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Abstract

Background: The molecular assays that test gene expression, transcriptional, and epigenetic regulation are

increasingly diverse and numerous. The information generated by each type of assay individually gives an insight into
the state of the cells tested. What should be possible is to add the information derived from separate, complementary
assays to gain higher-confidence insights into cellular states. At present, the analysis of multi-dimensional, massive
genome-wide data requires an initial pruning step to create manageable subsets of observations that are then used for
integration, which decreases the sizes of the intersecting data sets and the potential for biological insights. Our
Significance-based Modules Integrating the Transcriptome and Epigenome (SMITE) approach was developed to
integrate transcriptional and epigenetic regulatory data without a loss of resolution.

Results: SMITE combines p-values by accounting for the correlation between non-independent values within data sets,
allowing genes and gene modules in an interaction network to be assigned significance values. The contribution of
each type of genomic data can be weighted, permitting integration of individually under-powered data sets,
increasing the overall ability to detect effects within modules of genes. We apply SMITE to a complex genomic data set
including the epigenomic and transcriptomic effects of Toxoplasma gondii infection on human host cells and
demonstrate that SMITE is able to identify novel subnetworks of dysregulated genes. Additionally, we show that SMITE
outperforms Functional Epigenetic Modules (FEM), the current paradigm of using the spin-glass algorithm to integrate
gene expression and epigenetic data.

Conclusions: SMITE represents a flexible, scalable tool that allows integration of transcriptional and epigenetic regulatory

data from genome-wide assays to boost confidence in finding gene modules reflecting altered cellular states.
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Background

In genomics research, the dimensionality of assayed data
has increased far beyond the pace of analytical tool
development, with data sets likely to continue to in-
crease in size and complexity [1, 2]. We appreciate that
gene expression is regulated through a number of inter-
acting mechanisms that include epigenetic processes
such as DNA methylation. DNA methylation can also
reflect the local binding of transcription factors [3],
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which are capable of influencing local chromatin struc-
ture [4] and post-translational modifications of histones
[5]. Furthermore, transcription can induce DNA methy-
lation [6], and DNA methylation can itself influence
transcription factor binding [7-11]. While these obser-
vations indicate complex interactions between regulators
of genomic organization, they also suggest that multiple
types of events observed at the same locus increase con-
fidence that regulatory activity is genuinely occurring at
that locus. Current methods to explore multiple coinci-
dent processes using integrated analysis introduce bias
by pruning data sets, either by focusing only on a subset
of loci with the most significant effects, or requiring
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pairwise comparisons of data sets with progressively
smaller intersections. Furthermore integrative methods,
like Functional Epigenetic Modules (FEM) [12], score
genes within a network and identify subnetworks, re-
ferred to as modules, but they lack an implemented
method to define further functional interpretability an
essential outcome of genomics experiment [13]. There-
fore, there is a need for a flexible method integrating
genomic assay data into a single score that can be used
to identify functionally important pathways for further
study.

Here we describe an intuitive gene scoring system that
combines transcriptional and epigenetic regulatory data
sets, an approach we call Significance-based Modules In-
tegrating the Transcriptome and Epigenome (SMITE).
The novelty of SMITE lies in the use of mathematic
principles and sampling techniques to simplify multiple
complex genome-level signals into a single set of inter-
pretable results. We use SMITE to identify novel gene
modules in a large, high dimension epigenetic and tran-
scriptomic data set, and we show that SMITE offers im-
proved detection, characterization, and visualization of
functional modules within a gene network compared to
existing methods. Overall, SMITE provides a useful and
intuitive answer to the most important question in inte-
grative genomics: what we can learn from integrating
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multiple sources of high-resolution information instead
of considering each source separately?

Implementation

Toxoplasma gondii (T. gondii) human foreskin fibroblast
data set

To benchmark SMITE and demonstrate implemented
features, we obtained a large multifaceted genomics data
set from a controlled experiment studying the transcrip-
tional regulatory effects on human foreskin fibroblasts
(HFF) following infection by T. gondii. Further descrip-
tion of the experimental methods used to produce the
data set and results are available in Additional file 1,
including alignment to a combined human/Toxoplasma
genome assembly (Additional file 1: Figure S1).

