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Abstract

Background: Since the recombinant protein was discovered, it has become more popular in many aspects of life
science. The value of global pharmaceutical market was $87 billion in 2008 and the sales for industrial enzyme
exceeded $4 billion in 2012. This is strong evidence showing the great potential of recombinant protein. However,
native genes introduced into a host can cause incompatibility of codon usage bias, GC content, repeat region,
Shine-Dalgarno sequence with host’s expression system, so the yields can fall down significantly. Hence, we
propose novel methods for gene optimization based on neural network, Bayesian theory, and Euclidian distance.

Result: The correlation coefficients of our neural network are 0.86, 0.73, and 0.90 in training, validation, and testing
process. In addition, genes optimized by our methods seem to associate with highly expressed genes and give
reasonable codon adaptation index values. Furthermore, genes optimized by the proposed methods are highly
matched with the previous experimental data.

Conclusion: The proposed methods have high potential for gene optimization and further researches in gene
expression. We built a demonstrative program using Matlab R2014a under Mac OS X. The program was published
in both standalone executable program and Matlab function files. The developed program can be accessed from
http://www.math.hcmus.edu.vn/~ptbao/paper_soft/GeneOptProg/.

Keywords: Gene optimization, Neural network, Bayes’ theorem, Euclidean distance, Codon usage bias, Highly
expressed gene

Background
Since Paul Berg and Peter Lobban each independently pro-
posed an approach to generate recombinant DNA in 1969
– 1970, recombinant protein has become a widespread tool
for both cellular and molecular biology. For instance, in
2004, more than 75 recombinant proteins were used as
medicine and more than 360 pharmaceuticals based on re-
combinant protein were under development [1]. Moreover,
Elena’s study indicated that the global market of industrial
enzymes exceeded $4 billion in 2012 [2]. In the future, this
figure can be raised considerably thanks to the applications
of synthetic biology tools which will improve the productiv-
ity of recombinant proteins production.

The increment in recombinant protein productivity
reduces a significant production cost, so it might dramatic-
ally raise profits. In order to improve the productivity, sev-
eral aspects can be optimized such as purification process,
culture medium and genetic materials (including operator,
promoter, and gene). In this study, we only focus on gene
optimization.
Introducing native genes into a host can cause incompati-

bility of codon usage bias, GC content, repeat region,
Shine-Dalgarno sequence with host’s expression system.
The yields can fall down significantly [3–7]. In a culture
medium, synonymous genes, which share the same oper-
ator and promoter, can be expressed at different levels. The
synthetic codon optimized gene results in protein level that
were ~2 to 22 fold greater than the amounts reported for
the native genes [8–12]. A gene optimization program
based on machine learning approach and experimental data
can handle redesign task rapidly instead of using “brute
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force” method, which consume more significant times than
other resources.
The foundation of gene optimization is a phenomenon

of codon synonym. A codon is constructed by three ri-
bonucleotides, so there are 43 = 64 codons (there are 4
kinds of ribonucleotides: A – Adenine, U – Uracil, G –
Guanine and C - Cytosine). However, 61 types of codons
can code for only 20 kinds of amino acids. This means
there must be several amino acids encoded by at least two
codons. If one amino acid is coded by several codons, these
codons are called synonymous codons. Moreover, codon
usage is diverse from organism to organism [3, 13–15].
Generally, genes having compatible codon usage bias with
host’s expression system are usually highly expressed in
translational levels.
The aim of gene optimization program is to indicate

