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Abstract

Background: Next Generation Genome sequencing techniques became affordable for massive sequencing efforts
devoted to clinical characterization of human diseases. However, the cost of providing cloud-based data analysis of
the mounting datasets remains a concerning bottleneck for providing cost-effective clinical services. To address this
computational problem, it is important to optimize the variant analysis workflow and the used analysis tools to
reduce the overall computational processing time, and concomitantly reduce the processing cost. Furthermore, it is
important to capitalize on the use of the recent development in the cloud computing market, which have witnessed
more providers competing in terms of products and prices.

Results: In this paper, we present a new package called MC-GenomeKey (Multi-Cloud GenomeKey) that efficiently
executes the variant analysis workflow for detecting and annotating mutations using cloud resources from different
commercial cloud providers. Our package supports Amazon, Google, and Azure clouds, as well as, any other
cloud platform based on OpenStack. Our package allows different scenarios of execution with different levels

of sophistication, up to the one where a workflow can be executed using a cluster whose nodes come from
different clouds. MC-GenomeKey also supports scenarios to exploit the spot instance model of Amazon in
combination with the use of other cloud platforms to provide significant cost reduction. To the best of our knowledge,
this is the first solution that optimizes the execution of the workflow using computational resources from different

cloud providers.

Conclusions: MC-GenomeKey provides an efficient multicloud based solution to detect and annotate mutations.
The package can run in different commercial cloud platforms, which enables the user to seize the best offers.
The package also provides a reliable means to make use of the low-cost spot instance model of Amazon, as it
provides an efficient solution to the sudden termination of spot machines as a result of a sudden price increase.
The package has a web-interface and it is available for free for academic use.
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Background

The revolutionary Next Generation Sequencing (NGS)
technology has provided a cost effective, fast, and
efficient means for large scale detection of variants
(mutations) in the genome. In medicine, the value of
NGS for variant detection is continuously increasing,
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not only in the research domains but also in the daily
clinical practice, largely for diagnosis and prognostics
and growingly for treatment as well. The computa-
tional workflow for variant analysis is a multistep
process that includes spotting the variants with high
accuracy, evaluating their effect, and reporting all
pieces of knowledge related to them. For human
samples, the requirements of quality, accuracy, speed,
and integrated knowledge sources are higher, com-
pared to samples from other organisms. Such sophisti-
cations render the pipeline more complex and more
data intensive, and hence necessitate the availability of
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high performance computing resources and storage
that can be allocated in a reliable and quick manner.

Cloud computing is another revolutionary technology
that has changed the way computational resources are
made available. Concepts like virtualization, on-demand
allocation of machines, and key-value storage became
familiar to all scientists from different domains. Com-
mercial cloud computing service providers took the lead
in introducing cloud computing services on a pay-as-
you-go basis and with well-defined pricing schemes.
Academic clouds use the same concepts, but they usu-
ally offer limited resources for free, usually based on the
first-in-first-service principle. Amazon Web Services
(AWS) [1] has pioneered the provisioning of cloud com-
puting services. It then followed by other providers like
Microsoft Azure [2] and Rackspace [3]. Very recently,
Google (Google Compute Engine GCE) [4] has arrived
at the scene and offered very competitive products
compared to Amazon.

The use of cloud computing as a cost effective and
scalable infrastructure for running the variant analysis
workflow has been evaluated in different studies [5—10]
and a number of ready-to-use systems have been de-
veloped. In Academia, there are Games [11], Simplex
[12], Atlas2 [13], and StormSeq [14]. In industry, the
cloud based versions are accessed through web-interface,
usually on a subscription basis. Important examples com-
ing from major NGS manufacturers include BaseSpace
from Illumina [15] and IonReporter from LifeTech [16].

The above mentioned variant analysis systems run
only in Amazon’s cloud. The use case scenario of using
that cloud platform is composed of the following steps:
the user instantiates virtual machines at their own cost
using pre-configured machine images deposited in
Amazon. The instantiated virtual machines include
middleware packages that are then invoked to establish
a computer cluster. Example middleware packages in-
clude StarCluster [17], Vappio [18], and elasticHPC
[19]. Once the cluster is configured, the input data are
either uploaded to the shared cluster storage from the
local computer or read from the Amazon storage S3.
Once the data transfer is complete, the execution of the
analysis task(s) starts. When the computation is over,
the results are made available for download or deposi-
ted in S3 Amazon storage. Finally, the virtual machines
are terminated.

The latest IaaS (Infrastructure as a Service) products
of Google and Azure in combination with large price
reduction have changed the landscape of the cloud com-
puting market. They attracted many users and resulted
in a segmented market, which accordingly would profit
the clinical grade processing of NGS data. Mid 2015,
Google announced new pricing schemes that have
driven cloud prices further down. Google introduced
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about 30% reduction in prices compared to Amazon for
most of the on-demand virtual machine types. Further-
more, Google charges per minute (after the first 10 min),
while Amazon still charges per hour. Up to this date
(September 2016), the Amazon prices did not change,
but one would expect so soon due to the severe
competition.

To cope with the current market status and to
satisfy clinical practice needs, it is important to pro-
vide new cloud-based bioinformatics packages sup-
porting multiple clouds: First to serve different users
registered in different cloud systems, and second to
seize best sales offers. Furthermore, the new cloud
systems should also be able to run in a hybrid mode
using cloud resources from different providers (multi-
cloud) for the same workflow to 1) optimize the per-
formance, 2) reduce the cost, and 3) provide a sort of
fault tolerance with smooth non-interruptible execu-
tion, by migrating failed tasks in one cloud to another.
In other words, the end user would gain the following
advantages:

e Run the workflow on the cloud platform of choice,
without adhering to one provider.

e Make use of new virtual machine offers (new high
performance machines) and seize best discounts.

e Have a kind of redundancy in case of failure of one
cloud site. The response to failure can even take
place in execution time and the workflow can
migrate to another cloud site.

e Mix cloud resources and best offers from different
cloud service providers, which can indeed help
reducing the overall cost. (Like mixing the use of
spot instance model of Amazon with the use of
Google machines).

