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Abstract

Background: MCMC-based methods are important for Bayesian inference of phylogeny and related parameters.
Although being computationally expensive, MCMC yields estimates of posterior distributions that are useful for
estimating parameter values and are easy to use in subsequent analysis. There are, however, sometimes practical
difficulties with MCMC, relating to convergence assessment and determining burn-in, especially in large-scale
analyses. Currently, multiple software are required to perform, e.g., convergence, mixing and interactive exploration of
both continuous and tree parameters.

Results: We have written a software called VMCMC to simplify post-processing of MCMC traces with, for example,
automatic burn-in estimation. VMCMC can also be used both as a GUI-based application, supporting interactive
exploration, and as a command-line tool suitable for automated pipelines.

Conclusions: VMCMC is a free software available under the New BSD License. Executable jar files, tutorial manual
and source code can be downloaded from https://bitbucket.org/rhali/visualmcmc/.
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Background
Bayesian inference using Markov chain Monte Carlo
(MCMC) is today a common and trusted approach in
molecular phylogenetics (see, e.g., in [1–4]), and is used by
phylogeny inference software such asMrBayes [5], BEAST
[6], BAli-Phy [7], PrIMe [8] and JPrIME [9]. A typical
goal in phylogenetics is to determine evolutionary rela-
tionships, for a set of species or for genes of interest, but
researchers may also be interested in other parameters,
for example parameters related to substitution patterns
or duplication/loss processes. An advantage with Bayesian
phylogenetic inference is that you can obtain posterior
distributions of evolutionary parameters, conditional on
your data, where the evolutionary parameters can be clas-
sified as discrete parameters (e.g., phylogenetic trees) or
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continuous (e.g., duplication and loss rates) [10]. For phy-
logenetics, Bayesian inference is often complicated by the
continuous parameters’ dependency on discrete param-
eters such as trees, that due to their structure can have
problems with mixing.
The output from MCMC, the trace, is a condi-

tional sampling of unknown parameters, needing post-
processing to yield the desired posterior distributions.
Users need to inspect the trace for possible non-
convergence, estimate burn-in (how many of the first
samples should be discarded?), assess mixing (does it
look like a random sampling of the posterior?), and com-
pute parameter statistics. Post-processing can, however,
be constrained by practical difficulties, in particular due
to presence of both discrete and continuous parameters in
the trace, and due to the need to manually extract useful
information from MCMC runs, currently using multiple
software (for example Tracer [6], AWTY [11] and CODA
[12]). User-friendly interfaces supporting graphical and
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interactive parameter exploration currently has potential
to improve.
When converged, MCMC samples are drawn from the

underlying stationary distribution and the trace repre-
sents a sample from the posterior distribution of analyzed
parameters. After removing burn-in samples, a converged
chain displays little correlation between remaining sam-
ples, which also indicates good mixing. Convergence is,
in theory, guaranteed in MCMC if the chain is allowed
enough iterations. However in practice, it is not possi-
ble to estimate how many iterations are needed, nor is it
possible to determine whether the chain has converged.
Hence, heuristics are used to assess non-convergence and
the initial “burn-in”. Software like CODA [12], AWTY
[11], and Tracer [6] have support for this, and more,
and for example MrBayes [5] has a convergence diag-
nostic based on standard deviation of split frequencies
built in. These heuristics analyze a single parameter of
the chain at a time and the decision of convergence is,
usually, left to visual analysis of the trace and the heuris-
tic value proposed for the parameter. For example, Tracer
[6] suggests the heuristic that the effective sample size
(ESS) [13] is greater than 200, for all parameters, as
well as manual analysis of the trace to ascertain that the
chain has indeed converged. Please note that the recom-
mendation/heuristic of ESS greater than 200 by Tracer
does not have a theoretical justification or a systematic
study to support it and using a sufficiently large ESS
for assessing convergence for high-dimensional MCMC
is recommended by Gong and Flegal [14]. In the conver-
gence analysis of large data sets, e.g., for genome-wide
analysis, the manual inspection of convergence becomes a
bottleneck and one would like to rely on automated non-
convergence assessment and burn-in estimation based
on multiple convergence diagnostics. Therefore, we see a
need for simplified large-scale convergence analysis.
There are several reasons to scrutinize individual traces.

