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Abstract

Background: Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better
understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes,
codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies.
Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree
methods discards valuable information and can disquise potential methodological problems. Discovery of efficient and
accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among
these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and
potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets.
We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship
among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial
genome alignments. We test the performance of these dimensionality reduction methods by applying several
goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether
projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different
data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented.

Results: Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the
best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments
and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged
at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA
alignments that 3D projections significantly increase the fit between the tree-to-tree distances and can facilitate
the interpretation of the relationship among phylogenetic trees.

Conclusions: We demonstrate that the choice of dimensionality reduction method can significantly influence the
spatial relationship among a large set of competing phylogenetic trees. We highlight the importance of selecting
a dimensionality reduction method to visualize large multi-locus phylogenetic landscapes and demonstrate that
3D projections of mitochondrial tree landscapes better capture the relationship among the trees being compared.
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Background

The rapid increase in the availability of genomic-scale
multiple sequence alignments covering diverse sets of
taxa offers new and exciting opportunities for those
seeking to understand the processes and patterns of mo-
lecular evolution and brings us a step closer to solving
such grand challenges as assembling a Tree of Life. In
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practice however, regions (e.g., genes, codons, and struc-
tural features) of large multi-source data sets seldom
support a single phylogenetic tree. More often than not,
we are left to sort through hundreds if not thousands of
competing phylogenies. Different data partitions may
support different phylogenies because reconstruction
methods sometimes fail to adequately accommodate
process heterogeneous underlying data partitions found
within an alignment [1-4] or because some data parti-
tions simply do not share the same evolutionary history,
(see Maddison [5] and references cited therein). Further-
more, large data sets are typically more computationally
challenging to analyze and often call for more extreme
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heuristic shortcuts, which may fail to converge to a global
optimum [6]. Therefore, visually representing the similar-
ity or dissimilarity among competing phylogenic trees
supported by different genes or by other a priori defined
data partitions in 2 or 3-dimensional space is a potentially
powerful way for investigators to gain a better perspective
on the problems sometimes associated with the analysis of
large multi-source data sets [7].

To date, the typical approach used to summarize a set
of phylogenetic trees is to create a single consensus tree
from the set of competing trees, in which the vertices of
the consensus tree are only retained if they are shared
by a majority of the trees contained within the set of
candidate trees. Phylogenetic network [8] and maximum
agreement subtree [9] methods also result in concise
summaries for sets of conflicting trees whether the
conflicts are caused by reticulate events or by modeling
errors. These methods, while easy to interpret, lack in-
formation regarding the distribution and relationship
among the candidate trees. Refinements to the consen-
sus tree approach have been made by applying clustering
methods to identify subsets of related phylogenies con-
tained within the larger set [10]. An appealing aspect of
this method is that it can be used as an objective means
to identify discontinuities in the distribution of candidate
phylogenetic trees or the phylogenetic landscape. How-
ever, the clustering approach still discards a great deal of
information and lacks the fine-grain perspective needed
to infer the cause of the discordance among the compet-
ing trees.

Motivated by the inherent limitations of the consensus
tree approach, Amenta and Klinger [11] applied a dimen-
sionality reduction method that they referred to as “itera-
tive Multidimensional Scaling (MDS)” to display tree-to-
tree distances in a 2-dimensional space. The practice of
visually representing sets of competing phylogenetic trees
in a geometric space can be separated into three major
and sometimes computationally intensive components: 1)
the selection of a set of phylogenic trees to be compared;
2) the calculation of pairwise distances between all mem-
bers of the set of selected phylogenetic trees; and 3) the
calculation of coordinates in 2 or 3-dimensional space,
such that the Euclidean distance between the projected
points closely corresponds to the original tree-to-tree dis-
tances. Hillis et al. [7] later applied the method developed
by Amenta and Klinger [11] to demonstrate how this ap-
proach could be used to explore tree islands, compare
trees from different data partitions, compare trees from
bootstrap samples with trees sampled from a Markov
Chain Monte Carlo (MCMC) simulation, and compare
trees from different MCMC simulations.

