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Abstract

Background: Signaling proteins such as protein kinases adopt a diverse array of conformations to respond to
regulatory signals in signaling pathways. Perhaps the most fundamental conformational change of a kinase is the
transition between active and inactive states, and defining the conformational features associated with kinase
activation is critical for selectively targeting abnormally regulated kinases in diseases. While manual examination
of crystal structures have led to the identification of key structural features associated with kinase activation, the
large number of kinase crystal structures (~3,500) and extensive conformational diversity displayed by the protein
kinase superfamily poses unique challenges in fully defining the conformational features associated with kinase
activation. Although some computational approaches have been proposed, they are typically based on a small
subset of crystal structures using measurements biased towards the active site geometry.

Results: We utilize an unbiased informatics based machine learning approach to classify all eukaryotic protein
kinase conformations deposited in the PDB. We show that the orientation of the activation segment, measured
by φ, ψ, χ1, and pseudo-dihedral angles more accurately classify kinase crystal conformations than existing methods.
We show that the formation of the K-E salt bridge is statistically dependent upon the activation segment orientation
and identify evolutionary differences between the activation segment conformation of tyrosine and serine/threonine
kinases. We provide evidence that our method can identify conformational changes associated with the binding of
allosteric regulatory proteins, and show that the greatest variation in inactive structures comes from kinase group and
family specific side chain orientations.

Conclusion: We have provided the first comprehensive machine learning based classification of protein kinase active/
inactive conformations, taking into account more structures and measurements than any previous classification effort.
Further, our unbiased classification of inactive structures reveals residues associated with kinase functional specificity. To
enable classification of new crystal structures, we have made our classifier publicly accessible through a stand-alone
program housed at https://github.com/esbg/kinconform [DOI:10.5281/zenodo.249090].
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Background
Protein kinases are a diverse family of signaling proteins
whose catalytic activity is involved in nearly all cellular
processes. The enzymatic activity of kinases is regulated
through conformational changes in the protein kinase
domain, which is shared by diverse members of the
protein kinase super-family [1–3]. Structural studies on
members of the protein kinase superfamily have shown

that the protein kinase domain is malleable and can
undergo dramatic conformational changes in response to
activation and regulatory signals in signaling pathways.
The conformation of protein kinases is controlled by
factors including protein-protein interactions [4], phos-
phorylation and ligand binding [5, 6], and numerous drug
discovery efforts on protein kinases are focused on
targeting specific kinase conformations [7–11]. How-
ever, an incomplete understanding of the defining con-
formational features of protein kinases and how these
differ between kinase groups and families has hindered
ongoing drug discovery efforts to improve inhibitor
specificity.
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The manual inspection of kinase crystal structures has
led to an understanding of the roles key residues play in
stabilizing and orienting adenosine tri-phosphate (ATP)
for phosphoryl transfer [12, 13], as well as qualitative de-
scriptions of the active site geometry and conformational
states. A variety of structural measures have been developed
to determine the activation state of a kinase, most of which
center on the orientation of two regulatory components:
the αC-helix and the activation segment. The αC-helix
serves as a proxy for the formation of a catalytically crucial
salt bridge between a lysine in the β3 strand and the αC-
helix glutamate (K-E salt bridge), which positions the lysine
to anchor the α-phosphate of ATP (Fig. 1a). The activation
segment provides two pieces of information: the orientation
of the DFG aspartate, which chelates a magnesium ion that
coordinates with the β- and γ-phosphates of ATP (Fig. 1b),
and whether the C-terminal activation segment is blocking
the substrate binding site (Fig. 1c).
The orientation of the DFG phenylalanine, a proxy for

the DFG aspartate located in the N-terminal activation
segment, is of particular importance for inhibitor design,
as the DFG-out conformation creates a hydrophobic
pocket that can be targeted by Type II ATP competitive
inhibitors [7, 8, 14–16]. Studies focused on the classifica-
tion of active site conformation for drug discovery pur-
poses have generally used manual curation [17] or
constructed complex template based metrics specific for
that purpose [18]. For example, in Kufareva and

Abagyan, the authors chose a template DFG-in conform-
ation in the Abelson tyrosine kinase (Abl1) structure
[PDB: 2GQG] to generate a DFG-Phe orientation index,
Ophe, by summing the cosines of angles between cova-
lent bonds (Cα-Cβ, Cβ-Cγ, Cγ-Cδ1, Cγ-Cδ2) in the tem-
plate and aligned structures. The position, Pphe, was
calculated as the distance between the Cα atoms in the
template and aligned DFG-Phe residue, with the final
DFG-in score (SDFG-in) defined as a function of Ophe and
Pphe. A hard cutoff of SDFG-in was used to classify DFG-
in versus DFG-out conformations. Methods that con-
sider activation segment conformation to classify kinase
structures have been reported as well. One such method
used a comparison to the cAMP-dependent protein kin-
ase catalytic subunit α (PKAα) structure [PDB:1BKX],
where root mean squared deviation (RMSD) calculations
and counting atoms separated by predefined planes
determined the conformational state of the αC-helix and
activation segments, respectively, with hard cutoffs
distinguishing active from inactive kinases [19]. Other
methods have benefitted from exponential increases in
published kinase structures, though limited themselves
to measuring the αC-helix and DFG motif conforma-
tions. In one (Brooijmans’), the distance between the
side chain nitrogen of the β3 lysine and the αC-helix
glutamate’s terminal oxygen’s were used to measure the
orientation of the αC-helix and the K-E salt bridge dis-
tance, using a hard cutoff of 4Å. The activation segment

