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Abstract

Background: A number of membrane-anchored proteins are known to be released from cell surface via
ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various
cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse
functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate
various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through
the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and
accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become
important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and
clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound
protein shed markers is still lacking.

Results: In this study, the database SheddomeDB was developed to integrate publicly available data of the shed
membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were
verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies
on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have
not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a
comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases
involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support
researchers for predicting the shedding event on unknown or unrecorded membrane proteins.

Conclusions: To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally
validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the
shedding information. The database included membrane-bound shed markers associated with numerous cellular
processes and diseases, and some of these markers are potential novel markers because they are not annotated or
validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed
markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/.
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Background
A large class of proteins is known to be secreted from the
cell to the extracellular space. The secreted proteins such
as hormones, enzymes, and antibodies play vital regula-
tory roles in biological signaling and may serve as clinic-
ally noninvasive biomarkers and potential therapeutic
targets [1, 2]. In addition to the proteins that undergo pro-
tein secretion via secretory pathways, membrane proteins
are known to be released into the extracellular milieu via
ectodomain shedding. Certain membrane-bound proteins,
including cell adhesion molecules, growth factors, cyto-
kines, and cell receptors, can be proteolytically cleaved by
sheddase that results in the release of soluble forms of
fragments. The process of ectodomain shedding has been
shown to regulate various pathologies and diseases such
as degeneration, inflammation, and cancer and physio-
logical processes such as proliferation, differentiation, and
migration [3, 4]. In this context, the cleaved and released
membrane proteins resulting from shedding events may
comprise additional resources of valuable secreted and
soluble biomarkers for pathological states or physiological
conditions.
Previous studies on membrane proteins revealed that

only about 2 or 4% of cell surface molecules undergo the
shedding process [5, 6]; hence, it is apparent that not every
membrane protein will be released through proteolytic
shedding. Therefore, to assess whether a membrane-
bound protein will be released from cells and to identify
membrane-bound shed markers that are of clinical poten-
tial, a data repository dedicated to provide shedding infor-
mation that is experimentally validated for membrane
proteins seems indispensable. Although cleavage databases
such as MEROPS [7], PMAP-SubstrateDB [8], and HPRD
[9] have been developed as information resources for pro-
teases, substrates, and cleavage events, a portion of cleav-
age records collected by the databases may be based on
library-based approaches for identification of protease
cleavage sites [10, 11], and the putative substrates identi-
fied in the original literature may not be validated or
physiologically relevant. In addition, currently, some shed
membrane proteins that were identified by shedding stud-
ies may not have yet been recorded and annotated in these
cleavage databases.
In this context, the database SheddomeDB was designed

for the identification of shed membrane proteins that are
released through proteolytic cleavage. The membrane pro-
teins that were verified to be cleaved or released in the
supernatant by immunological-based validation experi-
ments were included in our database. Based on a compre-
hensive literature survey on shedding event studies, a total
of 401 validated shed membrane proteins were identified,
among which 199 shed membrane proteins have not been
annotated or validated yet by current cleavage databases.
SheddomeDB also provides a user-friendly web interface

for researchers to search or browse proteins of interest.
For each experimentally validated shed membrane pro-
tein, SheddomeDB attempted to provide a comprehensive
shedding report based on literature references, including
the regulation of shedding machinery and the related
function or diseases involved in the shedding events. The
cross-references to other resources, such as the released
evidence in secretome data and the existing records of
protease cleavage sites, were provided in SheddomeDB as
well. In addition, the previously published prediction tool
ShedP [12] was embedded into SheddomeDB. ShedP is a
computational method developed to predict the shedding
event on membrane proteins based on the protein se-
quence. By incorporating a prediction web interface for
ShedP, SheddomeDB also supports the researchers for the
assessment of shedding events on the unknown or unre-
corded membrane proteins.
Thus, by collecting experimentally validated shed mem-

brane proteins from literature references, SheddomeDB
may provide a useful resource of membrane-bound shed
markers associated with numerous cellular processes and
diseases, including some potential novel markers that are
not annotated or validated yet in other databases. Sheddo-
meDB may be a useful bioinformatics design in sheddome
marker discovery and to help investigate the regulatory
role of membrane proteins in physiological and patho-
logical processes. SheddomeDB is publicly available at
http://bal.ym.edu.tw/SheddomeDB/.