While the aforementioned authors did an excellent
job demonstrating the utility of this new approach,
they did not specifically address some key methodological
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questions specifically related to mapping high-dimen-
sional data, in this case tree-to-tree distance, into a lower
dimension for visualization. In this study we specifically
address some of these unanswered questions by applying
several Nonlinear Dimensionality Reduction (NLDR) [12]
methods to the problem of visualizing large sets of phylo-
genetic trees obtained from the analysis of whole mito-
chondrial DNA (mtDNA) genomes. The performance of
these methods is evaluated relative to others and to the
method introduced by Amenta and Klinger [11].

In addition, we estimate the intrinsic dimensionality of
large collections of mtDNA gene trees in order to better
understand whether viewing the relationship among
phylogenetic trees in 3D is warranted. Finally, we intro-
duce ways to compare projections obtained from unre-
lated alignments so that we might better understand the
biological processes and methodological biases associ-
ated with the inference of phylogenetic trees. Correctly
characterizing phylogenetic tree-space by dimensionality
reduction methods is critical if this approach is to be of
value as an interpretive or a diagnostic tool for detecting
problems with substitution models or tree searching
strategies.

Methods

Genomic data and phylogenetic analyses

Aligned whole mitochondrial DNA (mtDNA) genomes
were obtained from three published studies representing
Fishes (90 sequences) [13], Mammals (89 sequences)
[14], and Salamanders (42 sequences) [15]. The software
package PAUP* 4.0b10 [16] was used to perform 100-
replicate nonparametric bootstrap analyses [17] on each
of 15-gene partitions contained within each of the three-
mtDNA alignments. Hereafter we will refer to the non-
parametric bootstrap analyses as the bootstrap analyses.
The maximum likelihood (ML) criterion and a heuristic
search [neighbor joining starting tree, Sub-tree Pruning
and Regrafting (SPR) branch swapping with a recon-
struction limit of 10] were used to select optimal phylo-
genetic trees for each bootstrap replicate. Parameters of
the ML model (i.e., nucleotide substitution rates, base
frequencies [18], and an among site rate heterogeneity
parameter [19]) were independently optimized for each
gene partition on a neighbor joining tree constructed for
each gene partition. A special purpose script [20] was
used to distribute phylogenetic analyses in parallel on
FSU’s shared HPC system.

Phylogenetic analyses as described above were also
performed on a test data set consisting of 15 partitions
equal in size to the original gene partitions found in the
Salamander data set. The 15 test partitions were com-
posed of characters (i.e., columns in the multiple se-
quence alignment) selected at random but in proportion
to their occurrence in the original Salamander mtDNA
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genome alignment. Therefore, the partitions within the
newly compiled test data set only differ from one
another by sampling error and by size (i.e., number of
columns). The test data set was intended to serve as a
null data set in which any patterns observed in subse-
quent NLDR projections could only have resulted from
sampling error and the size of data partitions.

Tree-to-tree distances

A set of trees was compiled for each of the three mul-
tiple sequence alignments by taking the union of the
bootstrap trees obtained from the analyses of the 15 in-
dividual gene partitions (Table 1). The Robinson-Foulds
[21, 22] distance (RF-distance), as implemented in the
software package PAUP* 4.0b10 [16], was used to meas-
ure the topological difference between all of the trees in
each of the three concatenated sets of trees. The RF-
distance counts the number of bipartitions that are
present in one but not both trees being compared and is
a commonly used tree-to-tree distance metric. We also
calculated the geodesic distance [23] for each of the
three-mtDNA data sets to determine whether the under-
lying distance metric had an impact on the results
related to the NDLR methods or the dimensionality
estimates implemented in this study. The geodesic is
sometimes preferred because this distance naturally in-
corporates both the tree topology and branch (edge)
lengths. Only the results using the RF distance are

