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Abstract

Background: Current development of sequencing technologies is towards generating longer and noisier reads.
Evidently, accurate alignment of these reads play an important role in any downstream analysis. Similarly, reducing
the overall cost of sequencing is related to the time consumption of the aligner. The tradeoff between accuracy and
speed is the main challenge in designing long read aligners.

Results: We propose Meta-aligner which aligns long and very long reads to the reference genome very efficiently
and accurately. Meta-aligner incorporates available short/long aligners as subcomponents and uses statistics from the
reference genome to increase the performance. Meta-aligner estimates statistics from reads and the reference genome
automatically. Meta-aligner is implemented in C++ and runs in popular POSIX-like operating systems such as Linux.

Conclusions: Meta-aligner achieves high recall rates and precisions especially for long reads and high error rates.
Also, it improves performance of alignment in the case of PacBio long-reads in comparison with traditional schemes.
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Background

The number of short and long reads produced by Next
Generation Sequencing (NGS) technologies is growing
very rapidly. Evidently, efficient and accurate mapping
of these reads to the reference genome plays an impor-
tant role in reducing the overall NGS cost as well as
improving downstream analysis in applications such as
re-sequencing, RNA-Seq, and ChIP-Seq. Currently, NGS
technologies can be divided into two categories based on
the overall quality and length of the reads. Sequencers
such as [llumina-HIseq and Ion Torrent-Proton with short
and almost clean reads fall in the first category, while
PacBio-RS II and Nanopore-MinION are typical examples
of sequencers that provide long but noisier reads.

A number of algorithms and softwares, such as Bowtie
[1], mrsFAST [2], SOAP2 [3] are typically used for align-
ment of short reads, while Bowtie2 [4], BWA [5], Seqalto
[6], and BLASR [7] are among methods used for handling
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long reads. Comparative analysis of these aligners is not
trivial as quality can be measured in terms of a number of
metrics such as handling reads within the repeat regions,
handling very noisy reads, uniqueness and accuracy in the
report, speed, and finally, the effect of results on a given
downstream analysis [8].

In this paper, we are concerned with alignment of long
and very long reads (longer than 300 base pairs). One
popular design technique in this regime is to extract
seeds (small fragments) from the reads and find exact
or very similar matches for these seeds within the refer-
ence genome. After anchoring extracted seeds to several
locations, local alignment algorithms are used to deter-
mine the best match(es) for the given read. In general, one
common theme among the available long-read aligners
is that they treat all reads equally. However, as shown in
this paper, differentiating between reads that are coming
from repeat and non-repeat regions leads to significant
improvement in performance of the alignment scheme.
In fact, the key contrast between our approach and tradi-
tional aligners is that we focus on exploiting the inherent
genome structure and the underlying statistics of the reads
from the outset.
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From a high level perspective, Meta-aligner consists of
two different stages, namely alignment and assignment.
The first stage is designed to rapidly and accurately align
easily mappable reads to the reference genome using tra-
ditional short-read aligners for mapping small fragments
of reads uniquely. As our results clearly demonstrate, due
to statistical properties of real genomes, a large fraction of
reads will be handled at this stage. The remaining reads
are relatively harder to align and, therefore, additional
processing at the assignment stage should be devoted to
properly align them. These reads are handled by aligning
all remaining small fragments of them. However, as the
number of reads processed at the second stage is relatively
small, the overall time consumption of the second stage is
less than the first stage.

Results and discussion

Genome’s statistics: random intervals

As an example, consider the case of resequencing problem
where reads are mapped to the reference genome and vari-
ants are called from mapped reads. In the ideal case, the
goal is to map all reads uniquely to their original positions
in the reference genome. However, the repeat structure of
genomes makes it difficult to map all the reads correctly
and uniquely to the genome.