Methods
Database implementation and interface design
The MYSQL relational database version 5.0.45 (http://
www.mysql.com) was used in the current study to design
and construct the SheddomeDB database and the inter-
active web interface. A JAVA-based model-view-controller
(MVC) framework was utilized for the web interface to
separate the logic, application, and the presentation into
three distinct layers. All the interactions between the web
client requests and the server side were handled by Apa-
che web server. The dynamic web pages were designed
using JavaServer Pages (JSP) and Cascading Style Sheets
(CSS), and the user-interactive pages were supported by
JavaScript and its library jQuery for client-side scripting.

Data source
A comprehensive literature survey was conducted to iden-
tify the membrane proteins that were experimentally vali-
dated to be cleaved or released into the supernatant. By
searching the PubMed database using the following key-
words: “shedding”, “proteolytic”, “cleavage”, “protease”,
“soluble form” and “released” the relevant studies on
membrane protein shedding or protease cleavage were
first acquired. We further manually reviewed the
published studies and screened for the validated shed
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membrane proteins based on the following selection cri-
teria: (1) The membrane proteins were verified to be
cleaved by protease and protease inhibitors or the release
of the soluble forms of proteins was detected in the cul-
ture supernatant. (2) The shedding events of membrane
proteins were validated by antibody-based probes against
the endogenous protein or against stably expressed genes
encoding the protein. The curated publications that met
the screening criteria were further selected as the data
source to collect all the relevant data on membrane pro-
tein shedding. We mapped the membrane proteins in
each curated publication to the UniProtKB/Swiss-Prot
database [13] to uniform the protein ID based on the
protein name and the organism source of the protein. In
addition, because the functional consequences of mem-
brane protein shedding can be diverse and depend on the
protein function or the shed form of fragments, we
grouped each shed membrane protein into functional cat-
egories based on the regulated functions or diseases sug-
gested in the shedding literature. If the functional
consequences of protein shedding were not clarified in the
original studies, the shed membrane protein was then cat-
egorized based on the function description or annotation
in the UniProtKB/Swiss-Prot database.

Incorporated shedding predictor ShedP
The in-house prediction tool ShedP previously devel-
oped to predict shedding events of membrane proteins
was incorporated into the SheddomeDB database. ShedP
is a support vector machine (SVM)-based model [14]
built by supervised machine learning that discriminates
between shed membrane proteins and nonshed mem-
brane proteins. The SVM model based on PseAAC [15]
feature representation was constructed as our ShedP tool
after a 5-fold cross-validation training procedure. At
present, ShedP is the computational method published to
predict shedding events of membrane proteins. To sup-
port the researchers for assessing the likelihood of an un-
known or unrecorded membrane protein to be cleaved
and released from the cell, we have also integrated a web
interface to the prediction by ShedP into the Sheddo-
meDB database, enabling valuable hints to be gained by in
silico prediction.

Results and Discussion
Database content
In the present study, 436 curated studies were selected
based on our literature survey process [3, 16–450], and a
total of 401 validated shed membrane proteins were col-
lected. Among the shed membrane proteins included in
SheddomeDB, 22 proteins have not yet been annotated by
existing cleavage databases MEROPS, PMAP-SubstrateDB,
and HPRD. In addition, among those identified membrane
proteins that have already been recorded in cleavage

databases, 28 membrane proteins were only shown to
undergo cleavage by signal peptidase [451–462] and 149
membrane proteins were only referenced by one substrate
specificity study using a computational prediction model
[463]. The cleavage records of membrane proteins in these
studies may be neither relevant to membrane protein shed-
ding nor experimentally validated. Therefore, our results re-
vealed that a total of 199 shed membrane proteins in
SheddomeDB were not annotated or validated yet by other
cleavage databases. The details of the identified shed mem-
brane proteins and the reference studies are summarized in
(Additional file 1: Table S1).
Because the process of proteolytic shedding has been