Table 1 Characters per gene partition for each mtDNA data set

Gene Fishes Mammals Salamanders Test
ATP8 939(156) 362(164) 783(162) 768
NDAL 1362(285) 1056(290) 378(279) 271
ND3 690(339) 1559(347) 355(330) 236
coll 444(690) 433(682) 196(681) 121
ATP6 415(657) 540(708) 156(681) 111
COlll 643(783) 554(786) 149(783) 114
125 256(693) 219(787) 119(809) 107
ND1 507(933) 170(969) 111(957) 107
ND2 371(990) 129(1048) 111(1014) 105
CytB 235(1164) 95(11 s40) 122(1131) 107
16S 205(922) 146(1199) 106(1260) 103
tRNAs 162(1152) 146(1339) 108(1274) 101
ND4 219(1371) 150(1384) 108(1332) 104
col 386(1539) 228(1542) 106(1548) 102
ND5 188(1632) 114(1801) 103(1734) 102
Total Trees 7022(13,306) 6001(14,186) 3011(13,975) 2559

The number of unique ML bootstrap topologies (100 replicates, GTR + )
retained for each of the 15-mtDNA gene partitions for each of the three- mtDNA
alignments. The number of nucleotides representing each gene partition is given
in parentheses. Gene partitions are sorted in ascending order of their size. Charac-
ters for each test partition are selected at random but in proportion to the size of
each partition from the original salamander alignment
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presented here because choice of distance did not alter
our conclusions. The resulting RF distance matrices were
used for all subsequent NLDR analyses described below.

Intrinsic dimensionality measures

The utility of phylogenetic landscapes generated by di-
mensionality reduction methods depends on whether
there exists a reliable representation of the tree-to-tree
RF-distances in 2 or 3-dimensional space. For example,
[7] demonstrated a simple case where the projection of
3D data into a 2D space is distorted in such a way that
the original relationship among data is lost and subse-
quent interpretations of the 2D projection will be mis-
leading. This result could also be obtained for higher
dimensional data projected into either a 2D or 3D space.
Whether the RF-distances for the three-mtDNA data
sets used in this study suffer from the “curse of dimen-
sionality” can, to a limited extent, be evaluated by esti-
mating the intrinsic dimensionality of the tree-to-tree
RF-distances. The intrinsic dimensionality of a data set
can be thought of as a measure of the number of vari-
ables required to represent the original distances [12].

If the intrinsic dimensionality of the RF-distances is
three then we should be able to represent these data in a
3D space with very little to no distortion. Alternatively,
if the intrinsic dimensionality of the distances is greater
than three then we will necessarily have to discard some
information in order to visualize the data set. Whether
the discarded information results in distortions that mis-
lead our interpretation cannot be fully answered, except
perhaps by a subjective evaluation of the projection. We
employed four different methods to estimate the intrinsic
dimensionality of the RF-distances using the Treescaper
software package [24]; Correlation Dimension [25, 26], a
maximum likelihood estimator [27], a Nearest Neighbor
estimator [28] and by examining the final value of the
NLDR cost function versus the dimension to which the
data was reduced [12]. These methods are described in
the Additional file 1.

Methods of dimension reduction and evaluation

The NLDR methods evaluated in this study consist of
two major components; 1) a stress function, which is an
objective function used to evaluate embeddings of the
RF-distances in lower dimensions, and 2) an algorithm
used to optimize the stress function. The stress func-
tions are Normalized stress [29], Kruskal-1 stress [30],
Sammon’s stress, also known as the nonlinear mapping
(NLM) stress [31], and Curvilinear Components Ana-
lysis (CCA) stress [32]. The optimization algorithms are
majorization, Gauss-Seidel-Newton, stochastic gradient
descent, and MCMC simulated annealing. To better
understand how each of these constituent components
contributes to the overall performance of the NLDR
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method we implemented in the software package Trees-
caper [24] 14 of the 16 possible combinations of the
four-optimization algorithms and four stress functions
for reasons discussed in the Additional file 1: Appendix.

When implementing each pairing of stress function
and optimization algorithm, efficiencies specific to the
pair were exploited. The details of stress functions,
optimization algorithms, and implementation consider-
ations are presented in the Additional file 1: Appendix.
The values obtained by different stress functions cannot
usefully be compared directly, therefore several goodness
of fit measures were used to evaluate how well each of
the four stress functions were at characterizing the
original RF-distances. They are 1 Nearest Neighbor
(INN) [33], Continuity [34], and Trustworthiness [34].
Details of each goodness of fit measure are presented in
the Additional file 1: Appendix.