Fig. 1 Kinase activation. a Formation of the K-E salt bridge (left). The salt bridge is not formed in the inactive conformation (right). b DFG-in (left)
and DFG-out (right) conformations. c The inactive activation segment (right) can occlude the substrate binding region. The αC-helix is colored teal
and the activation segment is colored brown
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orientation was measured using the distance between
the main chain nitrogen in the hinge donor residue and
the Cα atom in the DFG-Phe, with a soft cutoff of 15Å
[20]. In another, the αC-helix orientation (in/out/out-
like) was determined using the distance between the Cα
atoms of the DFG aspartate and the αC-helix glutamate,
while the DFG motif orientation was manually curated
[21]. The most recent approach (ABC method) notes
that the DFG orientation is captured more accurately
with pseudo-dihedral angles, or dihedrals through adja-
cent quads of Cα atoms [22]. Multiple conformational
states for both the DFG motif and the αC-helix are
defined, but the active conformation is only attained
when both the DFG-in and αC-helix-in orientations are
present. The αC-helix orientation is defined using the
distance between the Cα atom of the αC-helix glutamate
and the Cα atom of the DFG-Phe, with the αC-helix-in
conformation occurring when this distance is less than
10.5Å. The DFG orientation is measured using three
pseudo-dihedral angles, with the DFG-in state defined
when all three pseuo-dihedrals are within specified
ranges.
Perhaps the most interesting classification method, as

it was the first method published and does not explicitly
measure any angles or distances, is the formation of the
hydrophobic Regulatory spine (R-spine) [23, 24], discovered
through the surface comparison of 23 kinase structures.
The formation of hydrophobic interactions between the
N- and C-lobes of the kinase domain are described as
characteristic of active structures, with inactive struc-
tures breaking the spine in four ways [24]. While this
method is highly qualitative and difficult to measure,
the spine formation is mechanistically explained, with
the assembly of the spine coordinated with other con-
formational changes associated with kinase activation
such as the formation of the K-E salt bridge and the
relative orientation of the catalytically important DFG
and HRD motifs [23]. Though the precise order in
which these interactions develop is unknown, the
assembly of the R-spine is highly dependent on the
orientation of the activation segment [25].

While the above methods have provided insights into
kinase conformational states, they are limited in several
ways. Many only consider a small subset of the 5,131
kinase chains deposited in the PDB, thereby leaving out
valuable information. Some studies have used a large
subset of structures/conformations, but only a limited
number of features, with emphasis placed on the active
site orientation [19–23]. These limitations lead to con-
flicting assessments and, in some cases, misannotation
of kinase conformations. For example, while a broken R-
spine is characteristic of an inactive kinase, an assembled
R-spine does not necessarily reflect an active conform-
ation. In the epidermal growth factor receptor (EGFR)
structure [PDB:2GS7] for example, the R-spine is assem-
bled, but the activation segment is in an inactive
conformation with a disrupted K-E salt bridge (Fig. 2a).
Distance measures are problematic when the endpoint
atoms are in dynamic loop regions. The active check-
point kinase 1 (Chk1) structure [PDB:2AYP], which has
an unusual linker conformation, is incorrectly annotated
as inactive using Brooijmans’ method (Fig. 2b). The most
recently published ABC method, which uses hard cutoffs
on angle measurements, also leads to improper annota-
tions. For example, the RAF proto-oncogene serine/
threonine protein kinase (RAF1) structure [PDB:3OMV]
is clearly active, with a well-established K-E salt bridge
and DFG-in conformation, yet is annotated by ABC as
inactive (Fig. 2c). In contrast, the inactive serine/threo-
nine protein kinase B-raf (BRAF) structure [PDB:3SKC]
is annotated by ABC as active (Fig. 2d). Further, complex
correlations between measurements can be difficult to
identify and interpret without an appropriate statistical
framework. Here, we take a systematic statistically based
approach, using the automated pattern recognition algo-
rithms in machine learning to identify the conformational
changes between active and inactive protein kinases. We
find that the orientation of the activation segment alone is
sufficient to accurately classify kinase conformations as
active or inactive, and identify the relative importance of
different regions of the activation segment in classifying
protein tyrosine kinase (PTK) and serine/threonine kinase