Contribution

In this paper, we present MC-GenomeKey, a multi-cloud
based package for variant detection and analysis. Our
package enables the users to run the workflow either in
Amazon, Google, Microsoft Azure, or on any platform
supporting OpenStack interface or Amazon-like inter-
face. We support two main multi-cloud use scenarios:
First, the whole workflow can run entirely in one cloud
environment. Second, parts of the entire workflow can
run in one cloud site and other parts can run in another
cloud. In the second scenario, it is possible to distribute
whole tasks or even individual jobs of the same task to
different cloud sites. The use of multiple cloud re-
sources in MC-GenomeKey can be decided in the de-
sign time or in the run time in response to some events
requiring re-distribution of tasks or jobs on different
clouds. As we show by experiments, the availability of



Elshazly et al. BMC Bioinformatics (2017) 18:49

these scenarios will help the user reach the best per-
formance at lowest cost.

In addition to its novel (multi) cloud features we
introduce in this paper, MC-GenomeKey package has
superior features compared to the currently existing
solutions. In Table 1, we compare the features of MC-
GenomeKey to that of STORMseq [14], Atlas2 [13],
Simplex [12], and WEP [20], and the previous single-cloud
version of GenomeKey [21]. Notably, MC-GenomeKey has
advanced and robust parallelization technique that runs
in a computer cluster. Furthermore, it has the feature
of analyzing multiple samples in a batch mode, saving
the total execution time and cost. It also includes a
comprehensive annotation of variants based on the
Annovar package [22]. Finally, the proposed solution is
modular, where each tool can be easily replaced by a
newer version or another one.

Providing a package implementing these scenarios in
a multi-cloud setting is not a straightforward task, be-
cause all of the aforementioned clouds are built with
different architecture, usage scenarios, APIs, and busi-
ness models. Furthermore, providing such scenario re-
quires changes in the workflow execution model and in
the cluster middleware to cope with this heterogeneity.
All these challenges will be addressed in the implemen-
tation section of the paper.

Table 1 Comparison of different systems for variant analysis
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Implementation

MC-GenomeKey basic features

MC-GenomeKey is a package implementing the variant
detection and analysis workflow, based on the python-
based Cosmos workflow engine [23]. Its basic features
can be categorized into three groups: 1) Variant Analysis
Workflow Specifications, 2) Workflow engine and pa-
rallelization schemes and 3) Cloud Support. The details
of these features are as follows:

Variant analysis workflow specifications

Figure 1 shows the basic phases of the workflow for
variant detection and annotation. Here is a description
of these steps.

o Quality Check: This is to verify the quality of the
input read and trimming out the low quality
terminal parts of the reads. The default program
for this steps is the Fastx [24] toolkit.

e Read Alignment: This is to map the reads to the
reference human genome (hgl9 ND GRCh38 are
the default versions). The default alignment
program is BWA [25].

e Variant Calling: This is to analyse the read
alignment file to determine the positions where the
variants exist. The default program for this is the

STORMseq Atlas2 Simplex WEP GenomeKey MC-GenomeKey
Quality - - fastx-toolkit ngs-qc toolkit fastx-toolkit fastx-toolkit
+ fastqc
Mapping BWA - BWA BWA BWA BWA
Variant Calling GATK Logistic Regression GATK GATK GATK GATK
Model
Annotation VEP (variant - Annovar Annovar Annovar Annovar
effect predictor)
Deployment AWS EC2 AWS EC2 AWS EC2 Web Service  AWS EC2 AWS, Google Cloud,
Amazon, OpenStack based
Web Interface Yes Yes No Yes Yes Yes
Multiple samples in No No No No Yes Yes
one run
Parallelization technique split by - - NA split by chromosome split by chromosome +
chromosome + split by read group id split by read group id +
more split by sub-group
ID and sub-chromosomes
Workflow Engine Python Scripts - JClusterService Scripts Cosmos Cosmos
Modularity No - No No Yes Yes
Use of Heterogeneous®  No No No NA No Yes
cluster
Failure-handling™ No No No No No Yes
Mechanisms
Use of Spot Instances No No No NA No Yes

“Heterogeneous cluster means nodes of different virtual machine types and also from different clouds
*Failure handling means response to failure of compute nodes in cloud, as in the case of spot instances
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GATK variant caller [26]. The variant calling
step itself is a pipeline including a number of
operations: it includes realignment of reads
around the variant, quality score recalibration,
and generation of the variant file in a VCF
format.

e Variant Annotation: This is to annotate all the
variants with all possible knowledge from different
structural, functional, and population databases.
The default system used for annotation is the
Annovar package [22].

Usability

MC-GenomeKey is a user friendly package. The work-
flow can be invoked using a desktop client or from the
package web-site. The parameters for each step can be
set through a configuration file in case of the command
line interface or through a web-form when using the
web-interface.

Setting up the cloud cluster is achieved via a simple
interface, where the user defines the number and type of
virtual machines. The use of different clouds requires
the user’s credentials registered in each cloud site to run
the system in the respective cloud. Therefore, the user

provides own credentials for each cloud beforehand. For
Amazon and Azure clouds, the user enters credentials in
the form of certificates and private keys. For Google, the
user provides an oauth2 token. To facilitate the gener-
ation of the token for Google, we provide a web-based
form in the MC-GenomeKey website that forwards the
user to Google to manage own cloud resources and au-
thenticate the application. (We also provide the source
code for this step so that the user can run it from own
local server.)) In case of using the MC-GenomeKey
web-site, the user is recommended to disable all certifi-
cates and tokens after completion of computation.
Apart from the security issues, all other technical de-
tails related to the setup of the cloud resources and
parallel execution of the workflow is kept hidden from
the user. Figure 2 shows some screen shots of the web-
interface.