which synonymous genes can give higher yield by using
variety of approach including one amino acid – one codon
(JCAT, Codon Optimizer, INCA, UPGene, Gene De-
signer), randomization (DNA Works), hybrid (DNA
Works), Monte Carlo (Gene Designer), genetic algorithm
(GASSCO, EuGene), etc. [16–22]. In some case, one
amino acid – one codon method which replaces rare co-
dons by the most preferable usage codons can result in
worse protein expression as reported in many past studies
[11, 23–26]. Yields of genes redesigned by randomization
method are greater than yields of native genes, yet the re-
sult is uncertain and we cannot predict expression level
until experiment finished [11, 20]. Genetic algorithm and
Monte Carlo method with linear target function seem
more reasonable than other reported methods. However,
parameter estimation has been yet reported [18, 27]. A
nonlinear method based on neural network was proposed
but an analysis of its performance was not provided [28].
Some redesigned genes were proven for high expression
by experiment [19, 29–31]. However, the most important
disadvantage is that almost all of these studies did not pro-
vide any method to construct the model within an actual
experimental data and to evaluate the optimization
methods based on statistics [16–20, 22, 27].
Machine learning approaches have been developed rap-

idly for recent decades. These methods could analyze and
“learn” pattern from data sources and predict precisely the
outcome of a new data instance. Artificial neural network
(NN) and Bayesian decision are two of the most efficient
and popular machine learning algorithm worldwide. NN
is a strong learning technique and appropriated with both
regression and classification problem. Bayesian decision is
highly acclaimed due to its simplicity.
These are the reason why we propose a novel method

for gene optimization base on Bayesian theory and Neural
network which are the most common learning methods
using probability and statistics background. We also use
statistic test to evaluate and compare these methods.

Methods
Data collection
We used highly expressed genes (HEG) as the reference set
for codon adaptation index (CAI) computing [32]. We also
collected redesigned genes and respective translational ex-
pression levels of product (Table 1). The experimental data
collection process was based on four criteria: 1) expression
system should be Escherichia coli, 2) the experiments should
express both native and optimized genes, 3) the sequences
and respective quantitative productivity should be provided,
and 4) expression level should be recorded or could be con-
verted to mg/L. The data would be used to form an NN in a
later step.

Codon usage bias measurements
The preference of codons is correlated with intracellular
tRNA concentration in a host environment and reflects a
balance necessary for expression efficiency [3, 6, 9, 15].
Translation process can be delayed when ribosomes
encounter rare codons, which can cause ribosomes to de-
tach from mRNA and abort translation [9]. Moreover,
mRNA translation rate may impact the secondary structure
of encoded protein in that frequently used codons tend to
encode for structural elements while rare codons are associ-
ated with linkers [11, 33, 34].
CAI is one of the most popular and effective measures for

quantifying codon usage bias of a gene toward a reference
set of highly expressed genes [35]. Given a gene g= {g1, g2,
…, gi,… gL(g)}, CAI is defined as (1)

CAI gð Þ ¼
YL gð Þ

i¼1

wagi

 ! 1
L gð Þ

ð1Þ

where L(g) is the length of gene g counted by codon, gi
is the i th codon of gene g, ac is generally a codon c cod-
ing for amino acid a. In this case, c≡gi, wac described as
(2) is the relative adaptiveness of ac, and oac(HEG) is the
count of ac in HEG set.

wac ¼ oac HEGð Þ
max
oac

oac HEGð Þ ð2Þ

Relative synonymous codon usage (RSCU), which maps
genes into a 59-dimensional vector space is also a common

Table 1 Collected data including redesigned genes and
respective product

Host Product Number of genes Reference

E. coli BL21 DNA Polymerase and scFV 62 [46]

E. coli BL21 Cystatin C 2 [12]

E. coli BL21 PEDF 2 [9]

E. coli W3110 Prochymosin 7 [11]

Tuan-Anh et al. BMC Bioinformatics  (2017) 18:100 Page 2 of 10



measure and widely used in gene clustering [36]. The
RSCU is

rac gð Þ ¼ oac gð Þ
1
ka

X
c∈Ca

oac gð Þ ð3Þ

where Ca = {ac|ac is the codon c coding for amino acid a},
and ka = |Ca|.

GC content
Some studies indicated that GC content can impact the
stability of the 2nd structure of mRNA which was benefi-
cial for translation [7, 10]. GC content is computed as (4)

GC gð Þ ¼ oGC gð Þ
L gð Þ ð4Þ

where oGC(g) is the count of Guanine and Cytosine in

Fig. 1 Properties of HEGP and DHEG. The top plots are distribution of HEG’s CAI value. The bottom right plot is distribution of HEG’s GC value. The
bottom center plots illustrate HEG probability and distance to HEG of randomly generated gene sequences with respect to their CAI and GC value

Fig. 2 Comparison between NN and linear regression
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gene g, and L(g) is the length of gene g counted by
nucleotide.