Fig. 2 Incorrectly classified structures. a Assembled R-spine without K-E salt bridge formed. b Structure improperly annotated using Brooijmans’
method. c–d Structures improperly annotated using ABC method. The αC-helix is colored teal and the activation segment is colored brown
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(STK) conformations. We show the greatest variation
between inactive structures results from evolutionary rela-
tionships between kinases, identifying a variety of residues
that can be used to increase drug specificity. Finally, by
applying our methods to the cyclin-dependent kinase
family (CDKs), we identify interface residues associated
with cyclin binding and recognition. While machine learn-
ing methods have been widely used in secondary structure
and backbone torsion angle prediction from primary
sequence [26–29], their use in structure based classifica-
tion tasks has been limited to the identification of Struc-
tural Classification of Proteins (SCOP) domains and
ligand prediction [30, 31]. Only recently have machine
learning techniques been applied to identify quantitative
structure-activity relationships (QSARs) [32] or improve
protein homology detection [33], though even these tech-
niques are limited to using primary sequence input. When
structures are used in machine learning algorithms, they
are typically subjected to molecular dynamics simulations
which are used to calculate a parameter of interest, such
as energy landscapes [34] or thermostability [35]. We also
provide access to the established classifier through a
stand-alone program, allowing any user to classify PDB
structures or models, and have deposited our training
annotations and predictions in ProKinO, the Protein
Kinase Ontology [36, 37].

Results & discussion
Kinase conformation is determined by activation segment
orientation
Previous methods have focused on the active site geometry
for conformation classification, using the DFG motif and
αC-helix orientations as proxies for the catalytically neces-
sary placement of key residues. This active site focus natur-
ally biases the proposed measurements by ignoring distal
regions of the kinase domain. Instead, we developed
features that encompass the entire domain and uniquely
define each structure. Namely, for each residue in our pro-
file based alignments, we incorporate the corresponding φ,
ψ and χ1 angles. In addition, for each set of four consecu-
tive residues, we calculate the pseudo-dihedral between
their Cα atoms (Fig. 3a). Using our feature selection process
on the described training set (see Methods), we rank
ordered the 961 features, the top 15 of which are identified
in Table 1. The regions identified are highly consistent
between selection algorithms and identify measures de-
scribing the orientation of the activation segment. We
divided the activation segment into three sections, based on
their function and interacting regions. The most N-
terminal portion describes the orientation of the DFG
motif, followed by a region which forms electrostatic and
hydrophobic interactions with the αC-helix, and finally the
most C-terminal portion of the activation segment, which
can sterically block the binding of substrate (Fig. 3b).

As coordinates of residues in the activation segment
are commonly missing from crystal structures, regard-
less of conformation, we identified the frequency of
activation segment residues without missing coordinates
across the full dataset (Fig. 4a). To ensure we were not
simply capturing the presence/absence of coordinates as
a feature for classification, we only considered residues
(and associated features) if they were present in more
than 75% of the dataset. To assess the relative importance
of the selected features, we initially trained a random
forest classifier based on the most frequently chosen

Fig. 3 ePK features. a Features measured for classification. For each
aligned residue, we calculate the φ, ψ and χ1 angles, depicted for
residue 138 (top). In addition, for quads of adjacent residues, we
calculate the pseudo-dihedral through their Cα atoms, with Pd_137-
140 shown (bot). b Selected features on template structure colored
by importance from white (no weight) to red (high weight)
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feature, which captures the orientation of the DFG motif.
Using this feature alone, we achieved over 90% classifica-
tion accuracy, with precision and recall slightly higher and
lower, respectively (Fig. 4b–c). The addition of the second
feature, which describes the orientation of the activation
segment following the DFG motif, increased our classifica-
tion accuracy to ~97%. Subsequently, we trained additional
classifiers with an increasing number of features, evaluating
the accuracy increase associated with the incorporation of
each new feature on classifying our training (Fig. 4b) and
validation (Fig. 4c) sets.
We compared the performance of a variety of machine

learning classifiers, the Brooijmans’, ABC, and R-spine
methods using our validation set. As the criteria for
determining the assembly of the R-spine is not well
defined, we calculated the van der Waals (vdW) interac-
tions between pairs of residues which are adjacent in the
spine. If the vdW energy is less than -1.5 kcal/mol, we
consider the spine to be assembled. This approach
accurately identifies previously noted R-spine assembled
structures [23]. Of the previously defined methods, the
R-spine assembly has the highest area under the curve
(AUC) (0.736) and is able to classify the largest propor-
tion of structures, missing only 6.7% (158 of 2,365
chains) of the validation set. The ABC method performs
well when the necessary residues are ordered, but is unable
to classify 18.8% (445 of 2,365 chains) of the validation set.
The Brooijmans’ method has lower performance when it is
able to make an assessment, but only misses 8.2% (193 of
2,365 chains) of the validation set. Our machine learning
classifiers, however, can assess 100% of the validation set,
with all algorithms achieving classification accuracies
greater than 97% (Fig. 5a). Furthermore, we correctly