Results and discussion

Phylogenetic analyses

The number of bootstrap trees (i.e., the “raw data” of
our subsequent analyses) representing each gene parti-
tion varied from between 103 and 1559 (Table 1). In
general, shorter gene partitions (i.e, partitions with
fewer nucleotide characters per sequence) are repre-
sented by more bootstrap trees [35, 36]. The inverse
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relationship between gene partition length and number
of bootstrap trees suggests that shorter gene partitions
do not have a sufficient number of informative charac-
ters for the analyses to discriminate among competing
tree topologies.

Not only are more trees retained by bootstrap analyses
of shorter gene partitions, but the mean RF-distance
among trees from shorter partitions is generally greater
then the mean RF-distances among bootstrap trees from
longer gene partitions (Fig. 1). This relationship was also
observed in the test (“Shuffled”) data set (Fig. 1), where
partitions equal in size to those in the original salaman-
der alignment were created by selecting characters at
random from the entire salamander genome. By hom-
ogenizing the mtDNA characters from the 15 gene parti-
tions over a range of partition lengths we were able to
evaluate how partition length influences mean RF-
distance. The relationship between partition length and
the number and distance among bootstrap trees is ger-
mane to this work because it begins to shape what we
might expect to observe when the RF-distances are
plotted as tree landscapes using NLDR methods. For ex-
ample, based solely on the length of a data partition, we
will expect to see a greater number of more widely dis-
tributed trees from the bootstrap analyses of smaller
gene partitions (Fig. 2a). Additional structure or patterns
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Fig. 2 Phylogenetic landscape of shuffled versus unshuffled mtDNA data. Projections of the RF-distances among bootstrap trees from separate
analyses of 15 mtDNA data partitions from within the (a) the test data set generated by shuffling columns in the original Salamander alignment
and (b) the original salamander mtDNA alignment [15]. Colors correspond to the bootstrap trees found by each separate data partition analysis

in the NDLR plots will either be attributed to our nu-
cleotide substitution models failing to accommodate the
underlying process heterogeneity associated with each of
the 15 gene partitions or our tree searching methods
systematically failing to converge.

The bootstrap analysis, as applied in phylogenetics,
uses randomly selected columns from the original
multiple sequence alignment to generate new charac-
ter matrices, which are then used to infer optimal
tree topologies [17]. If all, or most of the characters
contained within a given gene partition support the
same phylogeny, then each bootstrap replicate data

set will unambiguously support a single tree topology.
This level of congruence rarely occurs in real data
sets, however. Bootstrap analyses typically result in a
group of related trees, which in effect represent a
confidence interval around the evolutionary history of
that gene partition [2, 37]. By concatenating all trees
from each of the separate bootstrap analyses, calculat-
ing their pairwise RF-distance, and projecting these
distances in 2 or 3D space we can at once see the re-
lationship among the trees from the separate gene
partitions [7]. If our nucleotide substitution models
and tree searching methods worked perfectly then the
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bootstrap trees from each mtDNA gene partition
would mostly overlap because the gene partitions are
physically linked on the mtDNA genome and therefore
must share a common history. It is generally accepted
that our models and methods are not perfect [6]; there-
fore, it should come as no surprise that trees from
within a given bootstrap analysis are more similar to
one another than are trees from different bootstrap
analyses and a NLDR method should clearly show these
clusters of related gene trees (Fig. 2b). Failure of an
NLDR method to show clusters of related trees could
mislead practitioners to believe that their choice of tree
reconstruction method correctly compensated for
process heterogeneity. The ability of the NLDR
methods to preserve these sub-clusters of related RF-
distances contained within the concatenated bootstrap
trees will, in large part, be used as the means by which
we visually evaluate the success of an NDLR method.