Our goal is to show that by taking into account the
genome structure, a large number of reads can be aligned
very rapidly and accurately. To this end, we first consider
a model in which the reference genome resembles a con-
ceptual mosaic structure alternating between two types of
intervals, namely repeat and random intervals (as shown
in Additional file 1: Figure S5). The type of interval can
be defined based on two parameters ¢ and d. A repeat
(respectively random) interval is defined as consecutive
bases where any substring of length ¢ starting from a posi-
tion within the interval can be matched to some other
(respectively no other) location(s) of the genome with
maximum Hamming distance d. Thus, any substring of
length £ is classified as either a repeat or a random inter-
val. Additional file 1: Figure S2 shows how the fraction of
random intervals changes as £ increases from 20 to 200
for d = 0 in chrl9 of hgl9. This figure shows that about
98 percent are categorized as non-repeat regions for the
choice of £ = 80 withd = 0.

In the next step, we extend the mosaic model of the ref-
erence genome to the reads themselves, as every read also
consists of mosaic random and repeat intervals. In fact,
the mosaic structure of the read is exactly copied from its
originating position on the reference genome. In this way,
the ¢ spectrum of the read can be partitioned into ran-
dom and repeat £-mers where a random/repeat £-mer is
defined as an £-mer located within a random/repeat inter-
val of the original genome. The proposed model provides
an insight into the accuracy of mapping ¢-mers to the
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reference genome. Consider a random ¢-mer within the
genome. If this £-mer is read by a machine and contains at
most L%J substitutions, then it can be mapped uniquely to
its correct location when Hamming distance 4 is used in
the mosaic model.

Our proposed algorithm rests on the aforementioned
model of the genome and exploits it to map reads from
a target genome correctly and uniquely to the reference
genome. Let us consider an algorithm that attempts to
uniquely map all the £-mers (the ¢-spectrum) of a given
read with maximum Hamming distance L%J to the ref-
erence genome. We also assume that such algorithm
anchors the read to the locations where at least one ¢-mer
is mapped uniquely. In this way, the algorithm outputs
a list of possible locations for each read. We are inter-
ested in the case where only one consistent interval exists
in the genome where all the uniquely mapped ¢-mers of
a given read belong to; this location will then be identi-
fied as the true position of that read. However, two types
of reads do not map uniquely to their true positions: (a)
reads that none of their £-mers can be mapped uniquely
to the reference genome, i.e. the whole read resides inside
the repeat interval or (b) reads which at least one of their
£-mers is uniquely mapped to an incorrect location. In
the following, we will address handling of the first and,
then, the second of aforementioned read types through an
additional decision making procedure.

It is important to note that the fraction of repeat inter-
vals as defined in our model, in addition to the number of
anchored reads are both functions of parameters such as
¢, d, and read length L. In order to investigate the effect of
these parameters on the number of reads of the first type,
let us consider the statistics of the number of reads with
uniquely mappable £-mers in chr19 of hg19. It is expected
that an increase in £ results in an increase in the number
of random ¢-mers within a read as shown in Fig. 1. In this
simulation, we scan the whole chr19 and generate all reads
of length L that start at every base. However, the number
of reads without any random £-mer surprisingly remains
almost constant for different values of £ and d in a typical
range considered in our simulations.

As shown in Fig. 1a and ¢, only &~ 0.49% and ~ 1.18%
of reads of length L = 1000 base pairs (bps) have no
random {¢-mer (first type of reads) of length £ = 40
for d = 0 and d = 3, respectively. The same pattern
is also observed for the choice of smaller read length of
L = 400 bps. It should also be noted that although align-
ing all the ¢-mers to the reference genome increases the
sensitivity of the algorithm, it also incurs additional com-
putational complexity that should be taken into account.
For instance, such full £-mer alignment requires mapping
960 40-mers to anchor a read of length 1000 with ¢ = 40.
One way to significantly decrease the order of complex-
ity is to consider only non-overlapping ¢-mers. As such
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Fig. 1 Distribution of random ¢-mers within reads in chr19 of hg19. a Percentage of reads of length 1000 with random ¢-mers for different values of
£ and d = 0. b Percentage of reads of length 400 with random £-mers for different values of £ and d = 0. Figures a-b show the histograms of reads
with 0, [1-80] and [81-(L — £)] random £-mers. ¢ Percentage of reads of length 1000 with random £-mers for different values of d and € = 40.

d Percentage of reads of length 400 with random £-mers for different values of d and ¢ = 40. Figures ¢—d show the histograms of reads with 0,