When the computer cluster starts in the cloud, an
additional website is automatically generated in the mas-
ter node of the cluster in order to monitor the cluster
and to manage the nodes in the run time. There are also
pages to monitor the execution of the analysis workflow.
The access to these pages is explained in the package
manual.
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AWS Secret Access Key
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AWS keypair Choose File |No file chosen

GCE credentials parameters

Cluster Configuration file | Choose File |No file chosen

Choose File |No file chosen
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Cluster Setup
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Cluster Name
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Node Image ID ami-5158203b
AWS Volume ID

Node Instance Type spot

Master Instance Type

Spot Bid

Cc

Please fill in the fields below then click create to start the cluster

v

Fig. 2 Screenshots of the MC-GenomeKey website. Screen shots of the web interface: a the user enters own credentials for Amazon and Google
cloud. b The user sets workflow parameters, e.g., alignment and variant calling parameters. ¢ The user defines the size of cluster, type of nodes,
and use of spot instances or not. d The user sets the job configuration parameters, where the user can select the “recovery method” to respond
to termination of spot instances. In this screen the input and output folders are defined

Tools params

BWA

Min Seed Length 100
Score of a sequence match 1

Indel Realigner

Model USE_READS

HaplotypeCaller

Variant Index Type LINEAR

Variant Index Parameter 128000

Variant Quality Score Recalibration

Maximum Gaussians 1

Minimum Bad Variants 3000

b

Job configuration parameters
Recovery Method migrateAll v
Input Source public v
S3 Link -BAM Input-

S3 Output Bucket

Output Stage

d

Workflow engine and parallelization scheme
MC-GenomeKey is based on the python-based workflow
engine Cosmos [27], which is optimized to run data ana-
lysis jobs in parallel over a computer cluster. Once the
input NGS data is defined, the different steps of MC-
GenomeKey are executed using the Cosmos engine as
follows: MC-GenomeKey first creates a directed acyclic
graph (DAG) of job dependencies, where the jobs are
defined based on partitioning the input data (when exe-
cuted). The DAG assures the correct execution of the
workflow as it assures that a job is executed only when
its input is made available from previous jobs. Figure 3
shows a simplified example DAG and the associated data
flow for the variant detection and analysis workflow.

The parallelization scheme works as follows: The set
of input reads is partitioned into blocks based on the
read group IDs. Once the alignment is produced, the
aligned reads are then partitioned by chromosomes.
This way of partitioning was already implemented in
the first version of GenomeKey [21], but the associated
scalability is limited, because 1) the read group field is a

characteristic of the Illumina sequencing platforms and
might not be properly filled with other platforms, and
2) the maximum number of jobs for the read mapping
step that can run in parallel cannot exceed the number
of read groups, and the maximum number of jobs for
the variant caller cannot exceed the number of chromo-
somes. To improve this situation, we have implemented
a more flexible and advanced parallelization scheme in
this version of MC-GenomeKey that works as follows:
The input BAM is processed to increase the number of
read groups, by creating sub-read groups associated
with a parent read group, which increases the number
of jobs that can run in parallel for the read mapping
step. In other words, the read groups are re-written or
properly added to the BAM file. The same idea is also
adopted for processing the reads from the same chromo-
some in parallel, where we define sub-chromosomes cor-
responding to large segments of the chromosome. The
splitting by sub-chromosomes is optional in the package
and is allowed only for large segments (default 50 MB) so
that the statistics for the variant calling is not affected.
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The data flow among the tasks/jobs of the workflow is
achieved by using files and each task/job recognizes its
input by certain file extensions associated with the re-
spective job ID. These intermediate files are automatic-
ally managed by the engine. The parallelization of job
execution over the cluster nodes is managed by the
DRMAA package [28], which encapsulates different job
schedulers (CGE, Condor, etc) and efficiently deals with
job submissions, monitoring, and errors using single com-
mon interface. To make the data available for all cluster
nodes, a shared storage in the form of EBS volume is cre-
ated and mounted to the master node. The input is moved
to this shared storage from the user’s computer or from
the user’s S3 account before computation. The intermedi-
ate data is kept in the shared storage. This shared storage
remains alive even if all spot instances get terminated; this
is because it is attached to the on-demand master node.

Cloud features
MC-GenomeKey supports different scenarios for using the
cloud computing resources. These include the following:

e Individual Cloud: In this scenario, the user selects

the cloud platform to be used. Unlike other cloud-
based variant analysis systems, MC-GenomeKey
can support Amazon, Google, and Microsoft Azure.
The user is prompt to enter the credentials of the
cloud of choice, the path to the input data, set the
parameters in the configuration file, and starts the
workflow execution. MC-GenomeKey then launches
the process of creating the computer cluster in the
cloud using the deposited machine images and
returns process ID to the user. The user does not
need to be persistently connected to the internet.
One can disconnect and use the process ID anytime
to monitor the status of execution using another
command line or using the web-interface. Once

the process is over, the results are deposited to
persistent cloud storage or are downloaded to the
user local machine. The cloud computer cluster is
finally terminated and a report is generated.
Multi-Cloud: There are different forms to use multi-
cloud either topological or temporal. Topological
forms specify where the tasks and jobs are executed.
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Considering the variant analysis workflow, we identify
three forms:

o Replication: the same workflow runs
simultaneously on different clouds on different
datasets to increase the throughput, or to
overcome some limitations at one site.

o Task distribution: Different tasks are executed
in different clouds. For example, the task of
read mapping can run in Amazon and the
remaining workflow can run in Google.