Required inputs to SMITE

SMITE provides a pipeline that results in annotated func-
tional modules (Fig. 1). It requires the following inputs: 1)
a gene annotation bed file, 2) an interaction network, and
3) data sets of effects and statistical test significance from
at least one gene expression and/or epigenomic profile(s).
In addition, users can include an unlimited number of
previously identified genomic intervals of interest (e.g.
Chromatin Immunoprecipitation (ChIP)-seq peaks, en-
hancers, Additional file 1: Table S1). Notably, the software
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relies on p-values without specifying the source statistical
test, so it is necessary for users to ensure appropriate sam-
ple sizes, data quality, and statistical testing of the original
experiments.

Motivation for SMITE

In functional genomics experiments, after performing
genomic assays on two or more groups, one generally
uses a statistical test to estimate an effect for up to
millions of genomic loci (e.g. genome-wide DNA
methylation analysis). These estimates are then com-
pared to their standard errors to derive test statistics, 7,
and p-values, p, where p is defined as the probability
that 7T is greater than a threshold from a statistical distri-
bution, t, such that P(T > t) = p. These test statistics and
corresponding p-values are used to reject a null
hypothesis (i.e. no difference between study groups).
While a p-value does not represent the probability that a
hypothesis is true, in practice, each p-value does corres-
pond to a researcher’s relative prioritization of a gene or
genomic region within a ranked list [14]. An observed p,
which increases in significance as it approaches zero, is
proportional, %, to a new heuristic that is maximized as
1-p approaches 1, and this heuristic is the probability, B,
that a gene or genomic region is prioritized by a re-
searcher for further analysis:

P(T < t) =1-p=P (Gene or genomic region is prioritized)

(1)

Therefore, in application, p-values are generally reinter-
preted beyond their intended purpose, and in this cap-
acity they contribute to new heuristics that are used as
the primary criteria for prioritization. While the func-
tional interpretation of significant hypothesis tests from
gene expression experiments is straightforward (e.g.
genes are significantly upregulated or significantly down-
regulated), to understand specific functional genomic
contexts we must interpret multiple p-values as contrib-
uting evidence. For example, DNA modifications like
DNA methylation and DNA hydroxymethylation are
typically measured at the single base pair level, whereas
functional genomic contexts are represented by genomic
intervals that vary in size, like gene promoters. This
necessitates a method of combining multiple p-values
overlapping the same genomic interval, while also ac-
counting for their likely interdependence. Therefore,
these genomic intervals can contribute to a single heur-
istic that can be used to score their associated genes.
Since the relationships between genomic intervals and
their associated genes are complex, a flexible approach
is needed to allow user input for optimal weighting of
genomic contexts depending on a particular experiment.
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There are several p-value combination methods used
in meta-analyses. Because these methods assume
independence of experiments, SMITE includes a prepro-
cessing step using Monte Carlo methods (MCMs) to ac-
count for non-zero correlations when combining
dependent p-values [15]. This novel approach imple-
menting MCMs assesses the average strength of the cor-
relations and determine a new distribution of combined
p-values. Subsequently, p-values are recursively com-
bined until every node (gene) in a specific interaction
network is associated with a single score that in turn re-
flects a researcher’s intuitive belief that the node has suf-
ficient evidence to be prioritized for further analysis.

Combining p-values in SMITE

Given K experiments with K hypotheses, H; x, test
statistics and corresponding p-values, p; i, are calcu-
lated so that each p-value reflects the probability of
observing a particular test statistic or more extreme
values; the p-value itself is, however, a random variable
that follows a uniform distribution, 1/(0,1) [16]. P-value
combination methods attempt to characterize the joint
distributions of two or more of these random variables.
If the p-values are not independent from one another,
then there is a covariance/correlation matrix that needs
to be incorporated into the analysis in order to maintain
statistical validity. Rather than focus on the statistical
distributions of combined p-values, which can be
complex, difficult to calculate, and risks over-
interpreting p-values, SMITE uses MCMs, like boot-
strapping, to sample randomly a particular set of values
from an unknown distribution and to estimate the char-
acteristics of the new combined distribution. SMITE em-
ploys these sampling methods before combining large
correlated p-value data sets. SMITE offers several
methods for combining p-values including Stouffer’s Z-
score method [17] (the default procedure), Sidak’s ad-
justment [18], Fisher’s method [19], and binomial test-
ing. More detail about the available methods is provided
in Additional file 1.