classify the EGFR [PDB:2GS7], Chk1 [PDB:2AYP], RAF1
[PDB:3OMV], and BRAF [PDB:3SKC] structures which
were among those incorrectly annotated using the previous
methods. While the generated classifiers can accurately pre-
dict the conformation of all the structures in our validation
set, previous methods cannot make a prediction with
missing atoms or residues (Fig. 5b). We chose the
ensemble random forest classifier for the remainder of
analyses, as it out performed all other algorithms.
Modification of the activation segment by phosphor-

ylation is an important step in kinase activation and is
required for most kinases to become fully active [6].

Table 1 Top 15 ePK selected features

Feature Activation segment location PKA positions Average rank

Pd_137-140 N-terminal 184–187 2.88

Φ_141 N-terminal 188 4.20

Pd_140-143 N-terminal 187–190 7.95

Pd_141-144 N-terminal 188–191 8.95

Φ_142 N-terminal 189 9.57

Φ_143 N-terminal 190 10.15

Ψ_139 N-terminal 186 10.65

Φ_138 N-terminal 185 14.15

Pd_139-142 N-terminal 186–189 20.75

Pd_155-158 C-terminal 200–203 22.15

Pd_138-141 N-terminal 185–188 27.00

Pd_135-138 N-terminal 182–185 27.25

Pd_136-139 N-terminal 183–186 30.02

Pd_154-157 C-terminal 199–202 31.02

Φ_142 N-terminal 189 32.20

Fig. 4 Disorder and accuracy. a Chart showing the percentage of
structures with activation segment disorder. b Accuracy with increasing
number of features on training set. c Accuracy with increasing number
of features on validation set
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The conformational changes brought about by the
phosphorylation event, which include ordering of the
C-terminal activation segment for substrate binding,
have been previously described [38–40]. The C-terminal
activation segment, however, has not been used to assess
kinase conformational state. Our identification of the N-
terminal activation segment is consistent with previous
classification models, particularly with our top selected
feature which relates the orientation of the DFG-Phe to
the conformational state, but also incorporates previously
unidentified information concerning the orientation of the
C-terminal activation segment. Nearly all validation
structures were properly classified, leaving only 12 PDB
chains whose curated annotation differed from the pre-
dicted conformational state. Manual examination of the
12 chains indicated that the difference is not due to
machine learning classifier, but rather due to the misan-
notation of chains in the training set (Fig. 6). The
chains are part of homo-dimeric complexes where one
chain adopts an active conformation, and the other an

inactive conformation, however, both chains were
annotated as active or inactive based on manual evalu-
ation of a single chain. For example, in the Mitogen-
activated protein kinase 8 (JNK1) [PDB: 2GMX] in
chain A, the K-E salt bridge is assembled (active), but
not in chain B (inactive). However, both chains were
annotated as active based on examination of chain A
alone. Thus, the 12 chains were not actually misclassi-
fied, but rather the classifier had identified errors in
our curated annotations.

K-E salt bridge formation is dependent on activation
segment orientation
Our classifier was trained using features specific to the
orientation of the activation segment, a deviation from
previous methods which also incorporated αC-helix
orientation and the formation of the K-E salt bridge. The
orientation of the loops preceding and following the αC-
helix were captured in our initial feature set, providing
information about the αC-helix orientation, but weren’t
identified by feature selection as important for classifica-
tion. This suggests the αC-helix orientation, and hence
the salt bridge formation, is dependent on the orienta-
tion of activation segment, which is captured in our
selected features. To test this hypothesis, we used our
trained ePK classifier to predict the conformational state
of the remaining 1,766 unlabelled structures. As the fea-
tures used correspond to the activation segment, we are
essentially using only that portion of the kinase domain
to distinguish active from inactive kinases. We also mea-
sured the distance between the side chain nitrogen atom
in the beta-3 lysine and oxygen atoms in the αC-helix
glutamate of the same structures. If the distance was less
than 4Å, we classified the structure as having an intact
salt bridge (Table 2). We identified statistical correlations
between the active-inactive classification and salt bridge
formation, using both Fisher’s exact and chi-squared
tests. We find a strong dependence relationship between
activation segment orientation and formation of the K-E
salt bridge, with a p-value on the order of 10-49, explain-
ing the lack of identified features measuring αC-helix
orientation. We do not need to measure the αC-helix
separately, as we gain the information by considering
only the activation segment orientation.
We can also identify the αC-helix/activation segment

dependence through the visual inspection of crystal struc-
tures. When the kinase is in an active conformation, the
DFG-phenylalanine adopts the in-conformation and the
activation segment is pulled back, allowing the αC-helix
to move in towards the active site and form the K-E salt
bridge with the β3 lysine (Fig. 7a). However, several in-
active conformations of the activation segment can hinder
αC-helix movement. For example, the activation segment
of inactive structures often forms a 1 ½ turn helix C-