Intrinsic dimensionality of tree-to-tree distances

We used four different methods to estimate the in-
trinsic dimensionality of each of the three tree-to-tree
distance matrices generated from the concatenated
bootstrap analyses. Our estimates of the intrinsic
dimensionality for each data set varied from between
3 to 15-dimensions (Table 2). These estimates show
that the use of 3D projections is warranted for view-
ing the mtDNA tree landscapes in order to minimize
loss of information and to preserve the relationship
among bootstrap trees suggested by the RF-distances.
Plotting the CCA stress as a function of dimensions
shows that using more than 15 dimensions does very
little to improve the fit of the projected distances
with those obtained using the RF-distance metric
(Fig. 3). While most of the estimates of intrinsic
dimensionality suggest that viewing the distances in 2
and 3D will result in some distortion of the relation-
ship among the RF-distances, it is less obvious as to
whether this distortion can impact our interpretation
of how the trees are related. For example, 2 and 3 di-
mensions may adequately characterize the relative po-
sitions of clusters of gene trees to one another, while

Table 2 Dimensionality of tree-to-tree distance matrices

Measure Fishes Mammals Salamanders
NN 337 341 3.94

COR 14.35 .77 527

ML 6.61 6.21 7.33

Visual Inspection 15 15 7

The intrinsic dimensionality of each tree-to-tree distance matrices, where NN
Nearest Neighbor estimator [28], COR Correlation Dimension [25, 26], ML Max-
imum Likelihood estimator [27], and “Visual Inspection” is based on results
from Fig. 3 [12]
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perhaps failing to more completely capture the rela-
tionship among the trees within each sub-cluster. Fur-
thermore, other methodological considerations may be
of as much or greater significance concerning the
preservation of the original RF-distances. For example,
we will demonstrate in the next section, that the
choice of NLDR method can also significantly influ-
ence how trees are displayed in 2 and 3D and the
choice of NLDR method may do more to distort or
obscure the true relationship among large sets of
trees than the number of dimensions into which they
are projected.

Nonlinear dimensionality reduction

In order to better understand the effect of each constitu-
ent component of the NLDR analysis, the results from
14 of the 16 combinations of cost functions and
optimization algorithms were evaluated. The combin-
ation of Majorization with CCA and Gauss-Seidel with
CCA were not included for the reasons discussed in the
Additional file 1: Appendix. The combination of SGD
with the Kruskal-1 stress function was replaced by
Kruskal-1 with a fixed-step classical deterministic stee-
pest descent iteration, i.e., the step was not chosen to
guarantee a true descent step, for the reasons also dis-
cussed in the Additional file 1: Appendix. This iteration
is called Linear Iteration in [11] and will be so-called in
the following discussions and figures. Each combination
of cost function and optimization algorithm was run 10
times for each data sets using a different set of initial
conditions. Like phylogenetic tree searching, NLDR is
non-convex. By including results obtained from multiple
starting points we are able to measure how results vary
from one iteration of the same analysis to the next. We
report the means and standard errors calculated using
all ten iterations. Lastly, and perhaps most importantly,
we visually compare the resulting projections to under-
stand the extent to which the different NLDR methods
influence our interpretation of the tree landscapes. For
example, if a projection is deemed a better representa-
tion of the RF-distances by one or more of our objective
measures, we want to know if it is possible to visually
discriminate among the projections.

All of the NLDR analyses that we evaluated took be-
tween four and 230 min to converge on local minima
(Fig. 4). Our results show that on average the SGD algo-
rithm converges faster than did the other optimization
algorithms over all of the cost functions and each of the
three mtDNA data sets. There is no clear trend among
the three data sets as to which of four optimization algo-
rithms converged most rapidly for the Kruskal-1 cost
function. From a practical standpoint, these results are
encouraging because they suggests that large data can be
projected in 2- and 3D within a reasonable timeframe
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using the methods discussed herein. Furthermore, algo-
rithmic refinements and some recently developed paral-
lel NLDR implementations [38] promise to further
improve run times and thereby will increase the practical
potential of this general approach.

Time to convergence is only useful in light of how
well each of the optimization algorithms is able to
minimize their respective cost functions. For example,
majorization took the longest time to minimize the

Kruskal-1 cost function among all the other optimization
algorithms that we compared (Fig. 4); however, major-
ization converged on a value that was as low or lower
than most of the other optimization algorithms for
each of the three data sets (Fig. 5). The Normalized
and Nonlinear Mapping raw stress values are nearly
identical for each of the optimization algorithms com-
pared (Fig. 5) indicating that per unit time the SGD
optimization algorithm is more efficient at minimizing
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these cost functions (Fig. 4). The raw stress for CCA
was not plotted because this cost function contains a
weighting function, which is used to preserve the
relationship among local distances, but as a conse-
quence makes it impossible to meaningfully compare
the raw stress values from one CCA analysis to the
next. Overall, SGD when used in conjunction with
CCA converged faster than all other combinations of
optimization algorithm and cost function (Fig. 4).

