
results of the first batch are available in host memory. Typ-
ically the GPUs finish the next batch before the CPU is
done printing, so the output process can continue without
delay.
In the case that we do not have to swap database parts

and each batch is only queried once, we have decided to
start printing earlier. After the first batch is scheduled, one
CPU thread is immediately assigned to printing while the
others continue to process the input file. Thus, we avoid
the CPU running idle and further increase the overall
execution speed.
While we do not offer all different modes of CLARK,

it is still possible to change the sampling factor for load-
ing the database. This can help to increase the speed of
the program. Additionally, we provide a light version of
our program. It uses a significantly smaller database in
order to be executed on systems with a small amount of
memory. In our case this involves a CPU with about 4 GB

Fig. 5Merge kernel. Each thread combines two compacted target
scores for the same sequence into one

of RAM and a CUDA-enabled GPU with at least 1 GB of
graphics memory.

Results and discussion
Experimental setup
Experimental results have been obtained by running
CLARK (version 1.2.3), cuCLARK and Kraken (version
0.10.5-beta) on a workstation featuring an Intel Xeon E5-
2683v4 16-core processor, 128 GB of DDR4 RAM and
a CUDA-capable GPU, namely a Pascal-based NVIDIA
Titan X with 12 GB of GDRR5X graphics memory. Addi-
tionally, we have tested the scalability of cuCLARK with
an Intel Xeon E5-2670v2 CPU with 64 GB of DDR3
RAM and four Kepler-based NVIDIAGeForce GTXTitan
GPUs each providing 6 GB of GDDR5 video RAM.
To analyze the classification speed of our program we

have used simulated metagenome data with different read
lengths. The datasets HiSeq and MiSeq have already been
used to evaluate the performance of both Kraken [7] and
CLARK [8]. We have furthermore created wgsim200 and
wgsim250 with wgsim [17] using default settings. While
the first two datasets consist of a combination of bac-
terial whole-genome shotgun reads originating from the
corresponding Illumina sequencing platforms, the other
two datasets have been created from ten complete bac-
terial and archaeal genomes randomly picked from the
NCBI RefSeq database. The four sets contain 10 million
reads each with an average length of 92 base-pairs (bps)
for HiSeq, 157 bps for MiSeq and an equal length of 200
bps and 250 bps for all reads in wgsim200 and wgsim250,
respectively.
Additionally, we have created a simulated 454 pyrose-

quencing dataset art454 with ART [18], using its built-in
GS FLX Titanium profile. We have further created a
simulated dataset fqIon with FASTQSim’s [19] Ion Tor-
rent default characterization. For these two datasets we
have used ten randomly selected bacterial and archaeal
genomes using a fold coverage of 100x. This resulted
in 4,841,892 reads with an average length of 347 bps
and 9,626,266 reads with an average 159 bps length,
respectively. Note that 454 and Ion Torrent platforms
as well as the corresponding simulators produce reads
with a much higher variance in length compared to
Illumina sequencers. fqIon for example features read
lengths ranging from 1 to 264 bps.

Full mode
For the speed comparison, we have executed read
classification with CLARK, cuCLARK, and Kraken for
the datasets described above. CLARK is run in full
mode and Kraken in default mode with preloaded
database. We have used the default k-mer length of
k = 31 for all three programs. We have classified
against the NCBI RefSeq [20] database of December
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Fig. 6 Result kernel. Each thread gets the index and the score of the two best targets for a sequence. It also calculates the sum of all scores for this
sequence