First, one may doubt automatic convergence/burn-in
assessment, e.g., when different convergence diagnos-
tics give contradictory assessments. Second, there may
be doubts regarding the MCMC proposals, in particular,
when the sampled posterior distribution is multimodal
and seemingly converged multiple runs provide very dif-
ferent samples. Third, there may be questions regarding
mixing of an MCMC chain, e.g., when a trace is stuck in a
local optimum for a long time and the proposal acceptance
ratios of parameters are low. Fourth, surprising results,
e.g., when a new result contradicts previous studies, a
trace should be scrutinized to establish that the MCMC
has not behaved strangely. Mixing of parameters is an
important aspect of a successful MCMC run, in particular
for phylogeny analysis where one wants to make sure that
the tree posterior is sampled well. Although trace statistics
can give important indications, various visualizations are

often needed to better understand the different aspects
of a chain and its trace. We have experimented with
visualizations that focus on trees and their relation to
the trace, that we have not found in Tracer, AWTY,
and CODA, and believe the community can benefit
from them.
We present VMCMC, a tool for phylogenetic MCMC

analysis, with support for analysis and exploration of
chain convergence, burn-in estimation, trace visualiza-
tion, parameter estimation, graphical display of parameter
traces, which can run both as a command-line tool and as
an application with a graphical user-interface (GUI).

Implementation
VMCMC presents MCMC traces statistically and visu-
ally, and enables both automatic and interactive analysis.
VMCMC also supports output from many popular
MCMC programs, e.g., PrIMe, JPrIME, BEAST, and
MrBayes.
There are three use cases for VMCMC that may be of

particular general interest:

• Large-scale automated analysis: Applying MCMC
on genome-wide data, with perhaps hundreds or
thousands of phylogenies to estimate, users typically
make arbitrary burn-in decisions and, e.g., throw away
the initial 25% of a trace. VMCMC can be used on the
command line, easily integrated in scripts, and can be
asked to estimate a burn-in, assess non-convergence,
and estimate parameters automatically.

• Detailed trace exploration:When trying to
understand a single MCMC trace, and decide
whether it is plausible that it has converged, it can be
illuminating to see where in a trace certain trees are
found, determine majority rule consensus trees and
other parameters for different parts of a trace, and
have tree space visualized. VMCMC supports a high
degree of interactivity for such exploration.

• Simultaneous handling of both real and tree
parameters: Currently, there is no software that
simultaneously analyzes both tree and continuous
parameters of a chain. The available MCMC analysis
software either handle the continuous parameter
(CODA and Tracer) or the tree parameter (AWTY)
but not both simultaneously. VMCMC supports
analysis of both types of parameters simultaneously
and can, e.g., show the occurrence of a specific tree
topology in the trace of a real parameter or show the
effect of changing burn-in on both the real and tree
parameter simultaneously.

Features
Like AWTY, Tracer, and CODA, VMCMC can also be
used for graphical trace visualization, standard parameter
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statistics, and posterior distribution estimation. Some fea-
tures unique to VMCMC are given below:

• Graphical trace visualization: VMCMC employs a
user-friendly GUI to display the trace of a selected
real parameter, which helps in seeing trends for a
particular parameter as well as visually inspect
whether this parameter may have converged (Fig. 1).

• Tree analysis: VMCMC presents a posterior
distribution of trees, sorted by probability and hence
easy access to the tree with maximum a posteriori
probability and the closest alternatives. Selected trees
are shown in Newick format and are visualized
(Fig. 2) in a panel using code from forester [15]. A
majority rule consensus tree can be computed, also
restricted to selected trees, thus simplifying
comparative tree analysis.