Percentage of reads (log)

£ =40
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sampling, in general, leads to some level of performance
degradation, we have reported the results in the case of
non-overlapping ¢-mers in Table 1(a). The results show
negligible change in the number of reads of the first type
when such non-overlapping £-mers are used. In fact, only
~ 0.54% and ~ 2.26% of reads of length L = 1000 bps
have no non-overlapping random £-mer of length ¢ = 40
for d = 0 and d = 3, respectively. However, in the case
of shorter reads, the number of non-overlapping £-mers
does not provide enough diversity for a given read and the
chance of having at least one random £-mer reduces. For
example, for L = 400 bps, & 0.7% and &~ 6.3% of reads
have no non-overlapping random £-mer of length ¢ = 40
for d = 0 and d = 3, respectively. In such cases, it is
suggested to use a number of overlapping £-mers (using a
sliding window of length S7) to increase diversity.

In the next step, we address the case of second type of
reads with at least one of their £-mers uniquely mapped
to an incorrect location. In practice, we are interested
in handling very noisy reads where substitutions and

indels are inevitable. In such scenarios, some ¢-mers are
still uniquely, but now incorrectly, mapped to the refer-
ence genome. In order to address this issue, two different
approaches can be adopted: (a) decision making based
on more than one uniquely mapped ¢-mers that corre-
spond to the same location or (b) using longer ¢-mers
to alleviate the effect of noisy reads. For example, in the
case of 40-mers, one may consider mapping either two
different 40-mers or single 80-mers. The first approach
is more favorable, since anchoring longer ¢-mers is time
consuming especially in case of high error rates. Addi-
tionally, addressing indels and structural variations in case
of longer ¢-mers leads to a more challenging gap-based
alignment step. In fact, shorter £-mers can be aligned
with or without small gaps and it may still be possible
to find enough ¢-mers that are not significantly exposed
to structural variations and/or indels. Finally, repeats can
be bridged by two or more £-mers similar to mate-pairs.
In genomes with high fraction of repetitive areas, such as
human genome, the second approach anchors the reads
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Number of disjoint random £-mers within a read

for L = 400
0 1 between 1and ~ L/¢
(d,£) = (0,20) 0.9% 0.7% 69.1%
(d,0) = (0,40)  0.7% 0.4% 39.4%
(d,¢) = (3,40) 63% 8% 84.8%
(d,¢) =(0,80) 0.7% 0.3% 4.2%
Number of low-repeat £-mer within a read
for d=0
L, 0 between 1and 80  between 81 and ~ /¢
5 56.73%  11.94% 30.98%
10 54.46%  4.9% 4.9%
20 5275%  0.08% 46.81%
40 52.75%  0.08% 46.81%
Number of low-repeat £-mer within a read
for d=0

L, 0 between 1and 80  between 81 and = L/¢
5 5231% 12.28% 35.08%
10 50.22% 4.91% 44.54%
20 4864% 0.1% 50.93%
40 4864% 0.1% 50.93%

Number of disjoint random €-mers within a read

for L = 1000
~L/L O 1 between 1and ~ L/¢ ~ L/
29% 0.6% 0.19% 85.6% 13.5%
59.1%  0.54% 0.17% 62.6% 36.68%
08%  2.26% 1.49% 96.2% 0.04%
948% 049%  0.17% 8.2% 91.1%
(b)
Number of low-repeat £-mer within a read
for d=3

0 between 1and 80  between 81 and ~ /¢

3201%  30.97% 36.88%

2621%  19.81% 53.83%

2190%  4.06% 73.89%

21.69%  0.07% 78.09%

©
Number of low-repeat £-mer within a read
for d=3

0 between 1and 80  between 81 and =~ L/¢

17.18%  20.15% 62.59%

1407% 11.67% 74.18%

11.75%  2.24% 85.93%

11.64%  0.04% 88.23%

(a) Percentage of disjoint random £-mers within reads of lengths L = 400 and L = 1000 of ch19 of hg19. (b) and (c) Fraction of the remaining reads after the first step and
their number of low-repeat £-mers with different list sizes L = {5, 10, 20,40} for £ = 40. In (b) and (c), we assume that, all £-mers and only non-overlapping £-mers, are

respectively used at the first step

efficiently and correctly to the repeat intervals if the flank-
ing parts of the read still falls in a random interval.