Fig. 5 a Receiver operating characteristic curve comparing classifiers
and previous methods. b Percent of structures which can be measured
and classified with various approaches
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terminal to the DFG motif, while the αC-helix is moved
away from the active site, rotating the conserved glutam-
ate towards the solvent (Fig. 7b). Here, the 1 ½ turn helix
makes electrostatic and hydrophobic interactions with the
displaced αC-helix, stabilizing the inactive conformation.
Alternatively, the DFG-phenylalanine can adopt an up-
conformation, which only slightly hinders αC-helix move-
ment yet sterically blocks the formation of the K-E salt
bridge. In this situation, the αC-helix visually appears to
be in the in-conformation and aligning to active structures
shows little difference (Fig. 7c). It should be noted that K-
E salt bridge formation does not guarantee an active
kinase, as the salt bridge can be formed in the DFG-out
inactive conformation.

PTK and STK conformations are distinguished by different
regions of the activation segment
Next, we wanted to apply our approach to evolutionarily
related subsets of kinases. However, the number of solved
structures is not uniformly distributed across the kinome,
and some groups, families and subfamilies are not well rep-
resented. To ensure meaningful results, we first identified

the number of training samples needed to construct an ac-
curate classifier through the generation of learning curves,
which train classifiers using an increasing number of data
points and assesses the accuracy of each classifier. Fewer
than 200 structures were needed as training data to classify
the remainder with greater than 99% accuracy (Fig. 8). As
we have 1,008 labeled protein tyrosine kinase (PTK) and
2,357 serine-threonine kinase (STK) chains, we applied our
feature selection process to these sets.
In PTKs, we achieve a stable >99% classification accuracy

with the top 10 selected features (Table 3), all of which
occur in the N-terminal activation segment (Fig. 9a). STK
classifiers, on the other hand, do not achieve stability in
classification accuracy until ~20 features are incorporated
(Table 4), with important C-terminal activation segment
features identified (Fig. 9b). To ensure our STK measures
are not dominated by a single group, since 46% (1,090 of
2,357) of our STK chains belong to the CMGC group, a
collection of kinases named after its four major members –
the CDK, MAPK, GSK3, and CLK families, we also
performed feature selection on the non-CMGC STKs.
Again, the top selected features corresponded to both
the N- and C-terminal activation segments (Table 5).
This is consistent with the role of activation dependent
phosphorylation in the N-terminal activation segment
of both PTKs and STKs, but suggests that the orien-
tation of the C-terminal activation segment is more
informative in the conformational classification of
STKs.

Table 2 Testing dependence of activation segment orientation
and formation of the K-E salt bridge

K-E bridge No K-E bridge

Predicted active 846 205

Predicted inactive 200 278

P-value < 10-49 with Fisher’s exact and chi-squared tests

Fig. 6 Misannotated structures. a Structures misannotated as active which were properly identified as inactive by the classifier. b Structures
misannotated as inactive were properly classified as active by the classifier. The αC-helix is colored teal and the activation segment is
colored brown
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We can observe the differences in activation segment
conformations in PTK and STK crystal structures (Fig. 9c).
In the PTK EGFR, for example, we observe large con-
formational changes in the N-terminal activation segment,
with the 1 ½ turn helix blocking the αC-helix in the
inactive conformation. However, only slight changes can
be seen in the C-terminal activation segment of EGFR be-
tween the active and inactive conformations. In contrast,
in STK structures such as ERK2, the N-terminal activation
segment is less drastically altered than in EGFR, with only
a slight rotation in the DFG-phenylalanine. The ERK2 in-
active C-terminal activation segment is markedly changed
between the active and inactive conformations, however,
with an uncoiled helix that partially blocks active site ac-
cess. The necessity of incorporating C-terminal activation

segment features in STK classification may be due to the
fact that STKs conserve phosphorylatable residues in the
C-terminus of the activation segment [41–52]. In contrast,
PTKs naturally conserve hydrophobic residues at the
activation segment C-terminus, providing a plausible
explanation for the observed difference in PTK and STK
features.

