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Abstract

Background: Numerous publications attempt to predict cancer survival outcome from gene expression data using

machine-learning methods. A direct comparison of these works is challenging for the following reasons: (1) inconsistent
measures used to evaluate the performance of different models, and (2) incomplete specification of critical stages in the
process of knowledge discovery. There is a need for a platform that would allow researchers to replicate previous works

and to test the impact of changes in the knowledge discovery process on the accuracy of the induced models.

Results: We developed the PCM-SABRE platform, which supports the entire knowledge discovery process for cancer
outcome analysis. PCM-SABRE was developed using KNIME. By using PCM-SABRE to reproduce the results of previously
published works on breast cancer survival, we define a baseline for evaluating future attempts to predict cancer
outcome with machine learning. We used PCM-SABRE to replicate previous work that describe predictive models of
breast cancer recurrence, and tested the performance of all possible combinations of feature selection methods and

data mining algorithms

that was used in either of the works. We reconstructed the work of Chou et al. observing similar trends — superior
performance of Probabilistic Neural Network (PNN) and logistic regression (LR) algorithms and inconclusive impact of
feature pre-selection with the decision tree algorithm on subsequent analysis.

Conclusions: PCM-SABRE is a software tool that provides an intuitive environment for rapid development of predictive

models in cancer precision medicine.
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Background
Predicting the outcome of cancer from gene expres-
sion data is a clinically important, computationally
challenging task. For example, early-stage, estrogen-
receptor-positive, HER2-negative breast cancer pa-
tients that are considered to be at low risk for recur-
rence can avoid chemotherapy, while patients at high
or intermediate risk are treated with aggressive (and
harmful) chemotherapy [1].

Efforts to stratify patients by risk of recurrence in
other tumor types, and the ability to stratify patients by
overall chances of survival are not as advanced.

* Correspondence: eyalnoa@post.bgu.ac.

'Shraga Segal Department of Microbiology and Immunology, Faculty of
Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Full list of author information is available at the end of the article

( BioMVed Central

Moreover, the relative success in risk stratification for
breast cancer patients has been challenged [2], propos-
ing that it in fact stratifies patients into tumor subtypes,
which can be achieved with much simpler tests.

As a result, a large number of papers have been pub-
lished and are still being published where gene expres-
sion data is analyzed in order to construct models that
predict cancer survival or cancer recurrence. Much of
these efforts are concentrated on breast cancer, the sec-
ond most commonly diagnosed cancer among American
women (besides skin cancer) [3]. About 1 in 8 U.S.
women (about 12%) will develop invasive breast cancer
over the course of her lifetime, and similar rates are
reported worldwide [4]. Breast cancer is an attractive
domain for risk stratification as it is estimated that
resection is a sufficient treatment for 70 to 80% of the
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patients, while the remaining patients will develop ad-
vanced metastatic lesions, which are largely impossible
to cure [5]. Aggressive chemotherapy will reduce the
chance of advance metastasis for those patients that
would have advanced at the expanse of harmful an un-
necessary therapy for those who would note. Thus, great
efforts have been invested in stratifying patients’ risk of
recurrence [6].

Due to the importance of risk stratification in breast
cancer, combined with its relatively high abundance,
breast cancer is the type of tumor for which expression
profiles of newly diagnosed patients are most abundant.
Several works have been published that apply machine-
learning techniques to this data for predicting cancer
survivability (for example [7] and [8]). Unfortunately, we
found it quite challenging to directly compare these
works for the following reasons:

1. Incomplete specification of critical stages in the
process of knowledge discovery, such as feature
selection.

2. Differences in the measures used to evaluate models
performance. Some only provide the overall
accuracy of the proposed classifier, some offer only
the Area Unser the Curve (AUC), while others
provide no statistical measures and only present the
Kaplan-Meier charts that visualize the survival
curves based on predicted classes.

3. Different studies apply different inclusion/exclusion
criteria with little or no overlaps between the
patients considered.

Incomplete documentation of the analytic process is a
common cause for irreproducibility of published results.
We conclude that there is a need for a platform that
would allow researchers to describe their analytic work
in the field of risk stratification for cancer patients in a
reproducible way that can be used for further investiga-
tion. Such a platform should allow to replicate previous
works and to methodologically evaluate the impact of al-
terations in one or more stages of the knowledge discov-
ery process on its performance in the task of cancer
survival prediction. Such a tool can help to understand
and compare the current state of predictions for breast
cancer, and if applied to new cancer types, to prevent
the “Tower of Babel” situation that has emerged for
breast cancer.