We evaluated the relative performance of each cost
function using three measures of goodness of fit. These
measures provide a common objective function that can
be used to evaluate how well each projection preserves
the relationship among the bootstrap trees as suggested
by the original RF-distances. We chose to evaluate the
projections with the lowest stress value for each cost
function no matter which optimization algorithm was
used to obtain it. In this way we restricted our compari-
sons to the best representation of the cost function given
the optimization algorithms that were included in this
analysis. According to both the 1-NN [33] and Trust-
worthiness [34] measures, the CCA cost function best
preserves the relationship among all three of the ori-
ginal distance matrices. The CCA cost function also
ranks highly among the cost functions preserving con-
tinuity, whereas Kruskal-1 ranks lowest among all three
data sets. That CCA performs well according to all
three measures of goodness of fit is not surprising. The
RF-distance matrix contains groups or clusters of re-
lated distances that correspond to the bootstrap trees
obtained from the independent analyses of 15 mtDNA
genes. The flexible weighting function (F-lambda)
included in the CCA method allows for tearing of the

distance manifold [12] such that closely related REF-
distances are drawn closer (i.e., continuity) without
drawing more distant pairs closer (i.e., trustworthiness)
to one another compared to how they are represented
in the original distance matrix.

The choice of cost function and optimization algo-
rithm used to project the RF-distances in 2 and 3D
space significantly impacts the visual interpretation of
the projected RF-distances. More importantly, it was
not necessary to visually compare extreme cases to
detect these differences. For example, Fig. 6a was cre-
ated by using CCA plus SGD and represents the best
projection of the mammal mtDNA bootstrap trees as
judged by all three of the goodness of fit measures
(Fig. 7). Changing the optimization algorithm for the
CCA cost function to that which performs second
best (MCMC) we see a loss of continuity among re-
lated groups in Fig. 6b for trees that are tightly
grouped in plot A (e.g., see COIII trees). Furthermore,
it is impossible to discriminated among some groups
in Fig. 6b because many of the points are superim-
posed. Projections of the second best performing cost
function and the SGD optimization algorithm (Fig. 6c),
as judged by the goodness of fit measure, also gives a
picture that lacks continuity when compared to
Fig. 6a.

While the choice of optimization algorithm and cost
function make a noticeable difference in the projection
of mtDNA distances, different initial conditions for a
given method are difficult to discern. For example,
Fig. 6a and D represent two non-equivalent projections
using the same cost function and optimization algo-
rithm but a different set of initial conditions. We used
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Fig. 6 Phylogenetic tree landscape by NLDR method. Projections of RF-distances representing the concatenated bootstrap trees from 15 mammal
mtDNA genes. Colors represent mtDNA bootstrap trees. Projections correspond to following cost function and optimization algorithm; a CCA plus
SGD, b CCA plus MCMC, ¢ NLM plus SGD, and d an alternative minima of CCA plus SGD

the ordinary Procrustes analysis to characterize the dis-
similarity among the ten projections obtained by using
different initial conditions for a given combination of
cost function and optimization algorithm. The Procrus-
tes analysis leaves us with differences that have been
adjusted for translation, rotation, and scale. Two pro-
jections are considered non-equivalent if the residual of

Procrustes analysis is very large relative to the others.
For the CCA plus SGD projections nine of the 10 pro-
jections were considered equivalent by this method and
those that differed are shown as Fig. 6a and d. While
Fig. 6a and d are considered to be non-equivalent by
the Procrustes, the clusters of related gene trees within
each plot are still well defined and also occupy similar
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Fig. 7 Goodness of fit. The mean goodness fit (with standard error bars) for ten initial conditions plotted for each cost function and data set
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positions with respect to one another especially when
compared to the two other projects, wherein a different
cost function (Fig. 6b) and a different optimization al-
gorithm (Fig. 6¢) were used.