CDK family feature selection identifies cyclin binding
residues
The cyclin-dependent kinase (CDK) family is a set of
STKs involved in cell-cycle progression [53], replication
stress response [54, 55] and transcription [56, 57]. CDK
activity is, as its name suggests, dependent on the for-
mation of a CDK-cyclin complex. Upon binding, cyclin

Fig. 7 Activation segment conformations. a Active conformation. b Inactive conformation with 1 ½ turn activation segment helix sterically blocking
αC-helix movement. c Inactive conformation with DFG-Phe up sterically blocking formation of K-E salt bridge. The αC-helix is colored teal
and the activation segment is colored brown

Fig. 8 Learning curve on ePK classifier. Learning curve on the ePK classifier for the top 20 selected features. With more than 200 training samples,
we achieve high classification accuracy
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induces conformational changes in the kinase domain
that allow for autophosphorylation of the activation
segment to produce a fully active kinase [39]. The CDK
family also has the largest number of crystal structures
deposited in the PDB, providing 514 chains for our fea-
ture selection process. As we previously described, STK
(and thus, CDK) classification is based on both N- and
C- terminal activation segments. However, CDKs are
allosterically regulated through cyclin binding. To test
whether our feature selection procedure would be able
to identify the CDK-cyclin interactions, we removed the
activation segment features from our CDK training sam-
ples and repeated feature selection on this subset. The
most important features are found in the β3-αC loop

and the C-terminal segment of the αC helix, both of
which are involved in the CDK-cyclin interface. Less sig-
nificant features in the CDK-cyclin interface were identi-
fied in the β4-β5 loop. Two additional features were
found that are distal to the cyclin binding site, one in
the catalytic loop and the other in the αF helix (Fig. 10).

Inactive structures cluster by evolutionary history
To identify patterns in the conformation of inactive
structures we took an unsupervised approach, using
principal component analysis (PCA) to identify the
direction of greatest variance in our dataset. As PCA is
an inherently linear process, we transformed the cyclical
angle measures of the inactive structures to the Cartesian
coordinates on the unit circle (θ → (sin θ, cos θ). After
limiting the dataset to the top weighted features in the
first three principal components, we again performed
PCA to ensure the clustering patterns were similar.
When we applied the above process to all ePK inactive

structures, we discovered that the most heavily weighted
features were not measuring backbone conformations
with φ, ψ, or pseudo-dihedral angles, but χ1 angles
which measure side chain orientation (Table 6). The
residues identified are spread throughout the kinase
domain, occurring in both the N- and C- lobes, with
several residues identified in the catalytic loop and acti-
vation segment. By plotting the structures in the princi-
pal component plane (PC1, PC2), we readily identified
three clusters. Two of the clusters are kinase group

Table 3 Top 10 PTK selected features

Feature Activation segment location PKA positions Average rank

Pd_140-143 N-terminal 187–190 3.10

Pd_137-140 N-terminal 184–187 3.40

Φ_141 N-terminal 188 8.75

Pd_141-144 N-terminal 188–191 11.08

Ψ_139 N-terminal 186 11.60

Φ_143 N-terminal 190 13.42

Φ_142 N-terminal 189 14.90

Pd_139-142 N-terminal 186–189 14.98

Pd_138-141 N-terminal 185–188 25.70

Pd_135-138 N-terminal 182–185 28.70

Fig. 9 PTK/STK features (a) PTK selected features. b STK selected features. c Structures of the active (left) and inactive (right) conformations
observed in PTKs (top) and STKs (bottom). The αC-helix is colored teal and the activation segment is colored brown
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specific, separating PTKs and CMGCs from the remain-
der of kinases in the third cluster (Fig. 11a). This is con-
sistent with group biases of several of the top weighted
residues, like the Lys in the LKPEN STK specific motif,
which is naturally conserved in PTKs as LAARN. Simi-
larly, the STK specific phosphorylation site at 201PKA,
which is conserved in PTKs as a hydrophobic residue, is
heavily weighted in the principal components.
A similar pattern emerged when we considered only

the PTK inactive structures. Again, we identify side
chain conformations (χ1 angles) as providing the great-
est variance in the dataset. Here, the residues identified
lie mostly in the C-lobe, occupying positions in the sub-
strate binding region, P + 1 loop, and the activation seg-
ment (Table 6). Plotting the structures in the first three
principal components reveals an analogous pattern, with
clusters consisting of specific PTK families. The most
distinct clusters separate the Abelson tyrosine-protein
kinase (Abl) family, the Insulin receptor (InsR) family,
the tyrosine-protein kinase Tec (Tec) family, and the
hepatocyte growth factor receptor (Met) family (Fig. 11b).
In contrast, the top weighted features in the CMGC
group consist entirely of pseudo-dihedral angles (Table 6).
The CMGC inactive structures are largely dominated by
the CDK family, likely explaining the variance present in
backbone measurements. Again, the features are mostly in
the C-lobe, occurring in the αD-helix, at the terminal ends
of the αE-helix, and the αG- and αH- helices. The only N-
lobe feature identified is in the C-terminal portion of the
αC-β4 loop (Fig. 11c). To avoid issues with the side chain
placement of low resolution structures, we repeated the
above inactive clustering with only high resolution struc-
tures (<2.2Å). Again, we find that the greatest source of
variance in our inactive datasets correlates with the evolu-
tionary relationships between kinases, with clusters similar
to those in Fig. 11. Thus the conformational features
appear to implicitly capture the evolutionary rela-
tionships between kinases, even though evolutionary
features (sequence similarity, for example) are not
explicitly considered in our analysis.