In the idealized scenario, the application of p-value
combination methods is trivial because of the independ-
ence of each epigenetic signal; however, modifications
like DNA methylation are thought to be highly corre-
lated over short distances [20], with methods like Bum-
pHunting exploiting this local correlation to define
differentially methylated regions [21]. For this reason,
SMITE estimates the average correlation between the
dependent p-values as a function of distance. For each
gene G; for i in 1,2...1, we first find the J genomic inter-
vals R;; for j in 1,2...] related to G; (e.g. a specific gene’s
promoter and body). Then, we determine the N overlap-
ping p-values, p;; for k in 1...Nj;, for each genomic inter-
val. Next, we convert the p-values to a standard normal
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distribution with the transformation Z; = o1 - Dijt/2),
where @ is the standard normal cumulative distribution
function (CDF). Rather than incorrectly assuming that
the p-values are independent, we chose to use a non-
parametric MCM approach to estimate correlation co-
efficients for modifications that overlap the same
interval, Rj;.

We estimate a correlation matrix using the physical
distance between loci associated with p-values, and thus,
we control for a background level of spatial correlation.
To estimate this matrix, we find for each significant p-
value within a type of interval R the distances to the
closest upstream and downstream p-value. As HELP-
tagging [22] and Illumina HumanMethylation450 Bead-
Chip array [23] data have ~2 million data points and
~450,000 probes, respectively, these distances were
binned in 500 bins, resulting in as little as single base-
pair bins for the smallest distances, where we expect the
largest correlations. We randomly sampled within bins
with replacement and found the Pearson correlation be-
tween the transformed p-values. This process was re-
peated 500 times and the average correlation was
associated with the bin. The results from a correlation
matrix using DNA methylation from the 7. gondii HFF
data set indicate, as expected, that the estimated correl-
ation is generally higher between p-values close to one
another, and that it tends to decrease with distance
(Fig. 2). Even when these correlations are small, it is in-
appropriate to ignore them completely, and this calcula-
tion is necessary to account for the background
interdependence of effects.
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Fig. 2 Monte Carlo simulation of correlation matrix for DNA
methylation. The average Pearson correlations as a function of distance
separating adjacent effects for DNA methylation in the T. gondii HFF data
set. As expected, there is general decrease in the correlation of DNA
methylation values as the distance between assayed sites increases
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Having determined a correlation matrix, X, that is
symmetric, positive, and definite, we can determine an
upper triangular matrix with positive diagonal entries
using the Cholesky decomposition, C;, so that X; =C§CL7,
and this decomposition can be used to adjust the
previously transformed p-values Z;, where Z;; = o1 -

Pii/2), such that [16]:
15— Pijk .
oo (1) -7 .

Through this method the correlated Z,, and Z, for m = n
are now approximately independent and can be combined
as independent experiments. The Cholesky decomposition
is discussed in greater detail in Additional file 1.
Additionally, SMITE employs MCMs to estimate the distri-
bution of the combined statistics so that the new p-values
can be thought of as completely new heuristics indicating
confidence in a particular p-value, Z;‘/k.

An aggregated score, Ry, is calculated using the
weighted Stouffer’s method:

N
E _ Wik
_ Lak=1 ik N

k
2
Zi: 1Wiik

R; (0,1)

(3)

where w;; represents optional weights such as dis-
tance from the gene transcription start site (TSS)
[24]. An analysis where no weights w;; are used is
shown in Additional file 1: Figure S2 where an R*=
0.99 between final scores with and without weighting and
nearly identical final modules and annotations in
Additional file 2: Tables S14—S15, indicate that SMITE is
robust for choices of w;;. In a high-resolution epigenomic
assay like HELP-tagging, it is possible to have as many as
~2000 data points (p-values) associated with a large region
like a gene body. Because aggregated scores increase as
the number of p-values within a genomic interval
increases, SMITE implements a quantile-permutation
adjustment, whereby a specific R;; is compared to 100
distributions of randomly sampled R’; scores from the
same N;; quantile. We estimate p*;, the proportion of
sampled R’; scores at or more extreme than the
observed R;; and p*;, the average of the proportions from
random samples. Finally, we consider R;;=® “1(1- 7%
with an effect direction (e.g. less or more DNA methyla-
tion) derived from the p-value effect sizes. The improve-
ment after controlling for the number of combined p-
values on the combined significance can be seen before
and after adjustment (Fig. 3).