Implementation

We developed a platform that allows replicating, com-
paring and improving knowledge discovery pipelines for
cancer survival predictions, and demonstrate its applic-
ability for Breast Cancer (Fig. 1). PCM-SABRE (Precision
Cancer Medicine - Survival Analysis Benchmarking,
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Reporting and Evaluation), was developed using KNIME
(Konstanz Information Miner; [9]). KNIME is a modern,
flexible and intuitive open-source data analytics platform
that allows performing sophisticated statistics and data
mining analysis to develop, among other things, predict-
ive models. We chose KNIME since it is a popular, user-
friendly software that does not require programing
knowledge. Its node-based workflow structure allows eas-
ily assessing the impact of changing one knowledge dis-
covery step (for example, data mining algorithm) on the
predictive performance without changing any other steps
of the workflow. Another major benefit of KNIME is the
ability to create new nodes, this feature is particularly use-
ful when a researcher is interested in integrating a new
method he developed into an existing KNIME workflow.
We designed PCM-SABRE workflow according to the
common steps of knowledge discovery in data. First, the
user can use a supplied dataset or load a new dataset.
The dataset has to be a csv file in the form of a table in
which the rows represents the patients and the columns
represents clinical data, gene expression data or any
other types of variables; the dependent variable can be
binary or continuous (it will be transformed into a bin-
ary variable) and need to represent survival time (for ex-
ample, Relapse-free-survival time or death time). The
second Meta-node is the preprocessing step, where a
binary dependent variable is created and patients with
missing data or censored survival information are being
filtered. We chose to use a default threshold of 5 years
in order to split the continues survival variable into
HIGH (t<5 years) or LOW (t<5 years) risk, but this
threshold is an input parameter that can be changed in a
way that will be explained later. Missing values imput-
ation is performed using random forest classification
that builds a model using the non-missing rows and pre-
dicts the variable value for the missing rows. The default
version of PCM-SABRE allows selecting patients accord-
ing to their ER status and Lymph node status but the
“Select Patients” Meta-node is optional and can be easily
modified to meet other inclusion/exclusion criteria. The
third Meta-node is the feature selection step, where the
users can choose between two methods of feature selec-
tion (information gain or ANOVA) or add another fea-
ture selection method (from the available nodes in
KNIME, using scripting or external tools). The fourth
Meta-node is the modeling step, where we offer a choice
of 5 well-known and relevant classifiers. The methods
included in the out-of-the-box basic version of the work-
flow are described in Table 1. It should be noted that
thanks to the design of KNIME, adding additional
Modeling and Feature Selection methods involves just
dropping additional nodes in the appropriate Meta-
nodes and connecting them by drag-and-drop using the
existing methods as templates. Our experience with
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Fig. 1 Screenshot of PCM-SABRE
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experimental biologists suggests that any oncology re-
searcher without programming capabilities can
achieve this with little or no special training, Fig. 2 il-
lustrates how the user can easily and quickly add
additional classifier to the workflow: (1) double-click
modeling — new model — cross-validation (2) delete
the decision tree learner and predictor (3) choose
from the Node Repository another learner and pre-
dictor nodes and drag-and-drop them instead of the
deleted nodes (4) connect the X-Partitioner node
Training data output into the Learner node input,
connect the Learner node PMML output into the
PMML input of the Predictor node, connect the Pre-
dictor node to the X-Aggregator node and connect
the X-partitioner Test data output to the Predictor

Table 1 Machine learning methods available in PCM-SABRE

node. The fifth Meta-node is the evaluation step, which
calculates the performance measures of different models
(among them the accuracy and the Area under the
ROC). An important feature of PCM-SABRE is a csv
file (flow_variables.csv) that allows the user to control
some default input parameters without the need to
change these parameters inside the specific KNIME
nodes. The controlled input parameters are: (1) Feature
selection method (default = infoGain), ER status (de-
fault = all patients), Lymph node status (default = all pa-
tients) and the threshold for the binary survival variable
(default =5 years). Changing and adding another input
parameter is simple and only requires filling cells in
excel. Additional details on how to use PCM-SABRE
can be found in the User Manual.

Meta-node Method KNIME node Default parameters
1.1 Select patients Estrogen Receptor status (ER) R script
1.2 Select patients Lymph Node status (LN) R script
2.1 Feature Selection Information Gain (InfoGain) InformationGainCalculator Top 100 ranked
(Community node — Palladian)
22 Feature Selection ANOVA One-way ANOVA include genes with p-value < 1.0E-6
3.1 Modeling Logistic Regression (LR) Logistic (3.7) (Weka node) Ridge = 1.0E-8,
32 Modeling Random Forest (RF) Random Forest Learner Split criteria = Information Gain Ratio,
Number of models =350
33 Modeling Artificial Neural Network (ANN) PNN Learner (DDA) Theta Minus = 0.2, Theta Plus=0.4
34 Modeling K-Nearest Neighbors (KNN) IBK (3.7) (Weka node) KNN =15
35 Modeling Support Vector Machine (SVM) SVM Learner Kernel =RBF, sigma=0.2
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PCM-SABRE output includes, for each combination of
a feature selection method with a classification algorithm
(1) performance measures, (2) ROC analysis and (3) list
of ranked features.