2015 consisting of 2785 bacterial genomes. This corre-
sponds to 683 distinct targets at genus-level and 1463
targets at species-level for CLARK and cuCLARK. Run-
time results for both taxonomic levels are reported in the
Tables 1 and 2.
Classification speed in the tables are measured in terms

of 106 classified sequences (reads) per minute. We report
the best results of three consecutive runs of the programs
with the same input. This was done in order to mitigate
runtime differences caused by I/O or cache problems. The
measurements do not take the building or loading time
of the database into account. The three programs have
been executed in single- and multi-threaded configura-
tions. cuCLARK has been executed on a Titan X for single
GPU experiments.
For cuCLARKwe have decided to process the input files

in 16 batches, so the space required for each batch is small
enough to leave most graphics memory for the database
parts. Since the Titan X’s graphics memory (12 GB) is not
sufficient to fit the complete databases of size 38.5 GB
(species-level) and 39.91 GB (genus-level) respectively, we
need four cycles to process the whole database.
The measurements in Table 1 show that classifi-

cation speed generally decreases with increasing read
length, since longer reads contain more k-mers. CLARK
and Kraken both scale reasonably well with the num-
ber of CPU threads. For instance, CLARK is able to
achieve speedups between 8.4-14.0 for the tested datasets

when running with 16 threads compared to single-
threaded execution. Scaling improves with longer read
length.
For cuCLARK we see the same behavior as for CLARK,

that classification speeds depend on the sequence length.
For our program, however, the differences between the
data sets are not as big. For example it is only 18% slower
for MiSeq compared to HiSeq.
To further increase the speed of cuCLARK, we use mul-

tiple CPU threads to process the input files. We do not
change the number of batches, that each file is split into,
but instead distribute them among several CPU threads.
This way we can provide the GPUs with batches of data
at a faster rate which results in a higher overall classi-
fication speed. Using eight CPU threads and one GPU,
cuCLARK achieves speed-ups of between 3.2 and 6.6 (3.7
and 6.4) when compared to multi-threaded CLARK using
16 CPU threads for species (genus) level classification.
The speed-up increases with the read length of the data
sets. The genus-level classification speeds for CLARK and
cuCLARK are slightly slower than for species level. This
is caused by the larger database, which leads to longer
queries on average.
If executed with a low number of threads, Kraken is

1.3-1.8 times faster than CLARK at the species- or genus-
level with the same thread count. For MiSeq, wgsim200„
wgsim250 and fqIon Kraken using 16 threads is still 1.4-
1.8 times faster than CLARK with the same number of

Table 1 Classification speed of CLARK, Kraken, and cuCLARK at species-level measured in terms of 106 classified sequences (reads) per
minute

CPU threads GPUs HiSeq Speed MiSeq Speed wgsim200 Speed wgsim250 Speed art454 Speed fqIon Speed

CLARK 1 - 1.89 0.88 0.68 0.54 0.29 0.74

CLARK 16 - 15.74 9.74 8.15 6.82 4.05 9.47

Kraken 1 - 2.37 1.33 1.15 0.89 0.64 1.32

Kraken 16 - 12.6 13.74 14.45 11.95 8.75 15.48

cuCLARK 8 1 49.69 42.27 38.02 34.5 26.84 41.01

cuCLARK/CLARK 3.2 4.3 4.7 5.1 6.6 4.3

cuCLARK/Kraken 3.9 3.1 2.6 2.9 3.1 2.7

The bottom two rows report the speedups between cuCLARK over CLARK and Kraken executed with 16 CPU threads
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Table 2 Classification speed of CLARK, Kraken, and cuCLARK at genus-level measured in terms of 106 classified sequences (reads) per
minute

CPU threads GPUs HiSeq Speed MiSeq Speed wgsim200 Speed wgsim250 Speed art454 Speed fqIon Speed

CLARK 1 - 1.66 0.75 0.65 0.51 0.26 0.68

CLARK 16 - 13.46 8.96 8.07 6.52 3.9 9.4

Kraken 1 - 2.37 1.33 1.15 0.89 0.64 1.32

Kraken 16 - 12.6 13.74 14.45 11.95 8.75 15.48

cuCLARK 8 1 49.27 41.22 37.23 33.89 25.13 39.93

cuCLARK/CLARK 3.7 4.6 4.6 5.2 6.4 4.2

cuCLARK/Kraken 3.9 3 2.6 2.8 2.9 2.6

The two bottom rows report the speedups of cuCLARK over CLARK and Kraken executed with 16 CPU threads

threads. Kraken performs especially well for art454, where
it is 2.2-2.5 times faster than CLARK in single- and multi-
threaded execution. cuCLARK is 2.6-3.9 (2.6-3.1) times
faster than Kraken running with 16 CPU threads for
species (genus)-level classification.