In this case, different job queues can be used,
but there should be a master task queue to
manage the tasks themselves. Note that the
task queue is handled by the workflow engine
itself, while the jobs are managed by the job
scheduler engine wrapped by the RDMAA in
each cluster.

o Job distribution: Certain jobs within the same
task run in one cloud and other jobs run in
another cloud. For example, in case of NGS
reads of different lengths, one can run the
alignment of longer reads in one cloud and
shorter reads in another cloud. The distribution
of jobs on different clouds requires that one
master job queue manages the jobs over the
different cloud sites.

The creation of a computer cluster with separate job
queues or shared queue is supported by the multicloud
version of the elastiHPC package [29].

Temporal forms address the time when multiple cloud
resources are allocated. For the variant analysis work-
flow, assume, for example, that the user decides that task
A runs in cluster C; in one cloud and the subsequent
task B runs in cluster C, in another cloud. To save cost,
C, is created only when task A is over or when it starts
to produce output. Also some tasks can start in cloud
C, in case of failure of some jobs in cloud C;. In other
words, when jobs have to be migrated to finish the com-
putation. In MC-GenomeKey, we support that each
phase can run in different cloud and we support the
migration of tasks in case of failure of some nodes to
other nodes in another cloud.

Table 2 On demand prices for Amazon and Google instances
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Of course, the use of multicloud scenarios will in-
volve the transfer of intermediate results using the
Internet, which is a bottleneck for adopting these sce-
narios. Nevertheless, in the following paragraphs, we
will present one use case, where the use of multi-cloud
can effectively contribute to a more cost effective and
reliable usage of the cloud.

Multicloud and spot instances

The use of multicloud scenario can be of great benefit
when using spot instances of Amazon. The spot instance
model of Amazon is about the use of computing re-
sources at lower prices, when Amazon environment is
not fully loaded. How far prices get reduced depends on
the load and this continuously changes over time. The
user who wishes to use spot instances has to bid for a
price. If the instance price becomes lower than the bid
price, then instances are initiated. If the instance price
becomes higher than the initial bid price, then the run-
ning instances are terminated without notice. In general,
the price of a spot instance is much less than that of the
equivalent on-demand instance, which is a very attractive
feature. Table 2 shows different machine types with their
on-demand and spot prices in Amazon. It also includes
the prices of equivalent on-demand machines in Google.
It can be directly observed that the spot instances are the
best to use to save cost. However, the major risk with the
spot instance model is that the machines can terminate
before the computation is over, and this risk is not rare to
happen. Table 3 shows different statistics about the life-
time of different spot instances against different bid
prices. This table was computed based on history
information of the Amazon sport instances; the AWS
command describe-spot-price-history (AWS documen-
tation) was used to retrieve the price information for a
period of three months. It can be observed that the
average lifetime increases with the larger bid price. It
can also be observed that the higher the machine speci-
fication the shorter the lifetime. This means that the
average lifetime can be enough to finish short-time
workflows, but there is a high probability to lose spot
instances for long-time workflows.

Amazon Google
Instance type CPUs Mem Price Spot Price Instance Type CPUs Mem Price
m3.2xlarge 8 30 $0.53 $0.07 n1-standard-8 8 30 $0.28
c3.8xlarge 32 60 $1.68 $0.25 ni1-standard-16 16 60 $0.56
c4xlarge 36 60 $1.76 $0.27 n1-highcpu-32 32 28.8 $1.216
r3.8xlarge 32 104 $2.66 $0.3 n1-standard-32 32 120 $1.12

Spot instance prices for Amazon are the minimum prices observed such that the instance was available for at least one hour (prices are computed for three

months period from October until December 2015)
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Table 3 Life Time of different machines (in minutes) against
different bid prices

c3-8xlarge

Bid Average Minimum Maximum Median

$0.2 0 0 0 0

$03 89.22 1 2401 8

504 201.17 1 5168 14

505 44218 1 15907 155

506 331157 1 51244 29.5

$1.00 172726 1 65193 12
c4-8xlarge

Bid Average Minimum Maximum Median

$0.2 0 0 0 0

$0.3 185.23 1 3921 11

504 386.27 1 15880 14

$0.5 825.84 1 30899 10

%06 1296.8 1 30899 15

$1.0 5359.12 2 32511 26.5
r3-8xlarge

Bid Average Minimum Maximum Median

$0.2 0 0 0 0

503 64.58 1 713 16

504 139.26 1 4811 14.5

$0.5 175.65 1 8318 185

506 229.79 1 8344 25

$10 42208 1 14441 235

Prices are computed for three months period from October until December
2015. Instances of type m3-2xlarge were available all the period with a bid
price of 0.2$

To overcome the dilemma associated with the spot in-
stances, one can use a multicloud computation environ-
ment which is a mix between Amazon and Google
instances to assure termination of computation with re-
duced cost and minimal overhead. The cost reduction
stems from the spot instance model and the fact that
Google is cheaper than Amazon and it charges the user
per minute and not per hour.

MC-GenomeKey offers three alternative solutions to
the problem of sudden termination of spot instances: 1)
Wait-and-Rebid, 2) Continue with on-demand instances
in the same cloud, and 3) Migrate execution of failed
jobs to another cloud. Each of these solutions will be
discussed in the following paragraphs. The last two sce-
narios are based on the multi-cloud to achieve the best
performance and cost.