Comparing tree landscapes

Hillis et al. [7] did a thorough job demonstrating a var-
iety of applications for phylogenetic trees projected into
a 2D space. In their exposition, they also briefly men-
tioned the idea of using ellipses to create 95% confi-
dence intervals around projected trees obtained by
bootstrap and Bayesian analyses. They did not imple-
ment this approach, however, citing potential interpret-
ation problems related to mapping high-dimensional
data into 2-dimensions and concerns about the statis-
tical interpretation of these projections. We share their
concerns, but also see the potential utility of an ap-
proach that attempts to visually relate a priori defined
set of points in an NLDR projection. To this end, we
implemented a method that encloses sets of points
representing bootstrap trees from gene partitions in a
convex hull. Visually grouping related trees in a convex
hull can make it easier to interpret the significance of
the size and relative position of clusters of trees in a
single tree landscape and can also facilitate compari-
sons of multiple tree landscapes generated from differ-
ent sets of taxa with similar data partitions (Fig. 8). In
order to see “interior” clusters we devised a method for
eliminating outlying trees from the set of points used to
create the convex hull and for drawing clusters apart to
reveal clusters located near to the graph origin (Fig. 9).
A point was considered an outlier and removed from a
set of points if the variance of the distance among all
points decreased by an arbitrary threshold value (set to
0.01 in Fig. 8) when the point was excluded from the
variance calculation. Changing the threshold value will
determine how aggressively points are eliminated from
a set of points. Convex hulls are moved away from the
origin of the graph by translating each convex hull in a
parallel manner in the direction from the center of all
points to the center of the convex hull. Spreading con-
vex hulls out in this way will change some relationships
among the clusters within a single graph; however,
different plots can still be compared usefully if the
convex hulls are moved uniformly apart. This approach
addresses the misgivings of [7] by displaying results in
3D to minimize distortion and by avoiding a strict
statistical interpretation of the convex hulls.

Conclusions

Correctly characterizing phylogenetic tree-space by
dimensionality reduction methods is critical if this ap-
proach is to be of value as an interpretive or a diagnos-
tic tool for large sets of trees obtained from whole
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Fig. 8 mtDNA genes in 3D convex hulls. The distribution of mtDNA
gene trees for (@) Mammals and (b) Salamanders 3D convex hulls
covering. Clusters of gene trees are represented by 3D convex hulls

genomes or from multi-gene data sets. We found that
different dimensionality reduction methods can sig-
nificantly influence the appearance, and hence inter-
pretation of 2- and 3-D projections of tree-to-tree
distances. In particular, among the cost functions and
optimization algorithms that we evaluated, we found
that CCA and the SGD method gave the best repre-
sentation of the original tree-to-tree distances as
indicated by the trustworthiness and continuity met-
rics. We also demonstrate by using several different
estimates that the intrinsic dimensionality of three
mtDNA tree-to-tree distance matrices is greater than
two, and therefore using 3D to view these data is
warranted in order to minimize distortions related to
projecting high dimensionality data into a lower
dimension. Tree landscapes obtained from analyses of
alignments composed of very different sets of taxa
but similar data partitions share some striking similar-
ities. These similarities are easiest to observe when
outliers are removed and related points are covered
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origin to reveal more of the clusters located near the graph origin

Fig. 9 mtDNA genes in 3D convex hulls with seperation. 3D convex hulls cover points representing bootstrap trees obtained from separate
analyses of the 15 mtDNA data partitions from within the Fishes mtDNA alignment. Plots were made by projecting RF-distances of the
concatenated bootstrap trees using CCA plus SGD. Convex hulls in plots A through D were progressively moved away from the graph

by a convex hull. The results obtained in this study
establish that the choice of NLDR method can signifi-
cantly influence our interpretation of tree landscapes.
Perhaps more importantly, this work establishes the
necessary framework for the application NLDR to be
used in the evaluation of tree reconstruction methods,
nucleotide substitution models, and other tree-to-tree
distance matrices [e.g., Nearest Neighbor Interchange
[39], Quartet [40], Subtree Prune and Regraft [41],
Branch Score [42], Geodesic [43], Match [44].

Additional file

Additional file 1: Appendix. Detailed description of the intrinsic
dimensionality measures, nonlinear dimensionality reduction methods,
and the goodness of fit measures [45-49]. (PDF 195 kb)
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