Dependency On database size
When loading the database with a sampling factor of s =
6, we can investigate the performance on smaller database
sizes. A sampling factor of s = 1 is equivalent to the
default behaviour of loading the whole database. Using a
sampling factor s > 1 whole buckets are skipped and thus
many queries result in an immediate miss. As a result, the
average query speed increases. Due to this, CLARK is able
to improve its runtime by 58% for the execution with 16
threads. Moreover, it needs about 52 GB less RAM for the
classification.
For cuCLARK the main benefit of the smaller database

is that we can completely fit it into graphics memory.
Thus, we only need to query the batches once and do
not need to swap database parts on-the-fly. We observe
that the gain in speed for the single-threaded execution
is relatively small. Therefore, the speed of cuCLARK is
obviously bound by I/O operations executed on the CPU.
For this reason we have implemented the early printing
feature for the multi-threaded mode. During concurrent

execution we can hide parts of the time needed for the
file output and thus increase overall speed. Using multi-
ple CPU threads we obtain a speedup of 51%-53% instead
of only 37% improvement over the single-threaded ver-
sion. Note that printing early is only possible if we do
not need to query the batches against another database
part.
Among all sampling factors the main memory con-

sumption of CLARK is in general reasonably higher than
cuCLARK’s although they both store the same database
entries and consequently produce compliant results. This
can be explained as follows. CLARK’s nested data struc-
tures require more bytes for the storage of individual
buckets due to sub-optimal memory alignment. In fact
we use less than half the amount of RAM as CLARK by
consecutively storing the buckets in one contiguous array.
This reduction in memory consumption can be observed
for the whole database as well as the sampled one (see
Table 3).

Light versions
Furthermore, we have classified the data sets with the
light versions of CLARK and cuCLARK, which construct
a much smaller database and need less than 4 GB of RAM.
We have used the full mode for CLARK light and default
k-mer length (k = 27). For cuCLARK light the reduced

Table 3 Classification speed for different sampling factors at species-level for the HiSeq dataset in terms of 106 sequences/min and
corresponding main memory consumption

HiSeq CPU threads GPUs Speed RAM usage GRAM usage

CLARK (s=1) 16 - 15.74 86.5 GB -

CLARK (s=6) 16 - 24.8 34.7 GB -

Kraken 16 - 12.6 73.8 GB -

cuCLARK (s=1) 1 1 44.26 39.9 GB 9.7 GB

cuCLARK (s=1) 8 1 49.69 39.9 GB 9.7 GB

cuCLARK (s=6) 1 1 60.51 14.1 GB 11.9 GB

cuCLARK (s=6) 8 1 75.96 14.1 GB 11.9 GB
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Table 4 Classification speed comparison between CLARK light and cuCLARK light at species-level in terms of 106 classified
sequences/min

CPU threads GPUs HiSeq Speed MiSeq Speed wgsim200 Speed wgsim250 Speed art454 Speed fqIon Speed

CLARK light 1 - 5.85 3.06 2.64 2.08 1.08 2.66

CLARK light 16 - 27.32 19.48 16.47 13.95 8.21 18.45

cuCLARK light 8 1 75.46 69.76 62.62 59.23 54.12 65.27

cuCLARK light/CLARK light 2.8 3.6 3.8 4.2 6.6 3.5

The bottom row reports the speedup of cuCALRK light compared to CLARK light executed with 16 CPU threads

database is smaller than 720 MB and leaves enough space
for batch data even on graphics cards with only 1 GB of
memory. The resulting speeds for the light versions are
presented in Table 4.