shown to be involved in various physiological processes
and diseases, it is of importance to know which bio-
logical function categories or diseases may be regulated
or related to the shedding of membrane proteins. Thus,
we further grouped the validated shed membrane pro-
teins into function categories manually based on the
functional consequences referenced by shedding studies
or functional description in the UniProtKB/Swiss-Prot
database. First, the shed membrane proteins were
grouped into the category “disease” if the proteins were
shown to be involved in the disease progression or sug-
gested as disease marker candidates. For instance, the
shedding events of the proteins CDH1, EFNA1, and
SDC1 were suggested to be involved in cancer invasion
and immune escape [16–20]; the shedding events of
SNCA and APP were shown to be involved in neu-
rodegenerative disorders such as Parkinson’s disease and
Alzheimer’s disease [21–23]; the shedding event of NRP2
was involved in immune disorders such as rheumatoid
arthritis [24]; that of SDC4 was suggested to be involved in
cardiovascular diseases such as atrial fibrillation [25];
HAVCR2 shedding event being implicated in HIV infection
[26]; and the shedding event of CADM1 was shown to be
involved in diabetes [27, 28]. In addition, several shed or
soluble membrane proteins were suggested to be
marker candidates for cancers (e.g., PVRL4 [29],
CD200 [30, 31], CDH17 [32]), atherosclerosis (e.g.,
SORL1 [33–36]), diabetes mellitus (e.g., CLEC1B
[37]), neurodegenerative disorders (e.g., PDGFRB [38,
39]), and hepatocyte damage (e.g., PTPRG [40]).
Then, a large portion of the shed membrane proteins

were found to be related to immune response or neural sig-
naling and were categorized into “immune and inflamma-
tion” or “central nervous system,” respectively. For instance,
the shedding of numerous cytokines, cell receptors, and cell
adhesion molecules was shown to be involved in leukocyte
recruitment (e.g., CXCL16 [23, 41, 42], CDH5 [23, 41],
TNFRSF8 [41, 43]), T-cell proliferation (e.g., Lag3 [41, 44]),
and other immunological modulations (e.g., CR2 [45]). In
contrast, the shedding of cell adhesion molecules,
ligands, and cell receptors was involved in axon
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guidance (e.g., Epha4 [46], Neo1 [47]) and neurite
outgrowth (e.g., NCAM1 [48–50]). In addition, an-
other group of shed membrane proteins were found
to be specifically related to the cardiovascular system
and were further categorized into “angiogenesis” or
“blood and homoeostasis.” For instance, the shedding
of the proteins JAM3 and CLEC14A was suggested to
be involved in the regulation of angiogenesis [51, 52],
and the shedding of the proteins GP1BA and GP5
was suggested to be involved in the regulation of
platelet hemostasis [23, 53].
For the remaining shed membrane proteins, most of the

growth factors (e.g., BTC [23, 54, 55]), growth factor re-
ceptors (e.g., NGFR [56, 57]), morphogens (e.g., SHH
[58]), and cell adhesion molecules (e.g., EPCAM [59, 60])
were shown to be involved in cell proliferation, migration,
and morphogenesis and were categorized into “cell growth
and development.” In addition, some shed proteins
were found to be related to metabolism and were
grouped into “lipid” (e.g., DLK1 [61, 62]), “melano-
genesis” (e.g., PMEL [63]), “insulin” (e.g., TMEM27
[64, 65]), and “renal” (e.g., UMOD [66]). In addition,
others were found to be related to protein function
and were grouped into “enzyme” (e.g., ACE [67]),

“transporter” (e.g., FOLR1 [68]), and “cell surface struc-
ture” (e.g., DSG2 [69]). Finally, we found some proteins
that were specifically related to “aging” (e.g., KL [70, 71]).
Thus, as depicted in Fig. 1, the 401 identified shed mem-
brane proteins were grouped into 14 categories; the details
of the protein members in each function category are
summarized in (Additional file 1: Table S2) and can be
reviewed in our browsed pages.

User querying and web interface
SheddomeDB provided a user-friendly web interface for
researchers to search or browse proteins of interest. To
query the database, the researchers can begin the search
task from the “Search” page in which two query options
were provided (Fig. 2). First, the database can be quer-
ied by directly specifying the protein UniProt ID. In
contrast, the researchers can make a text similarity
query by inputting the protein name or gene symbol
and specify the desired one from all possible protein
candidates in the interactive page. In addition, the re-
searchers can choose the “Browse” page to browse the
membrane proteins based on function categories (the
disease or function categories involved in or related to
shedding process) (Fig. 2).