Results

We developed PCM-SABRE (available as Additional
file 1) as a software system that allows to compare and
improve expression-based predictive models of cancer
patients. We used PCM-SABRE to replicate previous
work that describe predictive models of breast cancer re-
currence, and evaluated the performance of all possible
combinations of feature selection methods and data
mining algorithms that was used in either of the works.

Using PCM-SABRE for replicating a previous work that
utilizes machine learning to induce outcome prediction
models

We first demonstrate the value of PCM-SABRE to inves-
tigators implementing new machine learning pipelines
for breast cancer recurrence prediction by replicating
the work of Chou et al. [10]. Our analysis reconstructs
the paper to the best of our ability, with the following
exceptions. We use KNIME rather than the original soft-
ware (Clementine 10.1) and we use as input data a more
current compendium of expression data (will be called
Gyorffy dataset for the rest of this paper) [7]. The
dataset is available for download here [11]. The Gyorfty
dataset originally contained 1809 examples (breast can-
cer patients) and 22,216 features (clinical features and
probes expression level). A binary class attribute was

created indicating whether the cancer recurred within
5 years or not.

To best reproduce the original work, we made the
following modifications to the default out-of-the-box
KNIME pipeline:

1. A preprocessing step was added that reproduces the
preprocessing performed in the original paper. This
step was conducted with a specialized R script
written for this purpose. In this step, features were
transformed from probe to gene level. After the
transformation, the dataset contained 13,725
features.

2. In the preprocessing Meta-node, we removed
lymph node positive patients and patients with
follow-up time of less than 5 years (1219
patients remained).

3. Two new feature selection methods were added to
the feature selection Meta-node (Fig. 3):

a. The Mann—-Whitney U test was used for
decreasing the number of genes from 13,725
to 100 exactly as described in [10]. The
Mann-Whitney U non-parametric test, which
is also known as the Wilcoxon rank sum test,
tests for differences between two groups on
a single, ordinal variable with no specific
distribution [12]. The U statistic of each
group is calculated as a difference between
the actual sum of ranks of the group observa-
tions and the sum expected value under the
null hypothesis that the distribution of the
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Fig. 3 Modification of the feature selection Meta-node in order to replicate Chou et al. work

ordinal variable in both groups is equal. More
details are available in [10].

b. A compound selection method was added, in
which the results of the DT algorithm were used
to determine which features will be retained for
PNN and LR analysis.

DA (Decision tree + Probabilistic neural network)
DT + PNN — DA

DL (Decision tree + Logistic regression)

DT + LR — DL

The classification performance results from PCM-
SABRE and from the original paper are compared in
Table 2. In contrast to the original work, PCM-SABRE
reports that LR has the best performance. Moreover,
both show a different trend when adding the DT feature
selection methods. It is worth noting that the estimated
accuracy reported by PCM-SABRE is higher than in the
original work. This may be because a different dataset
was used for the analysis.

Using PCM-SABRE for optimizing and improving breast
cancer outcome prediction

For the task of breast cancer outcome prediction, we used
again the dataset published by Gyorffy et al.and conducted
the preprocessing steps maintained above. Table 2 sum-
marizes the performance of all combinations of feature se-
lection methods and classification algorithms. LR, PNN
KNN and DT performed better combined with the Info-
Gain feature selection method, in terms of Accuracy but
not in terms of AUC. RF performed better combined with
the ANOVA feature selection method and achieved the
highest Accuracy (77.70%).

Discussion

We developed an intuitive platform for comparing
machine learning pipelines for survival prediction. To
demonstrate the usefulness of our tool, we first show
that with minimal modifications, PCM-SABRE can be
used to reconstruct machine learning pipelines from the
literature, and to explore the impact of changes in the

Table 2 Predictive power (in terms of percent accuracy) of several feature selection methods combined with different classification

models. AUC results are shown in brackets

Prediction model PCM-SABRE pipeline Chou et al. [10]
Feature selection InfoGain ANOVA MW U test MW U test

RF 76.52 (NA) 77.70 (NA) 76.10 (NA) NA

LR 76.27 (73.0) 66.55 (62.49) 75.68 (70.95) 64.12 (58.96)
PNN 76.52 (74.09) 76.27 (75.21) 74.58 (72.32) 69.54 (63.88)
KNN 75.76 (67.78) 75.34 (68.48) 76.10 (70.30) NA

SVM 72.64 (NA) 72.64 (NA) 72.64 (NA) NA

DT 70.19 (60.59) 68.07 (61.53) 64.44 (57.34) 63.45 (56.90)
DL NA NA 7534 (71.71) 68.90 (61.66)
DA NA NA 7551 (72.23) 65.91 (61.65)
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process (such as adding sequential feature selection) on its
performance. We reconstructed the work of Chou et al.
similarly observing the superior performance of PNN and
LR over DT, but the impact of feature pre-selection with
the DT algorithm on subsequent algorithm was inconclu-
sive. These results reinforce the need for a platform like
PCM-SABRE that would allow more reliable comparison
between studies and reproducible results.