For ease of presentation, we assume that the master
node of the main computer cluster in AWS is an on-
demand node and other worker nodes are spot instances.
The on-demand node keeps the workflow running, even if
all spot instances are terminated and it supports the
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scenarios mentioned above to restore the computation
power. This cluster of heterogeneous compute nodes can
be readily created with the elasticHPC package [19, 29]
without extra effort. In the following we summarize how
the four scenarios will work:

e Scenario 1, Wait and Rebid: As depicted in the
sequence diagram of Fig. 4a, if the price of any
or all of the spot instances exceeds the bid price
(out-bided), MC-GenomeKey will remove the failed
instances from the cluster configuration. The user
then uses the cloud-client software to make a new
bid for the spot instances. When the new spot
instance starts before the completion of the
workflow, they are added to the currently running
nodes and join the execution plan. For this
scenario, MC-GenomeKey is modified to keep the
intermediate data in the EBS volume (virtual disk)
of the master node.

e Scenario 2, Continue in the same cloud with
on-demand nodes: In this scenario, the failed spot
instances are replaced with on-demand instances
in the same cloud. The job scheduler is set-up to
remove the failed ones and add the new ones.

e Scenario 3, Migrating failed jobs to Google
Cloud: As depicted in Fig. 4b, MC-GenomeKey will
replace terminated spot worker nodes in Amazon
with other ones in Google. The failed jobs on the
terminated spot nodes will be moved to the new
nodes and re-executed there. This scenario includes
the case where all the cluster nodes are spot instances
that get terminated and the execution of the variant
analysis pipeline switches completely to Google.

To optimize the performance and reduce the effect of
data transfer over the internet, we do not transfer the
whole data from the beginning, but only those needed to
complete the tasks to run on Google. For example, if the
failure occurs in the annotation step, then only the re-
spective VCF files are sent to Google. Furthermore, we
dispatch also the subsequent jobs following the failed
ones in the DAG. This will prevent moving the data
back and forth between the Amazon and Google in-
stances; i.e., the data needed for computation is trans-
ferred only once and the workflow continues to the end.
(This works correctly because of the DAG nature of
the workflow, where each task needs data only from
previous step.) When the workflow finishes success-
fully, the output of the Google instances will be trans-
ferred to the output directory in the AWS cluster on
the shared storage and the whole directory will be
compressed and uploaded to AWS S3. The default set-
ting is that the intermediate data needed for computa-
tion in Google is moved from Amazon and it is deleted
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Fig. 4 Scenarios for handling sudden termination of spot instances. Sequence diagrams showing scenario 2 (a) where the computation continues in
the same Amazon (AWS) cloud and Scenario 3 (b) where computation filed jobs in terminated spot instances are migrated to Google (GCE) cloud

-
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automatically when the google machines are termi-
nated. In addition, we give the user an option to keep a
copy of the data transferred to Google in Amazon and
send the intermediate data generated by Google back
to Amazon with the output.

Extra implementation details

MC-GenomeKey is based on a client-server architecture.
The user installs a client module at own desktop to con-
trol the analysis process. The client module uses the
cloud provider APIs to manage the cloud resources. The
client also controls the created instances, configures
them, and starts the analysis workflow and follows its
progress.

Specifying the job parameters, such as the workflow
name, input and output path on S3 and output directory
to upload to S3, and the response to spot instance failure
(if used), are achieved through a workflow configuration
file.

The multi-cloud version of elasticHPC is used to create
and manage instances of the computer cluster in the
selected cloud. Another configuration file is required for
elasticHPC to specify the cloud resources, this file includes
a number of nodes, machine types, storage, and security.

The elasticHPC website includes detailed explanation of
the configuration file. For each cloud environment, we
have created a virtual machine image including all neces-
sary settings and tools to the run the MC-GenomeKey on
each cloud. The master and worker nodes of the cluster
are created from the respective image. The master node
also works as a server that responses to requests from the
client and responses to any failure in the cluster nodes.

Implementing the spot instance scenarios

Once the cluster nodes are setup in Amazon, a control
program in the master node automatically starts to
monitor the state of the running spot instances. This
program reports node status to the user and initiates the
recovery procedure as specified by the user in the job
configuration file.

For the 3rd scenario, we updated COSMOS task data-
base with a field to associate the task with the worker
node (to identify failed tasks) and with the chromosome
being processed on the GCE worker node (to merge re-
sults again). Also a specific queue is created to dispatch
tasks to GCE instances in case of spot instance failure,
this procedure is depicted in Fig. 4.
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Results and Discussion

Experiment1: performance in different clouds

We measured the performance of MC-GenomeKey on
AWS, Google, and Azure using the following two datasets:

e A whole genome dataset of 113 GB from [23].

The NGS reads come from Illumina NGS machines
and cover all genomic regions with an average
depth of about 30X.

e An exome sequence dataset (~9.2 GB), also from
[23]. The NGS reads come also from an Illumina
NGS machine and cover only the exons of the
genome. Exome sequencing is important in many
clinical applications, where clinicians search for
disease-causing variants in the coding regions.

In AWS cloud, we used a master node of type
m3.medium (0.067$/h) and four r3.8xlarge instances;
each has 32 cores and 104 GB RAM and costs 2.66$/h.
In Google, we used master node of type nl-standard-1
(0.035%$/h) and four nl-standard-32 instances; each has
32 cores and 120 GB RAM and costs 1.6$/h. It is worth
noting that GCE instances are charged per minute
(after first 10 min). In Azure, we used master node of
A2 instance family ($0.154/h) and four D14 v2 in-
stances; each has 16 cores and 112 GB RAM and costs
2.428%/h.

In the established computer clusters, the master node
was not an execution node, but it is a control node re-
sponsible for 1) the initiation and orchestration of the
workflow and related data flow, 2) monitoring its status,
and 3) carrying out the migration process from AWS to
Google if needed. This configuration makes it possible
to select a machine of lower specifications for the master
node, which dramatically reduces the overall cost of the
cluster in case of a migration scenario as will be ex-
plained below.

Table 4 shows the results of running the whole variant
analysis workflow for the exome and whole genome
datasets using a cluster of 4 nodes in different cloud
environments. From the table we can observe that the
performance on Amazon and Google is almost the same,
and better than that of Azure. We also observe that the
read mapping and variant calling are the most time con-
suming steps. The reason of cost reduction by Google
compared to Amazon is the reduced machine price.
Although Azure instances are cheaper than the equiva-
lent ones in Amazon, the low performance raised the
cost of using Azure to be higher than that of Amazon.