Distance to HEG and HEG probability
In 2011, Menzella’s research suggested that replacing all
codons by the most preferable codons could lead to an in-
ferior yield because of an imbalanced tRNA pool. Addition-
ally, a low concentration of favorite usage codons also
causes decrease in the translational level. In this case, esti-
mating the most appropriate CAI value is an unlikely task
[11, 22]. Hence, we proposed two novel features called
HEG probability (HEGP) and distance to HEG (DHEG).
Given a gene g, the event that g is a member of HEG

set or not is a random variable. The probability that g
belongs to the reference set of HEG is shown as (5)

P HEGjgð Þ ¼ P gjHEGð ÞP HEGð Þ
P gjHEGð Þ þ P gjHEG

� � ð5Þ

P gjHEGð Þ ¼ P HEGð Þ �
Y
c∈C

e
−

rac gð Þ−μcð Þ2
2σ2c

σc
ffiffiffiffiffiffi
2π

p ð6Þ

P gjHEG
� � ¼ P HEG

� ��Y
c∈C

e
−

rac gð Þ−μcð Þ2
2σ 2c

σ c
ffiffiffiffiffiffi
2π

p ð7Þ

where c is a codon in a set of possible codon C, HEG is a
non-highly expressed genes set, μc μcð Þ and σc σ cð Þ is the
mean and standard deviation of rac of all genes in HEG set
(HEG set, respectively). In some cases that P gjHEG

� �
is

much smaller than P(g|HEG), P(HEG|g) can be high al-
though g is too different from HEG and P gjHEG

� �
is low.

In order to limit this situation, we defined a new Eq. (8)
limited by principle components analysis (PCA) [37, 38]

Pfinal HEGjgð Þ ¼ P HEGjgð Þ; pi gð Þ∈ minpi gHEG

� �
; maxpi gHEG

� �� �
0; otherwise

�
ð8Þ

where pi(g) is the i¬
th principle component of vector

(ra1(g),…, ra59(g))
T, gHEG is a gene in HEG set, and i ¼ 1; 2.

We only used two principle components, thus, we could
observe HEGP on a 2-dimensional surface.
Resembling HEGP, DHEG was used to calculate the simi-

larity between the candidate gene g and the reference set as
(9). We normalized DHEG by scaling D(g,HEG) to [0,1] such
that D(g,HEG) = 0 if g and HEG are totally different, and
D(g,HEG) = 1 if they highly resemble, see (10). In our experi-
ment, ming D g;HEGð Þ ¼ 4 and maxg D g;HEGð Þ ¼ 17.

D g;HEGð Þ ¼ 1
HEGj j

X
gHEG∈HEG

ra1 gð Þ
⋮

ra59 gð Þ

 !
−

ra1 gHEG

� �
⋮

ra59 gHEG

� �
0
@

1
A

������
������
2

ð9Þ

Table 2 P-value from Shapiro-Wilk normality test for the
correlation of NN and correlation of linear regression

Training Validation Testing

NN 0.03 0.00 9.10 × 10−5

Linear regression 0.21 0.11 0.13

Fig. 3 Visualization for fitness function based on NN (log scale) with respect to CAI and GC value
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Dfinal g;HEGð Þ ¼
D g;HEGð Þ − min

g
D g;HEGð Þ

max
g

D g;HEGð Þ− min
g

D g;HEGð Þ
ð10Þ

In order to investigate the properties of the novel features,
we used a genetic algorithm to optimize genes g coding for
random proteins as (11) or (12)

g ¼ arg max
g

CAI gð Þ−ij j þ GC gð Þ−jj j þ Pfinal HEGjgð Þ−k		 		� �
ð11Þ

g ¼ arg max
g

CAI gð Þ−ij j þ GC gð Þ−jj j þ Dfinal g;HEGð Þ−k		 		� �
ð12Þ

where i, j, k ∈ {0.00, 0.01,…, 1.00}. We would like to obtain
all possible value of HEGP and DHEG with respect to
each pair of CAI and GC value within this process and
analyze the association between CAI and GC and HEGP
(or DHEG). The results are shown in Results and Discus-
sion and Fig. 1.