In order to maximize the throughput of the algorithm,
it is important to properly choose the values of £ and d
for a given reference genome, sequencing error rate, and
variation rate. In Additional file 1: Section 1, assuming an
i.i.d. reference and error model, we analytically determine
the appropriate values of ¢ and d for different sequenc-
ing error and variation rates. We show that £ = 40 is
the proper choice of £ for such model, when sequenc-
ing error rate is lower than 10%. Subsequently, the value
of d is obtained by computing the average number of
errors within the substring of length £ = 40. As we will
show in Additional files 1 and 2, our method can addi-
tionally exploit the real genome structure, by adopting
an estimation mechanism (Parameter Estimation algo-
rithm) that can find the proper values of parameters ¢
and d from the given reads and corresponding reference
genome. The details of such estimation mechanism and
its results are provided in Additional file 1: Section 3 and
Additional file 2.

Genome’s statistics: repeats with low copy numbers

Using uniquely mapped ¢-mers, most of the reads are
uniquely and correctly mapped to the reference genome,
with a remarkably low computational complexity. The
remaining reads which are not anchored are mostly reads
that come from pseudogenes and gene families that are
classified as low copy number repeats. However, anchor-
ing these reads is still highly valuable for downstream
genome analysis. In order to handle this class of reads, the
proposed algorithm maps all £-mers with maximum Ham-
ming distance I_%J to the reference genome and reports a
finite list of size L of possible positions for each £-mer.
All ¢-mers whose number of possible positions exceeds
the list size L are discarded, and the ¢-mer to which a
list of size L, greater than one is assigned is labeled as
a low-repeat £-mer. The reads that we are considering at
this stage fall into two categories: (a) for the first type of
reads, none of their £-mers are low-repeat £-mer, in which
case that read will be discarded, or (b) for the second type
of reads, the list assigned to at least one of their low-repeat
£-mers does not include its correct location. In the next



Nashta-ali et al. BMIC Bioinformatics (2017) 18:126

step, we will first discuss what percentage of reads are of
the first type. Subsequently, we will present a method for
identifying correct possible positions for the second type
of reads.

Let us assume that in the previous part, all £-mers of
each read are used for anchoring that read and after this
part a number of reads are still remaining to be further
processed. Table 1(b) shows the percentage of remaining
reads of length L = 1000 bps as a function of number of
low-repeat 40-mers. In the case of £33 = 10and d = 0,
only ~ 54.46% of the remaining reads have no low-repeat
40-mers (~ 0.27% of total reads) and changingdtod = 3
has negligible effect on those percentages. Thus, the first
type of reads constitute only a small fraction of reads that
can then be aligned using larger £-mers and list sizes.

Table 1(c) shows the results of same process when only
non-overlapping ¢-mers of reads were used through the
same process. In this case, with the same £;; = 10 and
d = 0, = 50.22% of the remaining reads have no low-
repeat £-mers (= 0.27% of total reads). These results show
that in the case of long enough reads, using only the non-
overlapping £-mers has almost the same performance as
using all £-spectra.

In order to handle the second type of reads for which
the list corresponding to some low-repeat £-mers does
not contain their correct positions, we look for maximum
consensus positions among the lists. Details are presented
in the Online Methods.

Real data and synthetic test results

In the current implementation of Meta-aligner, the fol-
lowing short-read aligners can be used in the alignment
stage: Bowtie [1], SOAP2 [3], and mrsFast-Ultra [2], where
Bowtie is set as the default aligner. In Additional file 1:
Section 4, we tested the alignment stage of Meta-aligner
for these three short-read aligners and show that Bowtie
is the best aligner due to its performance. In the assign-
ment stage, Bowtie and Bowtie2 are used to create a
list of candidate positions for small and long fragments,
respectively. We use sub-fragment lengths ¢; at the first
and second steps and ¢y at the third step of Meta-
aligner, respectively. The overall structure of Meta-aligner
is shown in Additional file 1: Figure S7.