Scalability using more nodes for the whole genome
dataset

Table 5 shows the running times of the workflow
using different cluster sizes running in Google Cloud.

Page 10 of 14

Table 4 Running times of the variant analysis workflow in
different clouds

Exome (9.2 GB)

Amazon Google Azure
Alignment (BWA)  0:12:20 0:18:40 00:26:00
IndelRealigner 0:14:39 0:20:10 00:28:00
MarkDuplicates 0:15:29 0:23:06 00:35:00
BQSR 0:28:06 0:34:15 00:55:00
HaplotypeCaller  1:08:46 0:58:40 01:28:00
GenotypeGVCFs  0:14:23 0:12:40 00:17:00
VQSR 0:10:07 0:10:14 00:12:00
Merge VCF 0:05:07 0:04:55 00:10:00
Convert VCF to 0:00:13 0:00:10 00:00:15
Annovar
Annotate 0:05:16 0:05:36 00:09:00
Merge 0:03:06 0:04:01 00:06:00
Annotation
Total 1:51:33 (521414) 20628 (513.94)  3:12:00

($31.24)
Whole Genome (113 GB)

Amazon Google Azure
Alignment (BWA)  8:03:53 8:10:13 11:18:20
IndelRealigner 3:04:03 3:09:34 04:15:58
MarkDuplicates 3:15:04 3:22:41 04:39:26
BQSR 41114 4:17:23 06:35:44
HaplotypeCaller ~ 9:05:43 9:15:49 14:29:22
GenotypeGVCFs  1:45:01 1:46:44 02:2:14
VQSR 1:33:29 1:33:36 02:05:13
Merge VCF 0:05:55 0:06:05 0:15:08
Convert VCF to 0:06:14 0:06:17 0:15:29
Annovar
Annotate 0:15:01 0:15:21 0:24:39
Merge 0:10:06 0:11:01 0:23.07
Annotation
Total 31:3943 32:13:06 46:44:40

(5342.62) ($208.07) (5462)

Running times (hours: minutes: seconds) of the variant analysis workflow in
different clouds using a cluster of 4 nodes. We give the time of different
steps. The total time and cost (in USD) are in the rows titled “Total”. The best
running times and options are underlined

(The numbers in Amazon are analogous but not shown
for ease of presentation.). We assured the correctness of
the results, by comparing the resulting VCF files and veri-
tying identical output. From the table, we observe good
scalability with the increasing number of nodes.

Experiment 2: the spot model and live job migration

If the above workflow runs on Amazon using spot in-
stances, it would cost much less than that of Google.
However, the problem is that there is no guarantee that
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Table 5 Total running times for running MC-GenomeKey on
the whole genome dataset using different clusters of increasing
node number

Nodes

4 8 16 32
Alignment (BWA) 8:03:53 4:45:51 2:55:34 1:30:22
IndelRealigner 3:04:03 1:25:44 0:50:51 0:28:44
MarkDuplicates 3:15.04 1:35:01 0:48:15 0:33:10
BQSR 411:14 2:55:16 1:35.02 0:18:41
HaplotypeCaller 9:05:43 6:04:45 4:18:30 2:15:.01
GenotypeGVCFs 1:45.01 1:01:10 0:37:14 0:15:09
VQSR 1:33:29 0:55:45 0:30:56 0:11:30
Merge VCF 0:05:55 0:08:39 0:11:20 0:13:15
Convert VCF to Annovar 0:06:14 0:07:11 0:06:59 0:07:01
Annotate 0:15:01 0:14:55 0:15:10 0:14:32
Merge Annotation 0:04:06 0:03:49 0:04.01 0:04:05
Total time 31:29:43 19:18:06 1213552 6:11:30

the machines are not terminated before the computation
is completed. In this section, we provide experiments to
measure Scenario 3 in case all and some worker spot
nodes fail.

In case all spot instances fail, all tasks/jobs assigned to
spot instances are migrated to Google cloud. Table 6
shows the times and costs when the machines are termi-
nated at different time points while the workflow is exe-
cuted, using different bid prices. We simulated the
termination of spot instances at different time points of
the workflow, by sending termination signals to the
worker nodes. The created cluster automatically detects
any termination of the nodes and executes the migration
process. In case, some spot instances fail, same number
of machines are created in Google and the tasks/jobs
assigned to those nodes run there. Table 7 shows the
time and costs when machines are terminated at different
time points while the workflow executed, using different
bid prices. For this table, we assume that half the spot
instances fail.

The results in these table can be read as follows: If we
set the bid of $0.5 for instances of type r3.8xlarge, then
the expected life time is about 3 h, which is enough for
running the workflow for the exome dataset without
interruption. (The total time of the workflow is about 2
h as given in Table 4.). In this case the workflow would
cost about $5, which is much less than that of Google
(Google cost ~ $14).

This appears fine; but in fact one can do better when
using the multicloud feature of MC-GenomeKey. For
example, if we reduce the bid to $0.35, then the whole
workflow would cost about $2.934 assuming no failure.
But there is a probability that some spot instances
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terminate before workflow completion, because the ex-
pected lifetime using this bid is about 100 min. In this
case, the solution is to migrate the failed jobs to Google
Cloud. The expected cost in case of all nodes failure
would be $8.1 (Table 6) and it would be $4.8 in case of
some node failure (Table 7). Both costs are less than the
cost when running on Google, and in case of partial ter-
mination the cost is even less than running in a single
cloud using higher bid price. Scanning all values in
Table 6 in combination with the running time of each
phase in the workflow given in Tables 4 and 5, one can
identify that the best bid price leading to the best ex-
pected cost is $0.4 with total cost of $3.334 for all node
failure and for some node failure.