Normalization of aggregated p-value-derived scores
We found that despite each component score R;; being
normalized for the number of combined p-values, a
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Fig. 3 The effect of adjustment by the total number of combined P-values. In this example taken from the T. gondii HFF data set, the negative
natural log of the significance of the combined p-value is plotted against the number of p-values that were combined for each value. The
increased trend is visible before adjustment (feft) and is no longer present after adjustment (right)

slight difference in the distribution of one component
can drive downstream scores and bias module detection.
To resolve this potential limitation, we implement a
normalization step that results in more comparable
component scores, Ry, for all genes (i in 1,2,...I). There
are two methods available for normalizing scores de-
pending on the distribution of the combined p-values
and both represent monotonic transformations preserv-
ing the order of the scores. The first available method is
a logit transform of the p-values, followed by rescaling
to a common scale and then recovering the adjusted
p-value. This method has minimal effects on the
actual data, but it successfully improves the overall
distribution and comparability of the different types
of data (Fig. 4). The second available method is a
variation on Box-cox transformations where an iterative

process identifies an optimal power transformation of
the data.

The comparison of R; (e.g. the gene expression
scores compared to the gene promoter DNA methyla-
tion scores for the same gene) can provide useful
information about the overall observed trends. Here, we
show a comparison of the gene promoter scores with
gene body scores for DNA methylation and DNA
hydroxymethylation in the T. gondii HFF data set, and
we can see that hypo-hydroxymethylated gene bodies
are associated with hypo-hydroxymethylated promoters
(Fig. 5).

Final score derivation for downstream analysis
Finally, we derive a single score for each gene, G;, using
the Stouffer method again, with optional weights w.; for
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Fig. 4 Normalization of combined p-value scores. The densities of the scores/p-values for the T. gondii HFF data set are plotted using the SMITE functions to
compare each of the annotated contexts to determine if normalization is necessary (left). After normalizing the values by logit transformation, rescaling, and
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Fig. 5 Epigenetic modifications at promoters compared with gene bodies. Using the SMITE functions, we show a comparison of the component
scores (the —In (p-value) version of the Score) and the effect direction for gene promoters and gene bodies in the T. gondii HFF data set. For DNA
methylation (feft), there is not a large relationship between scores and directions of scores between promoters and bodies, whereas for DNA

hydroxymethylation (right) there is a concordance of loss of hydroxymethylation in promoters and gene bodies

each R; reflecting the researcher’s main analysis goals
(e.g. increased weighting for gene expression and DNA
methylation at gene promoters), including a directional-
ity coefficient B.; reflecting a researcher’s a priori under-
standing about the relationship between each R, (e.g.
increased DNA methylation at a gene promoter is corre-
lated with decreased gene expression [25]). Because the
combined score represents linear combinations of
weights and transformed p-values, we again use MCMs
by bootstrapping to determine a new adjusted p-value
for each gene, p;. Scores for each gene are then calcu-
lated using Fisher’s method as G;=-2/n(p;), which has
an approximate Chi-square distribution with 2° of free-
dom. High scoring genes can be used for other analyses
such as Gene Set Enrichment Analysis [26] and
network-based approaches.

To explore the impact of weight choice for each R.; on
downstream analysis, we fixed the weight values w.; for j
in 1,2...], varied the one individual weight w.,,,, for m not
in {1,2...J} and for each variation, we extracted the
highest scoring genes using a sampling approach with
replacement to determine the background score distri-
bution. This analysis allowed us to assess how individual
gene’s scores varied with weight choice, and to what ex-
tent the overall high scoring geneset was altered in
Additional file 1: Figure S3. As expected, we observe that
as the relative weighting increases, the effect of each R.,
on the overall identified geneset is greater; however,
roughly 50% of the identified genes remain constant,
likely depending mostly on other R for m #j for their
overall scores. For each R.,,, as w.,, increases, a different
subset of genes emerges that likely depends on R.,, (ie.
there are associated significant p-values). Ultimately, we
believe this flexibility in identified genes is a strength of
the technique as it allows the researcher to identify a

subset of genes that is robust to weight choice, but also
allows for overall gene sets that differ depending on R,;
of interest.