All tests are executed on 24 threads of a 24-core cluster
with 32 GB RAM. The human genome hg19 including sex
chromosomes is used as the reference genome. We have
tested Meta-aligner as well as several long-read aligners
(Seqalto, Bowtie2 and BWA) to align a real dataset. The
real dataset is from Human 54x PacBio reads with acces-
sion number SRX533609 published in NCBI GenBank [9],
where the first two files, SRR1304331 and SRR1304332
were used. We selected 174537 reads of this dataset
with minimum and average lengths of 500 and 6890,
respectively, without any constraint on their qualities (see
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Additional file 1: Section 8). Applying PE algorithm to
this dataset results in two sets of parameters in terms of
trade-off between run time and mapping rate: 1) when
run time has a higher priority: (¢1,d) = (25,1) and no
sliding, 2) when favoring mapping rate: (¢1,d) = (25,2)
with §; = 5. The PE algorithm also estimates the mis-
match and indel error rates of the PacBio read set as,
(ém, éG) = (2.8%,13.8%).

Comparative study of Meta-aligner, BWA-SW, BLASR,
Bowtie2 and Seqalto is presented in Table 2. As the results
show, Meta-aligner has the best mapping rate and the
maximum fraction of unique reports. Seqalto and Bowtie2
failed to align the given read set due to high error rates
and RAM constraints (even at 192 GB RAM), respectively.
BWA-SW with default parameters (z = 2) has smaller
run time, but results in lower number of aligned reads
compared to Meta-aligner. The mapping rate of BWA-
SW can be improved by setting z = 10 at the expense of
higher time consumption. The important fact is that since
PacBio reads are noisy and dominated by indels, BWA-SW
shows inferior performance in the case of unique align-
ment as it reports many candidate locations for each read
and the reported locations are usually clumped close to
each other, leading to confusion for down-stream analy-
sis. In overall, BWA-SW uniquely aligns 21% and 19.61%
of reads with z = 2 and z = 10, respectively. How-
ever, Meta-aligner aligns 87.04% of reads uniquely at the
first stage and 93.37% of reads at the end of the second
step. Also, we compare the score of mapped reads at the
first stage of Meta-aligner with the best report of BWA
z = 10. For this comparison, we use the same scoring
method for both aligners. Out of 150,074 reads mapped
by both aligners, 127,267 reads are mapped essentially to
the same location, i.e., the reported locations are within
read’s lengths. We compared the scores of aligners for
these reads and observed that Meta-aligner reports have
superior scores in 120,192 of them. The number of reads
essentially mapped to different locations is 22,807. Meta-
aligner scores are higher than BWA scores in 22,310
of them.

Although Meta-aligner has small improvement in map-
ping rate compared with BLASR, it reports very large
fraction of PacBio reads uniquely. However, BLASR can
report only the best match. In order to compare the accu-
racy of Meta-aligner and BLASR when constrained to
report only the best match, we compared positions of
BLASR in this case and the first stage of Meta-aligner (it
reports 87.04% of reads uniquely). In such scenario, close
to 8% of these positions differ between these two reports.
Since as shown in Additional file 1: Section 5 that the first
stage of Meta-aligner is almost exact (with small incorrect
reported positions) in the case of synthetic reads, espe-
cially at high error rates, it can be deduced that BLASR’s
accuracy degrades when it is forced to report the best
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Aligner Commands or parameters Mapping (%) Unique reports (%) Time(sec) Peak memory (GB)

Meta-aligner Estimated parameters 1: 88.99 84.01 24160 27 (flexible)
#1,d,81) = (251,-)

Meta-aligner Estimated parameters 2: 97.97 93.37 39041 27 (flexible)
(01,d,81) = (25,2,5)

BWA-SW z=2 90.46 21 1573 22.6 (fixed)

BWA-SW z=10 95.55 19.61 207838 28.5 (fixed)

BLASR default 97.21 23.57 35910 23.8 (fixed)

Bowtie2* —

Seqalto* —

) are failed to align due to high error rate of reads (for Seqalto) and RAM constraint (up to 192 GB for Bowtie2)

match. Another key practical advantage of Meta-aligner in
comparison with other aligners is its ability to match with
the available amount of system RAM size rather than a
fixed size. For further details of Meta-aligner superior per-
formance under different scenarios, see Additional file 1:
Section 7.