Such cost advantage is more apparent when dealing
with whole genome data. For example, if we take a bid
price of $0.6, the workflow would cost $78 (4 nodes) -
$118 (32 nodes) in case no failure of spot instances,
which is much less than the $208 of Google. Even in
case of failure and migration, the best prices at that bid
would range between $106 (failure of some nodes in
Table 7) and $149 (failure of all nodes as in Table 6). It
is worth mentioning that with more nodes there is a
better chance that no job fails at the first two critical
phases (alignment and variant calling). Le., the failure
would occur at the easier quicker steps, which will lead
to reduced time. Our estimation when using 128 nodes
is that the total time would drop to about 2 h with esti-
mated cost ranging between $103 and $130.

The data transfer times and costs are given in Tables 6
and 7. The amount of data transferred depends on the
time point where the spot instances get terminated. The
worst case scenario is when the sport instances get
terminated at the very beginning of the workflow and in
this case it is important to move most of the data from
one cloud to another. For the exome data set, the worst
case time is about 12 min at a cost of about $1.0. For
the whole genome, the worst case data transfer time was
about 230 min at a cost of about $18.0. This lead to an
increase in the computation time, but the cost remained
still less than using Google only. When the spot in-
stances fail in other time points, the increase in cost and
time is neglected.

To sum up, merging the spot instance model with low
bid and use of Google as a host migration cloud would
lead to cost reduction in many cases with minor increase
in the running time.

Conclusions

In this paper we have introduced MC-GenomeKey, a

package for variant analysis and annotation using com-

puting resources from different cloud providers.
MC-GenomeKey can run either on Google, Amazon,

Azure clouds, or any combination of the three. It can
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Table 6 The cost of using spot instances for Case 1, where all spot instanced get terminated

Bid = $0.2 Bid = $0.3 Bid = $0.35 Bid = $04 Bid = $05 Bid = $06 Bid =51 Average data Total time
(1 min) (65 min) (100 min) (140 min) (176 min) (230 min) (422 min) transfer time (cost)
Exome
No Failure $1.734 $2.534 $2.934 $3ﬁ $4.134 $4.934 $8.134 0 1:51:33
Failure Step 1 (Mapping) 15.827 16.227 1645 16.627 17.027 17427 19.027 12 min (0.969%) 02:08:23
Failure Step 2 (Variant Calling) 11.471 11.871 $12.1 12271 12671 10.937 12.537 11 min (0.879) 02:06:10
Failure Step 3 (Annotation) 7402 7.802 $8.1 8.202 8.602 9.002 10.602 6 s (0.000365) 01:55:48
Whole Genome (4 Nodes)
No Failure $27.744 $40.544 $46.9 $53.344 $66.144 $78.944 $130.144 0 31:39:43
Failure Step 1 (Mapping) $229.87 $231.47 $232.28 $233.07 $234.67 $236.27 $242.67 230 min (184%) 35:08:46
Failure Step 2 (VQ) $127.84 $135.84 $139.85 $143.85 $151.84 $159.84 $191.84 100 min (7.99) 32:47:17
Failure Step 3 (Annotation) $55.25 $84.59 $89.79 $94.99 $105.39 $115.79 $157.39 125 (0.004329) 32:14:01
Whole Genome (8 Nodes)
No Failure $3223 $47.70 $55.42 $63.16 $7863 $94.10 $15596 0 19:18:06
Failure Step 1 (Mapping) $243.75 $24535 $246.15 $246.95 $24855 $250.15 $256.55 230 min (1849) 23:10:1
Failure Step 2 (Variant Calling) $123.05 $13345 $138.65 $143.85 $154.25 $164.65 $206.25 100 min (7.95) 20:52:08
Failure Step 3 (Annotation) $54.99 $68.59 $75.39 $82.19 $95.79 $109.39 $163.79 12 5 (0.004329) 19:20:01
Whole Genome (32 nodes)
No Failure $39.88 $59.61 $69.50 $79.35 $99.08 $118.81 $19775 0 6:11:30
Failure Step 1 (Mapping) $291.75 $294.95 $296.55 $298.15 $301.35 $304.55 $317.35 230 min (1849) 10:45:12
Failure Step 2 (VQ) $172.65 $18545 $191.85 $198.25 $211.05 $22385 $275.05 100 min (7.99) 7:56:03
Failure Step 3 (Annotation) $85.39 $101.39 $109.39 $117.39 $133.39 M $213.39 12 5(0.004329) 6:20:10

The cost of using spot instances with different bid prices and failure time points given for Case 1 where all spot instanced get terminated for the Exome and the
Whole Genome datasets. GCE cluster setup time is nearly 7 min. For every bid we provided the average lifetime of cluster in brackets. Costs in bold are the most
likely ones with the respective bid price and its most likely time of failure. The best expected costs for a given experiment are underlined. The best expected cost
for exome is 3.334 using bid of 0.4 (underlined) and for whole genomes comes is 149.39 (underlined) with 32 nodes and bid price of 0.6

also run in any cloud based on OpenStack. The package
supports that the jobs of the same workflow be distributed
over nodes coming from different clouds. In addition, it
offers the option of handling the spot instance model by
migrating jobs among the same or different clouds. The
new features of the package allows easier usage through
a command-line and web interface, allows faster execu-
tion through improved parallelization, and is more
cost-effective via exploiting best business offers in dif-
ferent clouds. The associated cost reduction is a step
towards the elimination of the barriers limiting the use
of NGS in clinical settings.

MC-GenomeKey can be tuned to work with organisms
other than human, provided that the parameters of the
tools are set properly and the annotation database are
put in required formats. Fortunately, the Annovar anno-
tation system supports other organisms, such as mouse,
worm, Yeast, among others. In a future version of our
system, we would support other organisms of interest to
the community.