Module identification within SMITE

In SMITE, modules are identified by inputting scores
into a spin-glass algorithm as in Epimods [27] or a heinz
algorithm [28] as in BioNet [29]. The spin-glass algo-
rithm in network analysis was initially suggested by
Reichardt and Bornholdt [30] who sought a method of
defining subsets of nodes within a network that were
more densely interconnected, suggesting that these rep-
resented a joint spin state, or community. They pro-
posed that the relative density of the connections, called
modularity, could be compared to modularity under a
null distribution to derive significant communities
within a larger network. The spin-glass algorithm, which
depends on a single parameter [31], has been shown to
an effective method for finding modules as long as its
parameter is set below 0.6, and in fact, it was shown that
fixing this parameter at 0.5 results in an optimal number
of genes within a module [27]. Thus, SMITE also uses a
0.5 parameter for running the spin-glass algorithm.
Alternatively, the Heinz algorithm uses a linear pro-
gramming approach called branch-and-cut where con-
nections between nodes are converted to two directed
edges and trimmed until a single optimal subnetwork is
identified. Thus in practice, the Heinz algorithm
produces a larger summary subnetwork of genes that
typically encompasses the separate modules found using
the spin-glass algorithm.

Whereas other subnetwork identification algorithms
define significance on the basis of observed subnetwork
modularity (ie. connectivity), SMITE allows modules to
have both connectivity significance and an additional



Wijetunga et al. BMC Bioinformatics (2017) 18:41

associated statistical significance related to the sum of
the individual node within a module. Because our scores
are derived from p-values, we employ Fisher’s method
mentioned above to assess the overall module signifi-
cance, which should follow a Chi-square distribution
with 2 k degrees of freedom, where k is the number of
genes within a module (see Additional file 1:
Supplementary methods). Therefore, this significance
can be used to rank and filter modules.

Results and discussion

Integrative analysis increases study power

SMITE increases the power of analysis at four levels: (1)
by analyzing combined genomic signals from multi-level
genomics experiments and avoiding the inflated type I
error that characterizes pairwise comparisons of gen-
omic signals; (2) by combining incomplete data sets so
that having one missing signal will not eliminate a gene
from analysis; (3) by allowing prioritization of the most
important signals and genomic contexts (a subjective
criterion dependent on research goals) for further down-
stream analysis; and (4) by implementing methods to
analyze groups of genes within networks or pathways to-
gether. We have therefore designed SMITE to aid in the
interpretation of integrated data that were given rigorous
statistical treatment during upstream analysis. In the set-
ting of underpowered, preliminary research, SMITE is
better used as an exploratory tool to help target down-
stream analysis and plan further experiments.

SMITE identifies novel dysregulated functional modules in
T. gondii-infected human cells