• Tree space analysis: VMCMC calculates
unweighted Robinson-Foulds distance [16] between
each pair of trees and displays a two-dimensional
projection (Fig. 3) using a multi-dimensional scaling
technique [17–19], where similar trees are expected
to cluster. Point sizes proportional to probabilities
inform the user of the estimated posterior.

• Visualizing tree mixing and parameter
dependence: VMCMC can indicate where a selected
tree is found in the trace, thus help visualizing tree

mixing and how parameters and trees are correlated
(Fig. 4).

• Convergence and burn-in: Convergence assessment
and burn-in estimation can be performed using
Geweke’s convergence diagnostic [20],
Gelman-Rubin’s convergence diagnostic [21], and
Höhna-Sahlin’s ESS-based estimator [22, 23].

• Analyzing parallel chains: Currently, traces from
two parallel chains can be analyzed and visualized
together (Fig. 5). Convergence can be tested on
numerical posteriors by applying a Mann-Whitney U
test, and tree split distributions [24] can be compared
using a chi-square test for two samples. VMCMC
provides the flexibility to perform parallel chain
analysis using user-specified burn-ins for both chains.
The parallel chains are appended to each other after
removing specified burnins for both chains, and
statistics and posterior distribution is calculated for
joint traces. This is a useful feature in cases with poor
convergence or high computational demands.

• Command line tool: VMCMC can be used both as a
GUI application and as a command line tool suitable
as a component when writing scripts. Command line
output is given in JSON format for easy parsing.

VMCMC tries to hide the computational costs inherent
in the problem and utilizes multithreading to perform

Fig. 1 Graphical trace visualization. The figure depicts the “Graph” tab of VMCMC from analysis of a typical MCMC trace obtained from JPrIME by
using tetrapod dataset “DS1” collected by Hedges et al. [25]. The trace of the “DLRModelDensity” parameter is shown, which appears to be
converged (the difference between values of initial few samples and later samples) and also shows good mixing (fuzzy caterpillar-like trace). The left
panel shows the selected burnin, the parameter statistics after removing the burn-in, and convergence diagnostics from three standard methods.
The panel also provides the option to zoom in to the trace by selecting a portion of the trace and then pressing the “Extract interval” button to see
the behaviour of a chain in the selected interval
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Fig. 2 Screen shot of the “Tree” tab in VMCMC for an MCMC trace obtained from JPrIME on the tetrapod dataset “DS1” collected by Hedges et al.
[25] The left panel shows the estimated posterior on trees sorted in descending order of probability, after removing the burn-in selected in the
“Graph” panel. The right panel displays either the selected tree or (as in this figure) a consensus tree of multiple selected trees with support values
for each edge. The top panel shows the displayed tree in Newick format. The presented consensus tree has five nodes where the top five trees differ.
Note that support values are determined only by the selected trees and their probabilities

Fig. 3 Screen shots of Tree Analysis tab of VMCMC for an MCMC trace obtained from JPrIME on the tetrapod dataset “DS1” collected by Hedges et al.
[25] The figure shows the “Tree Analysis” tab for the trace given in Additional file 3. The right panel visualizes pairwise distances between trees in the
posterior distribution using a multi-dimensional scaling technique [19]. The panel can be used to assess mixing for the tree parameter and to
visualize groups of trees that have been traversed during the run. Circle sizes reflect posterior probability and color has no significance other than to
improve legibility. In this example, T1 seems to be distant from T0 and T2, and the chain appears to be sampling from these trees and trees around
them without remaining on intermediate trees. This indicates, in agreement with Whidden et al. [27], that the DS1 dataset has a bimodal
distribution. Presence of many trees in the vicinity of T0, T1, and T2, also indicates that the chain is mixing well for the tree parameter
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Fig. 4 Visualizing tree mixing and parameter dependence: We go back to the Graph tab after selecting the top five trees in Fig. 2 and clicking “Mark
selection”. The trace plot is then colored where the selected trees appears in the trace, which is a means of to visualize mixing and to determine the
dependency between continuous parameters and trees (the trace plot may be hard to see in the image due to dark colors in print, but the colors
are lighter and semi-transparent on screen). For the example trace (in Additional file 3), frequent change of color and no long stretches of a single
color is indicative of good mixing for the tree parameter