Classifier available for public use
To encourage consistency in kinase structure annota-
tions, we have made our ePK random forest classifier
publicly available through a stand-alone program located
at https://github.com/esbg/kinconform [DOI:10.5281/
zenodo.249090], allowing users to annotate newly solved
kinase PDB structures and/or simulated structures as
active/inactive. The sequence for each chain is extracted
and aligned to our highly curated profile alignments.
The features necessary for classification are then mea-
sured and a prediction is generated. We have also
included both our curated annotations for the training
and validation sets, as well as predicted annotations on

Table 5 Top 20 non-CMGC STK selected features

Feature Activation segment location PKA positions Average rank

Pd_137-140 N-terminal 184–187 5.30

Pd_155-158 C-terminal 200–203 15.23

Pd_136-139 N-terminal 183–186 19.77

Φ_155 C-terminal 200 27.30

Pd_141-144 N-terminal 188–191 27.98

Pd_139-142 N-terminal 186–189 28.90

Φ_139 N-terminal 186 34.55

Ψ_139 N-terminal 186 34.83

Ψ_141 N-terminal 188 38.37

Pd_140-143 N-terminal 187–190 40.02

Ψ_144 N-terminal 191 40.65

Pd_135-138 N-terminal 182–185 42.88

Pd_138-141 N-terminal 185–188 44.73

Ψ_154 C-terminal 199 47.73

Φ_137 N-terminal 184 48.65

Φ_155 C-terminal 200 49.75

Φ_154 C-terminal 199 53.75

Ψ_143 N-terminal 190 59.55

Ψ_138 N-terminal 185 61.13

Ψ_156 C-terminal 201 65.42

Table 4 Top 20 STK selected features

Feature Activation segment location PKA positions Average rank

Pd_137-140 N-terminal 184–187 3.20

Ψ_141 N-terminal 188 6.97

Ψ_142 N-terminal 189 8.85

Pd_140-143 N-terminal 187–190 11.25

Pd_155-158 C-terminal 200–203 13.78

Pd_141-144 N-terminal 188–191 15.07

Ψ_138 N-terminal 185 15.23

Φ_139 N-terminal 186 17.13

Ψ_144 N-terminal 191 20.45

Ψ_143 N-terminal 190 21.98

Pd_139-142 N-terminal 186–189 29.35

Φ_155 C-terminal 200 30.13

Pd_138-141 N-terminal 185–188 32.80

Pd_136-139 N-terminal 183–186 33.05

Φ_142 N-terminal 189 37.57

Pd_135-138 N-terminal 182–185 38.42

Ψ_139 N-terminal 186 43.98

Ψ_154 C-terminal 199 46.17

Pd_156-159 C-terminal 201–204 48.70

Ψ_157 C-terminal 202 49.08
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all kinase PDBs in the structure class of ProKinO, the
Protein Kinase Ontology [36, 37]. Using the hasAnnota-
tedConformation and hasPredictedConformation data
properties, users can easily identify which structures
were used for training/validation, which structures were
misclassified, as well as the predicted conformation for
remaining structures. The dataset of measurements, pre-
dicted conformations and annotated conformations are
included [see Additional files 1 and 2].

Conclusion
We have provided the first comprehensive machine learn-
ing based classification of protein kinase active/inactive
conformations, taking into account more structures and

measurements than any previous classification effort. The
features identified in our analysis reflect previous know-
ledge about the conformation of the N-terminal activation
segment, as well as provide new insights into the im-
portance of the C-terminal activation segment in clas-
sifying STK structures. Given a sufficient number of
evolutionarily related structures, we can also identify
protein interfaces and regulatory regions, as shown
with the cyclin-CDK1 complex. We show statistically
significant correlations between activation segment
orientation and αC helix orientation, and suggest a
classification scheme based on activation segment
orientation alone. Further, our unbiased exploration of
inactive structures has revealed that the greatest

Table 6 Top 10 features in inactive structures among all ePKs, PTKs, and CMGCs

ePK features PKA positions TK features PKA positions CMGC features PKA positions

χ1_121 168 χ1_166 211 Pd_217-220 268–271

χ1_64 110 χ1_94 141 Pd_56-59 102–105

χ1_79 125 χ1_197 242 Pd_157-160 202–205

χ1_142 189 χ1_26 68 Pd_202-205 247–250

χ1_100 147 χ1_150 195 Pd_219-222 270–273

χ1_218 269 χ1_235 291 Pd_229-232 280–283

χ1_29 71 χ1_187 232 Pd_109-112 156–159

χ1_132 179 χ1_160 205 Pd_95-98 142–145

χ1_156 201 χ1_147 N/A Pd_199-202 244–247

χ1_131 178 χ1_52 98 Pd_85-88 131–134

Fig. 10 CDK1 with selected features. We identify features in three regions: the cyclin binding interface, the catalytic loop, and the αF-helix. CDK1
is colored white, with identified features in red. Cyclin is colored orange
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variation between inactive conformations lies in kinase
group and family specific side chain orientations. This
is interesting given that the evolutionary relationships
between kinases are not used as features in the
classification.
While we strive to ensure the accuracy of our alignment