In Additional file 1: Table S2, we show two sets of cri-
teria that we used to score the T. gondii HFF data called
reduced (SMITE-R) and full (SMITE-F) models that il-
lustrate how a researcher can use SMITE with varied
weighting to identify varied gene modules. The SMITE-R
model only includes gene expression and gene promoter
DNA methylation; whereas in the SMITE-F model also in-
cludes enhancer (active and poised) and gene body DNA
methylation and hydroxymethylation. We were primarily
interested in transcriptional regulatory alterations at
enhancers (histone H3 lysine 4 monomethylation,
H3K4mel) and how those relate to functional annota-
tions, so in SMITE-F, enhancer-defining marks were
weighted highest, followed by gene expression, gene pro-
moters, and gene bodies. As mentioned previously, we ex-
pect that DNA methylation should have a negative
correlation with gene expression at gene promoters [32],
and a positive correlation with gene expression at gene
bodies [33-35]. In contrast, for the purpose of this dem-
onstration, we do not assume any known relationship be-
tween DNA methylation at enhancers or for DNA
hydroxymethylation at any genomic feature. For both the
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reduced and full models, we ran the spin-glass and the
Heinz algorithms. For the spin-glass algorithm, we re-
quested modules that had at least 8 genes but no more than
100 genes. For the heinz algorithm, we input a subset of
high scoring genes identified by randomly sampling the
scores to find the background distribution. The R code that
we used is shown in Additional file 1: Appendix 1, and the
list of genes within the summary network generated by the
heinz algorithm is shown in Additional file 2: Table S11.
The effect of SMITE-R and SMITE-F model choices on
the overall scores is shown in Additional file 1: Figure S4.
Through the spin-glass algorithm, both SMITE-R and
SMITE-F identified 13 modules representing 528 and 510
genes, respectively (Additional file 2: Tables S5-S6), with
an overlap of only 94 genes. Notably, four and two of the 13
modules for SMITE-R and SMITE-FE, respectively, showed
enrichment for infection-related and inflammation-related
annotations, as would be expected for infection of a host cell
by an intracellular pathogen. In addition, we find that gener-
ally metabolism-related modules are dysregulated in five
and four of the 13 modules for SMITE-R and SMITE-E,
respectively, suggesting that host cell metabolism may be
altered after infection. For SMITE-R, two modules
enriched for cell cycle and apoptosis related effects
confirming prior observations regarding T. gondii infec-
tion in host cells [36—39]. In Fig. 6 we show one cell cycle
related functional module identified by SMITE-R that also
indicates altered MAPK signaling, a previously implicated
feature in toxoplasmosis of mice [40, 41] and humans
[42]. While it has been demonstrated that 7. gondii infec-
tion of human cells induces host cell cycle arrest at G2
[37, 38], the identified module indicates that 7. gondii may
accomplish this through combined epigenetic dysregula-
tion at promoters and transcriptomic dysregulation. In
SMITE-E three modules strongly implicate chromatin re-
modeling, epigenetic regulation of gene expression, and
detection of pathogen DNA in the cytosol, and in Fig. 7,
we show an identified module with multiple epigenetic
events at genes’ active and poised enhancers. Results
from the Heinz algorithm are concordant in showing
many cell cycle related pathways for the reduced
model and additional altered cell signaling pathways
in the full model (Additional file 1: Figure S5, Additional
file 2: Table S12—-S13). Therefore, SMITE analysis suggests
that T. gondii infection remodels the epigenome of the in-
fected host and alters host gene expression, impacting
host gene networks that regulate metabolism, intracellular
signaling, and cell cycle progression, and these findings
are part of a manuscript in preparation (Ulahannan et al.,).
To ensure robustness of results, we performed the analysis
twice more, and despite using random sampling proce-
dures at multiple points within SMITE, we obtained the
same modules and module significance each time,
indicating that SMITE results are highly reproducible.
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J

More detail about each module is given in Additional file
2: Tables S5-S6 and Tables S7-S9.

SMITE improves integrative genomics methods
We identified FEM and BioNet as computationally
efficient methods to identify gene modules, and we de-
signed SMITE to improve the gene scoring functionality
of these technologies. While SMITE can serve as a wrap-
per for module-identifying functions of FEM and
BioNet, there are several major shortcomings of these
approaches, which we have addressed with SMITE.
Although these improvements preclude a direct head-to-
head comparison of SMITE to other methods, a discus-
sion of these improvements illustrates the novel aspects
of SMITE as compared to state-of-the-art technology.
Both SMITE and BioNet use p-values as an input,
while FEM usually employs t-statistics that have been
averaged over a region near the transcription stat site
(TSS). By averaging t-statistics over a region directly
adjacent to the TSS, FEM does not preserve the biology
of epigenetic processes like DNA methylation that may
occur far from the TSS and may not occur equally
throughout a region. Though FEM is not limited to T-
tests, the algorithm assumes sample normality and uses

scaling of the relationship between DNA methylation
and expression by the ratio of the t-statistic variances —
a technique that is optimal for combining T-tests.
Therefore, FEM is only functionally optimal for analyz-
ing T-tests, which is often inappropriate in genomics
considering data distributions and the necessary adjust-
ments for confounders such as experimental batch ef-
fects [43]. Thus, the p-value is a more versatile input
because it can be derived from different statistical
methods depending on each individual experiment.