Fig. 5 Parallel Chain Analysis. The figure shows the super-imposed traces of a selected parameter for two parallel chains on the same dataset.
VMCMC uses a Mann-Whitney U test for the real parameters (details seen in the left panel) and a chi-square test for two samples for the tree
parameter to assess if both the chains have converged to the same distribution. For the example dataset DS1, both chains (whose traces are given
in Additional files 2 and 3) appear to be sampling from different distributions
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computations (e.g., in loading of graphics, and in calcu-
lation of statistics and of convergence diagnostics) inde-
pendently from the user interface. Some calculations are
delayed: the “Tree Analysis” tab is not prepared until
the user asks for it to avoid unnecessary calculation of
the needed, and expensive, two-dimensional Robinson-
Foulds distance matrix. Furthermore, in order to show
trees with non-negligible posterior frequency only and
to speed up the loading of analysis on “Tree Analysis”
tab, we have limited the computation of distance matrix
to unique trees with posterior probability at least 0.2%.
While VMCMC can work with any number of unique
trees in the posterior, a warning for expecting a delay in
loading the tab is generated if the posterior contains more
than 45 unique trees with frequency greater than 0.2%.
We have applied VMCMC to real datasets and expe-

rienced response times that we feel are reasonable given
the trace sizes. Table 1 displays the system time taken
by VMCMC from specifying the input file to loading of
graphical results on a standard MacBook Pro with 2.6
GHz Intel Core i5 processor and 8 GB RAM.

Results and discussion
For an example application of VMCMC, we used a tetra-
pod 18S ribosomal RNA dataset, named “DS1”, collected
by Hedges et al. [25]. DS1 is known to be problematic for
convergence andmixing of the tree parameter [26, 27].We
ran JPrIME twice with the same settings (using the JC69
model and default parameters; the species tree was dated
using TimeTree.org [28] and is available as Additional
file 1), each time for 10 million iterations and sampling
every 100 iterations, yielding two traces containing 105
samples which we name trace 1 and trace 2 (available in
Additional files 2 and 3). Here we present how VMCMC
can be used to evaluate mixing of the tree parameter for
trace file (Additional file 3). The tutorial for VMCMC is
available as Additional file 4.
Figure 1 shows the trace plot of DLRModelDensity

parameter (this is the probability reported from the DLR
submodel [8]) for trace 1, where the fuzzy caterpillar-like

Table 1 Execution time from specifying the input file to
presentation of graphical results in VMCMC

Size of tree Posterior Trace size Time
(#leaves) (# trees) (# samples) (seconds)

9 20 105 3.3

12 27 103 2.2

42 105 105 4.2

185 267 105 14.0

The amount of time taken by VMCMC from input to display of results is proportional
to the number of samples and the size of the trees. For average sized trees, the
loading delay of “Tree Analysis” tab is almost negligible but for large trees, the delay
becomes noticeable

trace indicates that the trace does not show non-
stationary behavior for DLRModelDensity parameter (i.e.,
the chain does not seem to be “stuck” in a state, nor
still continuously improving). In the “Tree” tab, we see a
summary of the tree posterior on the left. As an exam-
ple, we have selected the top five (by frequency) trees
and computed a majority-rule consensus-tree for them
(Fig. 2). The consensus tree has five edges with sup-
port values lower than 1.0, indicating where the selected
trees differ. Looking at the “Tree analysis” tab (Fig. 3),
the size of each topology (represented by a colored cir-
cle) is proportional to the frequency of each topology
in the trace. The “Tree analysis” tab also shows that
the MCMC chain is repeatedly sampling T0 and simi-
lar trees (e.g., T2 and T5), or T1 and similar trees (e.g.,
T3 and T4), but the transition to other regions is rare.
The clear partitioning of tree space into two disjoint parts
is indicative of a bimodal distribution. This conclusion
is in agreement with previous studies [26, 27] that sug-
gest the data is bimodal. If we select the five top trees,
push the “Mark selection in graph” button, and view the
“Graph” tab again (Fig. 4), the regions where the selected
trees are found in the trace are marked in different colors.
We observe intermixing of all five colored lines and no
long undisturbed stretches of a single color.
Comparing two parallel chains, run independently on