Neural network
We proposed a novel method to construct fitness func-
tion for genetic algorithm (in next step) based on neural
network (NN), CAI and GC content. A 2-hidden layer
network is computed as (17), such that ∑g|o(g) − yg|

2 was
minimized, where yg is the yield of gene g collected from
experimental data (in Data collection), m is the number
of nodes at the first hidden layer, and n is the number of

nodes at the second hidden layer [39]. We estimated m

¼ ffiffiffiffiffiffiffi
3N

p þ 2
ffiffiffi
N
3

q
and n ¼ 2

ffiffiffi
N
3

q
as Huang suggested in

2003, where N is number of samples in data set [40].

o1 gð Þ ¼
w1
1;1 ⋯ w1

1;3
⋮ ⋱ ⋮

w1
m;1 ⋯ w1

m;3

0
@

1
A�

CAI gð Þ
GC gð Þ

1

0
@

1
A ð13Þ

h1 gð Þ ¼ 1
1þ e−o1

ð14Þ

o2 gð Þ ¼
w2
1;1 ⋯ w2

1;mþ1
⋮ ⋱ ⋮

w2
n;1 ⋯ w2

n;mþ1

0
@

1
A� h1

1


 �
ð15Þ

h2 gð Þ ¼ 1
1þ e−o2

ð16Þ

o gð Þ ¼ w1 ⋯ wnþ1ð Þ � h2
1


 �
ð17Þ

For the purpose of testing performance of this method,
we randomly separated data into 3 parts which were
30% of data for testing, 70% × 30% = 21% of data for val-
idation, and 70% × 70% = 49% of data for training. Train-
ing, validation, and testing processed were repeated 100
times to reduce impact of over fitting, and the final
model was an arithmetic mean of these 100 NNs, (18).

ofinal ¼ 1
100

X
i¼1

100
o ið Þ gð Þ ð18Þ

We also restricted NN by HEGP (or DHEG) such that
ofinal = Pfinal(HEG|g) (or ofinal =Dfinal(g, HEG)) if c (or
Dfinal(g,HEG) < 0.75), otherwise ofinal is considered as
(18). These were called NN restricted by HEGP (NNP)
and NN restricted by DHEG (NND).

Multivariable linear regression
Linear functions were commonly used in gene optimization
[18, 27], as (19). In this study, we proposed estimating

Fig. 4 Comparison between gene optimization methods. The plots are 2-dimensional distribution of redesigned genes. X and Y coordinate are
CAI and GC value, respectively
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parameters such that
P

g yg−byg� 
2
was minimized [41].

We also separated data as Neural network for comparison
purposes and the final model was constructed by using
whole data set.

byg ¼ cw1 cw2ð Þ � CAI gð Þ
GC gð Þ


 �
þ ^∈ ð19Þ

Genetic algorithm
The genetic algorithm which was inspired by natural se-
lection and evolution processes is naturally appropriate to
the gene optimization task in that each gene was assigned
as a chromosome or an individual [6, 42, 43]. These genes
could be evaluated by a fitness function which are Pfinal(-
HEG|g), Dfinal(g,HEG), ofinal(g) or byg . Generation to gener-

ation, the algorithm would converge and reach the
maximum value of fitness function. Finally, we found the
best gene with respect to the fitness function.

Results and Discussion
Properties of HEGP and DHEG
Figure 1 illustrates the distributions of HEGP and DHEG
in the 2-dimensional vector space constructed by CAI
and GC content value. As Fig. 1 described, HEGP of
genes varies from 0.00 to 1.00. However, because of the
PCA technique, genes having high HEGP tend to cluster
together and separate completely from the other genes
having minimum HEGP by a discriminant boundary.