FEM can only integrate one epigenetic modification,
usually DNA methylation, with gene expression. If a re-
searcher wanted to compare multiple types of epigenetic
data with expression and with each other, it would
necessitate either pairwise comparisons between each
epigenetic dataset and expression, which would hinder
the overall study interpretation, or manual selection of a
single p-value for each gene, which would bias the find-
ings. Though BioNet allows several p-values to be asso-
ciated with a gene so that more than one epigenetic
modification could be integrated, it does not have an im-
plemented method to arrive at a single summary statistic
or p-value for the epigenetic modifications, again requir-
ing manual curating of the input data. To address these
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major shortcomings, SMITE uses a statistically sophisti-
cated aggregation and normalization algorithm that that
allows the user to input p-values and multiple genomic
intervals, thus allowing simultaneous comparison of
many types of data including, but not limited to, DNA
methylation, DNA hydroxymethylation, and ChIP-seq
peak data.

BioNet does not incorporate the effect direction its
scoring method, and FEM incorrectly assumes that the
epigenetic modification statistic will always have an in-
verse relationship with gene expression, which oversim-
plifies the complexity of gene expression regulation. To
address this limitation, SMITE is novel in allowing the
user to adjust the directionality of an epigenetic modifi-
cation’s relationship with gene expression in a genomic
context-dependent manner.

In addition, FEM has a very specific input structure
that requires rows of the DNA methylation data, expres-
sion data, and graph objects to have matching Entrez
gene ids. Unfortunately, this may not be straightforward
to assemble and will negatively select genes that only
have partial data (e.g. having only gene expression or
only DNA methylation) or are not part of an interaction
network. Functionally, each FEM analysis becomes cen-
tered around the nodes that are still available in a spe-
cific interaction network instead of centered around

high scoring genes regardless of missing data. BioNet
employs non-parametric order statistics that ignore
missing data. Because SMITE uses a combined p-
value for each node, it does not specifically require a
high scoring node to have complete data. SMITE is
also not limited by gene annotation (e.g. Entrez,
Refseq) as a consistent set of identifiers is used. Thus,
SMITE allows for missing data and flexibility of gene
annotation.

Finally, FEM and BioNet rely on ranking genes based
off the sum of their DNA methylation and gene expres-
sion statistics and a combined p-value, respectively. In
contrast, SMITE is novel in allowing users to input a
prioritization of genomic contexts relative to one an-
other so that the identified functional modules reflect
the researcher’s goals or intuition. Therefore, the find-
ings in SMITE are more robust for novel pathway dis-
covery and exploratory analysis.

Comparison of modules detected using SMITE and FEM

Though SMITE and FEM are not directly comparable,
having shown that SMITE can identify functionally im-
portant modules within the T. gondii HFF data set, we
aimed to demonstrate that SMITE-identified modules
are not the same as those identified by FEM. Addition-
ally, because the spin-glass algorithm can identify several
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modules compared to a single module in BioNet, a com-
parison of the multiple identified modules between
SMITE and FEM allows more resolution. To compare
SMITE and FEM, we used the criteria defined in the
FEM vignette to associate genes with DNA methylation.
We calculated t-statistics with four degrees of freedom
for gene expression and DNA methylation analysis, and
we associated DNA methylation with genes by: 1) taking
the average of all effects within 200 bp from a gene tran-
scription start site (TSS), 2) if no effects were found, tak-
ing the average of effects over the first exon, and 3) if no
effects were found, taking the average over 1500 bp
around the TSS. The R code that we used to run FEM is
shown in Additional file 1: Appendix 2. The high-
scoring genes identified by the three models (SMITE-F,
SMITE-R and FEM) are listed in Additional file 2: Table
S3. We compare the FEM model with the SMITE-R
model, which is directly comparable because it equally
weights gene expression and promoter DNA methylation
and in opposite directions, and the SMITE-F model,
which incorporates additional information regarding
gene enhancers.