profiles, the above analysis may be affected by alterations
therein. Our methods are also highly dependent on the
number of structures available, which is constantly

increasing, and the initial set of annotations in the training
set. In the future, semi-supervised methods may be benefi-
cial in extending our initial set of curated annotations.
The techniques used above are not kinase specific, and

can be applied to any protein family with a conserved
fold, a sufficient number of deposited crystal structures,
and a curated multiple sequence alignment. Further,
while we explored the difference between active and in-
active structures, the annotations provided could range

Fig. 11 Inactive clusters and features. a All ePKs. b PTK group. c CMGC group
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over a variety of topics including, whether a ligand, sub-
strate or regulatory molecule is bound (or unbound), the
presence (or absence) of a post-translational modifica-
tion, or any binary attribute of interest. Finally, the resi-
dues identified in our analysis can be used in the design
of selective protein kinase inhibitors.

Methods
Dataset construction
We identified kinase structures in RCSB [58] through se-
quence alignment to a set of previously generated manu-
ally curated kinase profiles [59], yielding 3,488 PDBs
with 5,131 chains. To establish our active/inactive anno-
tations, we first classified each of the structures using
previously published classification methods. They agreed
on the conformational state for 3,098 of the 5,131 chains
(60.4%), which we labeled accordingly. Disagreements
were settled through consensus manual curation by two
independent biochemists, which resulted in sets of
labeled and unlabeled chains, with 3,365 and 1,766
members, respectively. We further separated our labeled
chains into two sets: a randomly selected training set of
1,000 chains (500 active, 500 inactive) used for feature
selection, and a validation set containing the remaining
2,365 chains. This process is quite robust and was
repeated 10 times with essentially identical features and
classification accuracy. Given the small number of train-
ing samples needed to construct an accurate classifier
(Fig. 8), one could also perform the initial annotation by
selecting and manually curating structures randomly
until a balanced dataset of sufficient size is generated.

Feature construction
For each chain, we created a unique vector which repre-
sents the conformation by measuring, the φ, ψ and χ1
angles at each aligned residue in our profile, creating
241*3 = 723 features. In addition, we measured the
pseudo-dihedral angle through the alpha carbon of adja-
cent quads of residues [22], incorporating an additional
238 features and bringing our total feature count to 961.
We do not consider pairwise distances between residues,
as they would incorporate an additional 28,920 features,
and greatly increase the likelihood of over fitting.
Measurements were made using the MDAnalysis tool-
kit [60].

Feature selection
Feature selection was performed on our training set, con-
sisting of 1,000 PDB chains with an average resolution of
2.2Å. We used a variety of feature selection algorithms
(OneR [61], chi-squared, ReliefF [62], Gain-Ratio [63],
correlation-based feature selection [64]) with 10-fold cross
validation to identify which of the 961 incorporated fea-
tures are most informative in separating active and

inactive structures. The four single-attribute evaluators
provide a rank for each feature importance, which we
averaged over all evaluators. As our features are numbered
according to our profile alignment, we also mapped the
identified features onto a template structure to identify
their location within the kinase domain. Feature selection
was performed with Weka v3.6.11 [65].

Classifier construction and parameter optimization
We used multiple classification algorithms to classify
active from inactive structures, including naïve Bayes,
neural network, random forest and support vector
classifiers. Naïve Bayes classifiers are probabilistic
classifiers which assume independence between the
features and apply Bayes’ theorem. Neural networks,
inspired by biological neurons, consist of a collection
of nodes (neurons) and edges (axons) that are trained
on the input data. Support vector classifiers are non-
probabilistic and identify the hyper-plane that best
partitions the high dimensional space in which the
dataset resides. The most accurate classifier was generated
using a random forest, which is an ensemble method
utilizing a parameterized number of decision trees and
outputting their mode as the classification. Each tree in
the forest also uses a parameterized maximum number of
features in making its decision. We performed a grid
search of the parameter space to identify the optimal
parameters for use with our selected features. Parameter
searches, classifier construction, and PCA were performed
in Python 2.7 [66], using the Scikit-learn machine learning
toolkit [67]. Plots were made with Matplotlib 1.5.1 [68].

Additional files

Additional file 1: Predictions and curated annotations of kinase PDB
files. This is three column CSV file which states the PDB ID and chain
(column 1), the predicted annotation (column 2), and the curated
annotation (column 3). (CSV 114 kb)

Additional file 2: Machine learning dataset. This file contains the
measured Φ, Ψ, χ1, and pseudo-dihedral angles used in the analysis.
(ZIP 15492 kb)
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