DHEG also varies from 0.00 to 0.70, but there is no
boundary separating regions of high and low DHEG. Genes
having high HEGP or DHEG seem to distribute in the
region of high CAI and GC content density. This result
suggests that both HEGP and DHEG associate with HEG
set in CAI and GC content aspects.

Properties of NN and comparison between NN and linear
regression
In comparison with linear regression method, correlation of
NN is 1.50, 2.69, and 1.50 times higher than that of linear
regression within training, validation, and testing processes,
respectively, Fig. 2. A Shapiro-Wilk test shows that almost
all data do not fit a normal distribution, so we used a non-
parametric Wilcoxon signed-rank test to investigate whether
there is any significant difference between the correlation
given by NN and linear model, Table 2 [44]. The test indi-
cates that correlation coefficients from NN are significantly
higher than that given by linear regression (P-value <2.2 ×
10−6 for both three processes) [45]. This result suggests that
NN is much more accurate than linear regression. In fact,
most of phenomena and processes in nature, especially in
life science, associate with non-linear models. For instance,
both population growth, gene expression, epidemic spread,
etc. models are fitted well with non-linear models. This is a
reasonable explanation for the high performance of NN, a
non-linear model with sigmoid function.
However, NN usually faces an over fitting problem,

which causes inaccuracy in practice. As shown in Fig. 3,

Table 4 P-value from Shapiro-Wilk normality test for optimized genes

Table 3 Descriptive statistics for optimized genes

The orange cells represent for values, which are different more than 5% from values of HEG, and vice versa for green cells
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there are some unreasonable local maximum regions such
as the blue region on the top-left corner, and the purple
region on the middle-right of the figure. Although genes
in these regions have been reported to have low product-
ivity, they still are predicted to have a high translational
level. This is the result of a small data set and the com-
plexity of the NN. To overcome this situation, we modi-
fied HEGP as in Distance to HEG and HEG probability
and the result is shown in Comparison between proposed
methods and Application for Escherichia coli to compare
between optimization methods.

Comparison between proposed methods
We also optimized genes in HEG to compare gene
optimization methods and the results are visualized in Fig. 4.
While HEGP and DHEG highly appropriate with HEG (dif-
ferences in descriptive statistics values do not exceed 5% as
represented by green cells in Table 3), genes redesigned by
linear regression method locate in the region of low CAI
(from 0.36 and 0.68) and are quite different from HEG (or-
ange cells in Table 3). NNP is also potential for gene
optimization, but NN and NND seem to be unstable and a
part of genes optimized by these two methods locate in low
CAI region because of the over fitting problem. Both NNP
and distances to HEG are the same with HEG, but NN are
more than 5% different from HEG. All data in this experi-
ment are not under a normal distribution (Table 4) and the
Wilcoxon signed-rank test shows that genes redesigned by
HEGP and NND resemble HEG (P-value > 0.05), whereas
genes optimized by DHEG, NN, NNP and linear model are

significantly different from HEG, regarding CAI (Table 5).
The distribution of genes designed by NN and linear model
are different form HEG so it is reasonable that P-value <
0.05 in these cases. Although NNP and DHEG seem to be
associated with HEG, the test shows that genes designed by
these methods are different from HEG because these
methods only focus on high density region of HEG.

Application for Escherichia coli to compare between
optimization methods
We also redesigned gene coding for prochymosin, which
was well optimized by Menzella to introduce to Escheri-
chia coli in 2011, in order to compare with JCat and Eu-
Gene programs [11, 18, 19]. Menzella’s study suggested
that CAI of HEG coding for prochymosin are from 0.70
to 0.74 and CAI of the gene giving highest yield is 0.72.
Genes having CAI that is out of that range were reported
as to be low expressed. In this study, we used the best
gene of Menzella’s study as the criteria to evaluate and
compare gene optimization method. As Table 6 described,
all redesigned genes give the same GC content as the one
of Menzella. Only DHEG gives CAI in highly expressed
range (0.73) and the CAI value is just lower than CAI of
the standard genes by 1.39%, whereas the ones from NN
are 34.72% lower than the criteria of CAI. CAI from JCat,
EuGene, and linear model are considerably different from
the standard by 33.33, 30.56, and 27.78%, respectivly.
There are just slightly differences, which are 12.50, 6.94,
and 11.11% between the best gene from Menzella’s study
and genes optimized by HEGP, NNP, and NND. Gene