It is worth mentioning that MC-GenomeKey supports
that each phase of the variant analysis workflow runs in a
different cloud, as specified by the configuration file (for

example, mapping runs in Amazon and variant calling
runs in Google). However, we did not expose this feature
to the MC-GenomeKey web-interface, because it is not
yet of practical relevance. The reason is that the current
pricing scheme makes it always cheaper to run the
whole workflow in Google if one searches for best price.
Also the current machine configurations and perform-
ance make it faster to run the whole workflow in Ama-
zon if one searches for fastest time, as shown in Table 4.

In spite of its cost advantage, the spot instance model
was not considered as a useful model because of the
sudden termination of nodes when the spot price ex-
ceeds the bid price. MC-GenomeKey has provided an
efficient solution based on migrating the jobs associated
with the terminated nodes to other on-demand nodes in
the same cloud or in Google cloud. It is also worth men-
tioning that the robust use of spot instances can lead
also to a faster execution given a certain budget ceil
That is, the reduced price allows the user to allocate
more machines to finish as fast as possible within the
budget limit.

Transferring the data among cloud sites is a limiting
factor for some use case scenarios of multicloud. The
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Table 7 The cost of using spot instances for Case 2, where some spot instances get terminated

Bid = $0.2 Bid = $0.3 Bid = $0.35 Bid = $04 Bid = $05 Bid = $06 Bid =51 Average data Total time
(1 min) (62 min) (100 min) (135 min) (172 min) (224 min) (419 min) transfer time (cost)
Exome
No Failure $1.734 $2.534 $2.934 $3ﬂ $4.134 $4.934 $8.134 0 1:51:33
Failure Step 1 (Mapping) $8.78 $9.38 $9.51 $9.98 $10.58 $11.18 $13.58 7 min (0.6%) 02:08:23
Failure Step 2 (Variant Calling) $9.13 $9.73 $9.91 $10.33 $1093 $11.53 $13.93 6 min (047%) 02:06:10
Failure Step 3 (Annotation) $4.06 $4.66 $4.81 $5.26 $5.86 $6.46 $8.86 2 5 (0.05%) 01:55:48
Whole Genome (4 Nodes)
No Failure $27.744 $40.544 $46.9 $53.344 $66.144 $78.944 $130.144 0 31:39:43
Failure Step 1 (Mapping) $11443 $121.63 $125.23 $128.83 $136.03 $143.23 $172.03 123 min (4.879) 33:08:46
Failure Step 2 (VQ) $64.52 $74.92 $80.12 $85.32 $95.72 m $147.72 min (0.96%) 33:47:17
Failure Step 3 (Annotation) $45.32 $56.92 $62.72 $68.52 $80.12 $91.72 $138.12 305 (06) 32:14.01
Whole Genome (8 Nodes)
No Failure $32.23 $47.70 $55.42 $63.16 $78.63 $94.10 $15596 0 19:18:06
Failure Step 1 (Mapping) $137.64 $146.04 $150.24 $154.44 $162.84 $171.24 $204.84 123 min (4.879) 21:30:1
Failure Step 2 (VQ) $7733 $90.13 $96.53 M $115.73  $128.53 $179.73 101 min (0.969) 21:12.08
Failure Step 3 (Annotation) $48.26 $62.66 $69.86 $77.06 $91.46 $105.86 $163.46 30 s (0.5859) 19:55:01
Whole Genome (32 nodes)
No Failure $39.88 $59.61 $69.50 $79.35 $99.08 $118.81 $197.75 0 6:11:30
Failure Step 1 (Mapping) $165.64 $176.84 $182.44 $188.04 $199.24 $21044 §255.24 123 min (4.879) 8:15:12
Failure Step 2 (VQ) $9333 $109.33 $117.33 $12533 $141.33  $157.33 522133 101 min (0.969) 7:56:03
Failure Step 3 (Annotation) $83.46 $101.06 $109.86 $118.66 $136.26 $153.86 $224.26 30 5 (0.5859) 6:55:12

The cost of using spot instances with different bid prices and failure time points given for Case 2, where some spot instances get terminated (we assume half of
initial number) for Exome and Whole Genome datasets. GCE cluster setup time is nearly 7 min. For every bid we provided the average lifetime of cluster in
brackets. Costs in bold are the most likely ones with the respective bid price and its most likely time of failure. The best expected costs for a given experiment are
underlined. The best expected cost for exome is 3.334 using bid of 0.4 and for whole genomes is 106.12 with a bid of 0.6 finishing in 33 h. If one has to finish in

less than 10 h, the best price is 125.33 with 32 nodes and bid price of $0.4

use of high-speed data transfer solutions (either commer-
cial like aspera or open source like GridFTP, among
others) would provide an efficient solution to this prob-
lem. In the next versions of MC-GenomeKey, we will inte-
grate high speed data transfer solutions to further improve
the performance. In addition, we will also work on inte-
grating the streaming techniques presented in [30], where
the computation can take place while the data is being
transferred to save more time.

While editing this manuscript Google has provided
the custom instances, where the user can shape the ma-
chines specifications. Although there is no change in
the price per compute unit, this will provide more flexi-
bility in selecting the best infrastructure for certain ap-
plications. Also while working on this manuscript,
Amazon introduced the concept of reserved spot in-
stances, where the user can reserve the spot node with-
out termination for up to 6 h with a price ranging
between 50 and 100% of the equivalent on-demand
price. These two examples show the severe competition
between Google and Amazon and the importance of
MC-GenomeKey enabling the user select best prices
and options.

MC-GenomeKey is available at http://nubios.nileu.e-
du.eg/mcgk and https://bitbucket.org/shazly/mcgk. We
are also working in integrating it in the Tavaxy workflow
management system [31, 32].

Availability and requirements

Project name: MC-GenomeKey.

Project home page: http://nubios.nileu.edu.eg/mcgk,
https://bitbucket.org/shazly/mcgk

Operating system(s): Linux.

Programming language: Python, C, C++, Java.

Other requirements: NA

License: GPL.

Any restrictions to use by non-academics: No
restrictions.
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