To further explore the usefulness of PCM-SABRE, we
used it to methodologically explore various combinations
of feature-selection/modelling algorithms. As expected,
some algorithms perform better than others. However, we
find that for the particular task of inducing a predictive
model for breast cancer survival, in terms of Accuracy, in-
formation gain outperforms ANOVA for feature selection,
with 4 out of 6 algorithms that were tested and achieved
similar performance in two additional algorithms.

These results demonstrate the two main uses we
propose for PCM-SABRE. First and foremost, future at-
tempts to improve survival prediction can be reported
using PCM-SABRE. This would ensure reproducibility of
the analysis, as KNIME allows to bundle the input data
with the algorithm. By publishing executable description
of the process, the users will be able to run exactly the
same pipeline, and even more importantly, the users will
be able to understand and evaluate the particular contri-
bution of each step in the process by changing it and
observing the impact on model quality.

The other use we propose for PCM-SABRE is
optimization of predictive models. Using KNIME it is
straightforward to consider the impact of changing
each step in the model induction process, and within
the PCM-SABRE framework, the results are directly
comparable. The ability to keep all other steps con-
stant or to evaluate different combinations can allow
non-experts to optimize their predictive models while
ensuring the resulting process can be intuitively com-
municated to others.

Nowadays, more and more researchers who study
breast cancer recurrence risk prediction specifically and
researchers who study cancer outcome prediction in
general, are increasingly using data mining and machine
learning methods. In order to make a step forward in
this field, the community has to put a greater emphasis
on reproducible research. As we already maintained, as
of today, it is almost impossible to compare between dif-
ferent “gene signature” papers that are being published.
We believe that if researchers will implement their data
analysis process on PCM-SABRE and will make their
workflow available as an additional file, it will benefit
everybody and will cause the prediction models and the
gene lists that accompany them to be more reliable.
Sharing KNIME workflow is very easy, KNIME allows to
save the workflows with or without the input data file
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and a simple compression software will enable to pub-
lish the entire KNIME folder as a single file. The re-
searcher can also add a screenshot of KNIME to a paper
(maybe instead of the “usual” figure that describes the
data analysis process).

Clearly, PCM-SABRE can be implemented with other
intuitive pipeline development systems. RapidMiner [13]
is a popular machine learning environment that can also
be used for this purpose. RapidMiner is very similar to
KNIME, both software tools are visual environments for
predictive analytics, both are available for Windows, Mac
and Linux and both offers online help forums, documen-
tation and tutorials. Although RapidMiner is ranked
higher in list of the top Analytics/Data Science Tools 2016
according to KDnuggets (5 vs. 9) [14], KNIME has a large
customer base in the life sciences sector (bioinformatics
and Next Generation Sequencing extensions can be found
here [15]). In addition, we believe that KNIME is more
intuitive and provides a “softer landing” for cancer re-
searchers who are unskilled in programming and who are
interested in sharing their data analysis workflow with
other researchers. Other tools also exist, such as the
WEKA workspace [16]. However, these are not sufficiently
intuitive for untrained users. The features of KNIME
which we think make it most attractive for this purpose
are the ability to wrap critical parts of the process in meta-
nodes, the strong branching and looping capability that
supports evaluating alternative methods in parallel, and
the ability to pass parameters to the pipeline, as a way to
enhance user control without requiring a detailed editing
of many nodes. We thus conclude that while PCM-
SABRE can be implemented with other machine-learning
platforms, KNIME offers a user-friendly yet powerful
solution for this purpose.

The approach we present here is not unique to
survival prediction from expression data: in principle,
PCM-SABRE can also be used for developing other
predictive models. However, as other projects may
emphasize other steps in machine learning (e.g. fea-
ture extraction), more work is required to adapt
PCM-SABRE for other tasks.

Conclusions

PCM-SABRE is a software tool that provides an
intuitive environment for a rapid development of
predictive models in cancer precision medicine. It al-
lows to easily define a data source and to consider
alternative ways to conduct the main steps of the
prediction process. The resulting pipeline can be
shared with others in an intuitive yet executable
way, which will improve, if adopted by other inves-
tigators, the comparability and interpretability of
future works attempting to predict patient survival
from gene expression data.
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Additional file

Additional file 1: PCM-SABRE Library. PCM-SABRE KNIME workflow.
(RAR 45850 kb)
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