We used the DoFEM.bi function in FEM with the de-
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Using FEM we identified 7 modules that have between 8
and 100 genes (Additional file 2: Tables S4 and S7). In
summary, FEM implicated 175 genes, only 8 of which
overlapped those identified with the reduced SMITE
model and 23 of which overlapped those identified by
SMITE-F (Fig. 8a). Therefore, since SMITE-F identified
modules represent combined gene expression and DNA
methylation and DNA hydroxymethylation at enhancers,
and the SMITE-R and FEM-identified modules only
focus on DNA methylation at gene promoters and ex-
pression, the techniques appear to identify largely differ-
ent modules and genes. Additionally, SMITE-R and
FEM models appear to also identify mutually exclusive
genes. Though FEM does not have an implemented
method to examine further pathway annotations, we an-
notated it using GoSeq and compared enriched path-
ways. In Additional file 2: Table S10, it is apparent that
all three models enrich for metabolism, signal transduc-
tion, and the immune system to some extent; however,
while FEM and SMITE-R model enrich for cell cycle
regulation, only the SMITE models indicate transcrip-
tional regulatory processes.

We then examined how each technique was able to

fault settings provided in the FEM package vignette. enrich for high scoring nodes within identified
a Comparison of implicated genes within modules
FEM
144
23
> (0]
426 94 393
SMITE-reduced model SMITE-full model
b Densities of scores for all genes and genes implicated by modules
SMITE full model SMITE reduced model FEM
s
o Mean Sampled KS-test Mean Sampled KS-test Mean Sampled KS-test
p=0.00001 p=0.0001 p=0.21530
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Fig. 8 SMITE comparison with FEM. a An Euler diagram showing that no genes were found by all three models: FEM, SMITE-R, and SMITE-F.
SMITE-F and SMITE-R overlap much more than either do with FEM. b A comparison of the densities of all scores compared to genes identified
within modules by SMITE-F (left), SMITE-R (middle), and FEM (right), indicating that there is a statistically significant enrichment for high scoring
genes using SMITE even when using the reduced model
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functional modules. In Fig. 8b we compare the density
of all scores compared to the density of scores for genes
within modules for FEM, SMITE-R and SMITE-F.
SMITE-R and SMITE-F have a statistically different dis-
tribution (simulated Kolmogorov-Smirnov (KS) test p =
0.00001 and p = 0.00001, respectively) of enriched genes
compared to all scored genes whereas FEM contains the
equivalent of a random sampling of scored genes
(Kolmogorov-Smirnov test p = 0.2153). The derivation of
the KS-test significance for these tests is shown in
Additional file 1: Figure S6.

Finally, in Additional file 1: Figure S7 we show the re-
lationship between high scoring genes and the number
of p-values associated with those genes. Because the
FEM input involved averaging p-values in discrete re-
gions around the TSS, the highest scoring genes in FEM
tend to be biased by having more associated p-values
when compared to high scoring genes in the full-SMITE
model (KS test p < 107'?).

The limitations of FEM make it impossible to per-
form a head-to-head comparison with SMITE to iden-
tify simulated effects occurring at putative enhancers
and incorporating DNA hydroxymethylation. Never-
theless, assuming the existence of true functional
modules that represent interconnected genes that are
dysregulated by common epigenetic mechanisms
within a pathway, SMITE enriches for genes that are
high scoring and is, therefore, very sensitive and spe-
cific. In contrast, FEM modules will tend to have
many low scoring nodes, which may indicate that
FEM is not as sensitive, or there may be many more
false positives within FEM modules. FEM genes are
also biased by having a higher number of associated
p-values. Therefore, we conclude that the heuristic
used to prioritize genes in SMITE employs a robust
algorithm that integrates multi-level genomics find-
ings and can identify novel functional modules that
are both focused and meaningful.

Conclusions

Current genomic experiments are underpowered to
detect genomic events comprehensively within a net-
work, and a functional module identified by SMITE is
implicated by the cumulative evidence of varied input
data over all of its members. Modules implicate
potentially important network members for which
there may be no statistically significant evidence.
Thus, SMITE is a discovery platform to integrate
multi-level genomic observations that represents a
significant improvement over existing integrative
genomics approaches. Through SMITE, researchers
can increase study power to find a single set of inter-
pretable results integrating epigenomic and transcrip-
tomic data sets.
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