Scalability
In order to investigate the scalability of our implementa-
tion we have run cuCLARK on multiple GPUs attached
to one workstation. The up to four Kepler-based GeForce
GTX Titans each provide 6 GB of video RAM. The
increased amount of total memory allows for the query-
ing of a larger part of the database at once resulting in
less cycles to process the whole database. Using a single
GPU we need seven cycles to process the whole species
database, four cycles for two GPUs and two cycles for four
GPUs, respectively.
Since I/O is independent of the number of used GPUs,

the higher speeds observed when using multiple GPUs
result from the simultaneous processing of database parts.
This leads to a reduced number of work steps per graph-
ics device. The speed-up increases with the read length of
the datasets, as depicted in Fig. 7. Due to the increased
length of reads the classification can attain a higher effi-
ciency. We achieve a speedup of 1.4 to 1.8 with two GPUs
and a speedup of 1.8 to 2.6 with four GPUs compared to
the classification on one GPU.

Conclusion
The rapidly growing field of metagenomic sequencing cre-
ates an urgent need for exceedingly fast and precise com-
putational tools to analyze the ever-increasing amount
of recorded data. In this context, taxonomic read assign-
ment is a frequently repeated and important task. Thus,
novel short read classifiers relying on efficient algorith-
mic design specifically suited for the execution onmodern
hardware accelerators are of high importance for aca-
demic research and commercial bioinformatics solutions.
We have introduced cuCLARK, a hybrid metagenomic

read classifier executed on multi-core CPU and mas-
sively parallel GPUs. It can assign taxonomic labels at the
speed of up to 50 million reads per minute using a single
GPU, while producing identical results to the established
CLARK tool.
The execution speed can be maximized if the avail-

able graphics devices provide enough memory to fit the
entire database of discriminative k-mers. In this case asyn-
chronous read classification on GPUs can be accelerated
to an extent that the program’s speed is solely limited
by the I/O operations executed on the CPU. Therefore,
multi-threaded processing of input and output allows for
the further increasing of performance since CPU-based
I/O can be efficiently overlapped with GPU-based
classification.

Fig. 7 cuCLARK GPU scaling. Speed-up of cuCLARK from one to two and four GPUs for the different datasets. Four NVIDIA GeForce GTX Titan with 6
GB graphic memory were used for this experiment
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If cuCLARK is executed on GPUs with relatively small
video RAM sizes, it needs several classification cycles to
process the whole database. This leads to lower speeds,
because the input sequences need to be queried suc-
cessively against multiple parts of the database. In our
experiments we needed four cycles, when using a GPU
with 12 GB of memory and the NCBI RefSeq database of
December 2015. In this configuration achieved speedups
for species-level classification range between 3.2 and 6.6
(2.6 and 3.3) on a single Titan XGPU compared to CLARK
(Kraken) when executed with 16 threads on a Xeon E5-
2683v4 16-core CPU.
The light mode of cuCLARK is able to reach even higher

speeds than the full version. It proved to be a supe-
rior alternative to CLARK light if the user can provide
a suitable graphics device. cuCLARK light is up to 6.6
times faster on a single GPU than CLARK light using 16
CPU threads.
As our experiments have shown, the classification speed

of our program heavily correlates with the amount of
available video RAM and the memory bandwidth. Future
accelerator cards from the professional Tesla branch, e.g
the to be released Tesla P100 chip, will feature 16 GB of
high bandwidth stackedmemory [21]. This novel memory
type allows for significantly higher bandwidths in compar-
ison to current GDDR5 and GDDR5X modules. Thus a
possible direction of future research could be the inves-
tigation of the impact of high bandwidth memory on the
performance of hash-based short read classifiers.
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