Table 6 Result of optization for gene coding for prochymosin and comparison with experimental result from Menzella’s study

Method CAI GC Patterns matching

Menzella 0.72 0.49 6 nucleotides 7 nucleotides 8 nucleotides 9 nucleotides Total

Jcat 0.96 0.50 177 69 22 12 280

Eugene 0.94 0.50 48 20 6 2 76

HEGP 0.81 0.51 173 55 15 6 249

DHEG 0.73 0.50 216 61 13 1 291

NN 0.47 0.49 185 57 20 7 269

NNP 0.67 0.50 204 68 26 13 311

NND 0.64 0.50 198 63 17 4 282

Linear 0.52 0.52 185 64 13 2 264

Table 5 P-values from Wilcoxon signed-rank test for difference between HEG and optimized genes
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redesigned by NND is most matched with Menzella’s gene
(311), while EuGene gives the worst (67). Matching results
of other methods are roughly the same, from 249 to 291.
According to these results, we can indicate that EuGene
and NN seem not to appropriate to redesign prochymo-
chin. Although matching result from JCat is the fourth
highest (280), JCat is also inappropriate because of the
high CAI value (0.96). DHEG is likely the most appropri-
ated method with reasonable CAI (0.73) and high match-
ing result (291). HEGP, NNP, and NND give CAI values,
which are slightly different from Menzella’s result, but
these are also potential methods because genes optimized
by these methods highly match with the best gene of
Menzella.
Finally, we built a demonstrative program using Matlab

R2014a under Mac OS X. The program was published in
both standalone executable program and Matlab function
files. As in Fig. 5, gene optimization includes 3 steps:

Step 1. Select target protein sequences in FASTA
format
Step 2. Choose optimization method
Step 3. Start program.

While the program run, the text box on the bottom and
the chart on the right will illustrate the progress. The result
will be presented in the text box and also stored as FASTA
format. The developed program can be downloaded from
http://www.math.hcmus.edu.vn/~ptbao/paper_soft/GeneOpt-
Prog/.
There are limitations of our study. Firstly, HEG reference

set for CAI computing is obtained from predictive method
with no laboratory evidence showing that the set is actual

HEG dataset. Other studies share the same problem, but
the redesigned gene based on CAI computation with pre-
dicted HEG are highly expressed [19, 29–31]. Secondly,
NN is sensitive in that a small change of input can lead to a
significant change of output and it also tends to over fit the
training data. Data is collected from different sources with
a limited number of samples under variety of experimental
environments. These contributes to over-fitting of the NN
method. Lastly, although the optimized genes closely re-
semble highly expressed redesigned genes in related studies,
results of proposed methods are not verified by wet lab
experiments.

Conclusions
In this study, we proposed the uses of HEGP, DHEG,
and NN to optimize genes and also indicated an ap-
proach to estimate parameters for linear function in
gene optimization. The correlations of our proposed NN
method are from 1.5 to 2.69 times greater than these of
linear regression method. Additionally, genes redesigned
by the proposed methods associate with HEG whereas
genes optimized by popular linear function give low
CAI. Therefore, it is concluded that our proposed
methods can be potential for gene optimization and fur-
ther research in gene expression.
In the future, more redesigned genes will be collected to

enrich our database to improve the performance of NN.
In addition, a mathematical model based on differential
equation will be developed to investigate how codon usage
bias and tRNA concentration influence translation expres-
sion level. The developed model can then be applied in
gene optimization. Finally, experiment will be carried out
to test the proposed methods and hypothesis.

Fig. 5 Demonstration program and user’s guide
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