the same data, is another way to investigate MCMC mix-
ing. VMCMC can load two traces and superimpose plots.
Figure 5 displays superimposed trace plots, from the DS1
dataset, where one can see that the red trace is differ-
ent from blue trace at many places. Such aberrations are
also checked through statistical hypothesis testing, and
we note that the Mann-Whitney U test (left sidebar in
Fig. 5) rejects the hypothesis that the traces are from
the same distribution and a two-sample chi-square test
on trees’ split frequencies indicates the same (not shown
here). We conclude that the two parallel chains are sam-
pling from two different posterior distributions and have
either not reached the stationary distribution, or need
more iterations to be able to safely conclude convergence.
VMCMC has implemented various convergence diag-

nostics commonly used by phylogenetics community,
e.g., Gelman-Rubin’s convergence diagnostic [21], effec-
tive sample size (ESS)-based diagnostics and Geweke con-
vergence diagnostic [20]. Please note that some of these
diagnostics are outdated and these will either be removed
or be replaced in the newer releases of VMCMC by more
accurate and recent diagnostics like Fixed-Width Stopping
Rule (FWSR) [14]. To elucidate this point, Gong and Flegal
[14] have shown that Geweke convergence diagnostic [20]
is misleading and outdated for assessing convergence. Fur-
ther calculations based on Gong and Flegal’s work [14]
reveal that an ESS of 6000 measured by a 95% confi-
dence interval corresponds to computational uncertainty
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of approximately 5% the size of the posterior standard
deviation while the ESS recommendation of 200 made
by Tracer and measured by a 95% confidence interval is
equivalent to having a computational uncertainty of 28%
the size of the posterior standard deviation. Therefore,
the estimated variances used in calculations with Tracer’s
heuristic can be unstable for the sample size of 200 and
the simulation has, probably, not converged yet. Thus, we
are looking forward to connect ESS based tests available
in VMCMC to computational uncertainty using FWSR in
the newer releases of VMCMC.

Conclusions
VMCMC can be applied to trace files from several molec-
ular phylogenetics MCMC tools. Assessing whether a
chain has converged and is sampling from the station-
ary distribution is a non-trivial task. As demonstrated
by the example, VMCMC can help identify issues with
mixing and convergence of the MCMC run for all param-
eters. The graphical user interface supports interactive
data exploration and the command line interface enables
large-scale automated application.
VMCMC simplifies tasks in MCMC analysis that we

encounter in our work and we believe that our software
can be valuable to the community as well.
An executable jar file, tutorial, and source code can be

downloaded fromhttps://bitbucket.org/rhali/visualmcmc/.
The tutorial is also available as Additional file 4.

Additional files

Additional file 1: Dated species tree used in the example analysis that
yielded the traces in Additional files 2 and 3. (TXT 866 KB)

Additional file 2: Sample run file generated from JPrIME. Can be opened
using standard text editors or through VMCMC. (MCMC 71065.6 KB)

Additional file 3: Sample run file generated from JPrIME using the same
data as Additional file 2. Can be opened using standard text editors or
through VMCMC. (MCMC 71065.6 KB)

Additional file 4: Tutorial file containing all information about input,
output, commands to run VMCMC from command line, GUI options, FAQ
and even a list of features we have identified as interesting and which we
will target for implementation in future. It is in pdf format and can be open
using Adobe Acrobat Reader. (PDF 1710.08 KB)
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ESS: Effective sample size; FWSR: Fixed-width stopping rule; GUI: Graphical user
interface; JSON: JavaScript object notation; MCMC: Markov chain Monte Carlo
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