Fig. 1 Function categorization of the identified 401 shed membrane proteins. The function category for membrane proteins was determined
based on the functional consequences referenced by shedding studies or functional description in UniProtKB/Swiss-Prot. The protein numbers in
each function category were revealed as well
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In the results pages for each experimentally validated
shed membrane protein, a comprehensive shedding re-
port was provided by SheddomeDB in four sections
(Fig. 3), as follows: (i) In section A, the basic information
such as protein name, gene symbol, organism, and extra-
cellular region were referenced from the UniProtKB/
Swiss-Prot database. In addition, the membrane protein
type annotated from UniProtKB/Swiss-Prot was also
provided to show whether the membrane protein is (1.)
lipid or GPI-anchored, (2.) topological (with extracellular
and transmembrane domain, (3.) cell membrane anno-
tated (annotated localized in cell membranes), and (4)
other membrane proteins (proteins annotated at other
subcellular localizations). (ii) The cross-references to the
secretome released information were revealed in section
B. If the query proteins were annotated to be released by
secretome studies [72–74, 464–466] or by the secreted
protein datasets in the databases the secretome data-
bases HCSD [467] and Sys-BodyFluid [468], the secreted
protein database SPD [469], and the subcellular
localization database LOCATE [470], the secretome in-
formation such as the secretome database, secreted cell
type, the reference PubMed ID, and the protein ID used
in the reference literature will be summarized and pro-
vided. (iii) In section C, the regulation of the shedding
machinery, the related function or disease, the protease
name, and the PubMed ID of the shedding reference
were summarized. (iv) In section D, the cross-references
to existing cleavage sites records from current cleavage
databases MEROPS, PMAP-SubstrateDB, and HPRD
were provided. The cleavage information such as the
cleavage database, protease name, reference PubMed ID,
the cut location, and the cut sequence motif were pro-
vided. In addition, the protein sequence structure was

represented in which the extracellular domain region
and the protease cleavage site can be visualized.

ShedP prediction interface
SheddomeDB incorporated a web interface to prediction
by ShedP so as to gain valuable hints by in silico predic-
tion. By inserting the protein sequence of a queried pro-
tein, the users can assess the likelihood of an unknown
or unrecorded membrane protein to be cleaved and re-
leased from the cell. Based on the prediction model, a
query protein whose predicted probability was greater
than or equal to 0.5 was regarded as positive and pre-
dicted to be shed, otherwise it was predicted as negative
and nonshed (Fig. 4).

Conclusions
As more and more studies have revealed the regulatory
role of ectodomain shedding in various cellular pro-
cesses and pathologies, the identification of shed and re-
leased membrane proteins is becoming important in the
field of biomarker discovery and sheddome proteomics.
To determine and assess the possible membrane
protein candidates undergoing shedding and released
from the cells, the database SheddomeDB is the first
sheddome-based database developed to store and query
publicly available data on shed membrane proteins. For
each queried membrane protein, SheddomeDB provides
the researchers comprehensive cross-references includ-
ing the released evidence in the secretome, protease
cleavage record, and biologically validated shedding
report. Thus, the bioinformatics-based database Shed-
domeDB may serve as a useful resource for membrane-
bound secreted markers.

Fig. 2 The interactive web interface of SheddomeDB. SheddomeDB provided a user-friendly web interface to query the database. The users can
either search proteins of interest from the “Search” page or browse all shed membrane proteins from the “Browse” page
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Fig. 3 Example of SheddomeDB result pages. For each query membrane protein, the information was provided in four sections in the result
pages. Section A revealed the basic protein information from UniProtKB/Swiss-Prot. Section B provided secretome released information. Section C
summarized the biological information from the biologically validated literature on the shedding process. Section D provided existing cleavage
site information. The protein sequence structure was depicted as well, in which the extracellular domain regions are marked with blue color and
each protease cleavage site is labeled with an asterisk

Fig. 4 Web interface for ShedP prediction. To predict the shedding events, the users can insert the protein sequence (FASTA format) of a queried
protein in “Prediction” pages. In the prediction result pages, the ShedP prediction results will be revealed. The protein will be regarded as positive
and predicted to be shed if the ShedP prediction value is greater than or equal to 0.5, otherwise predicted as negative and nonshed
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Additional file

Additional file 1: Table S1. The details of the identified 401 shed
membrane proteins including the protein UniProt ID and the PubMed ID
for literature references. Table S2. The details of the shed membrane
protein members in each group of function category. (PDF 303 kb)
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