In order to investigate robustness of Meta-aligner to
variations in read lengths and quality scores, the number
of aligned reads of Meta-aligner in three different scenar-
ios are shown in Fig. 2. In this figure, the number of input
reads are shown in red as a reference.

Figure 2a shows that almost all reads longer than 4 Kbps
are uniquely aligned after the alignment stage of Meta-
aligner. Subsequently, the assignment stage significantly
increases the number of aligned reads for reads shorter
than 4 Kbps. Figure 2b shows that all reads with quality
scores above 0.84 are aligned at the end of both stages of
Meta-aligner. For lower quality reads, only a small frac-
tion of reads are remained unaligned. For instance, 84.4%
of the &~ 3200 reads with quality scores lower than 0.7 are
handled by Meta-aligner after the second step.

In order to highlight the strength of Meta-aligner in
the case of both noisy and long reads, we generated N
synthetic reads using an i.i.d. error model with ¢ =
{10; 15;20}%, and read lengths L = {1000; 4000; 8000} bps,
from hgl9 where N x L = 10°. Table 3 shows perfor-
mance of Meta-aligner for this scenario. In fact, at high
indel rates, Meta-aligner shows better performance as its
design inherently takes such issues into account. Note
that under the i.i.d. error model considered in our simula-
tions performance is worse in comparison with the more
realistic burst indel model generally observed in PacBio
read sets.

In addition, Meta-aligner has very high performance in
the case of shorter reads and less noisy. For determin-
ing this statement, we generated N = 1000000 synthetic
reads using an i.i.d. error model with € = {2;5;10} % and
read lengths L = {300;500; 1000} bps, from the hgl9.
Our comparative results, as shown in Fig. 3 demonstrate
that at the given error rates and read lengths, Meta-
aligner’s performance in terms of recall rate and preci-
sion remained at very high quality levels. As expected,

2500
- Input reads
2000 -3”’ scenario 7
. -2'”' scenario
5 1500 |:|1~f i
g 15 scenario | 1
<
=}
E 1000 —
z
500 |
0 . :
05 1 15 2 25 3 35 4
Read length x10*
Meta-aligner with (¢,d, 81) = (25,2,5) (97.97% of reads are aligned)

16000 T T

T T
-Input reads
14000 3 scenario
12000 B s
—— - [ 11+ scenario

10000 g

enario

sooo | 1

Number of reads

6000 - "7 9

4000 [ b

2000 -, b

0 ! L
0.5 0.55 0.6 0.65 0.7} 0.75 0.8 0.85 0.9
Quality

b

Fig. 2 PacBio read lengths and quality scores. This figure shows the lengths (in a) and qualities (in b) of the input and aligned read with the
Meta-aligner. In this figure, three set of results are presented: (1) Only alignment stage of Meta-aligner with (£1,d) = (25, 1) and no slide (76.54% of
reads are aligned), (2) Only alignment stage of Meta-aligner with (£1,d, 81) = (25,2,5) (87.04% of reads are aligned), and (3) Two first steps of
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Table 3 Meta-aligner results for very long and noisy reads

L €% (61,d,8y) R (%) P (%) T (sec)

1000 10 indel (30,3,10) 96.33 98.10 5196

1000 10 indel (30,2,10) 9591 98.27 3047

1000 15 indel (25,2,5) 95.02 95.66 7847

1000 10 indel (30,3,5) 96.64 96.92 10067
5 mismatch

4000 15 indel (25,2,—-) 98.72 99.41 4899

4000 15 indel (25,2,12) 98.78 99.41 5103

4000 15 indel (25,2,-) 98.13 99.41 5435
5 mismatch

4000 15 indel (25,2,12) 98.23 99.43 5692
5 mismatch

8000 20 indel (25,2,-) 99.26 99.53 13283

8000 20 indel (25,2,12) 99.34 99.58 13668

8000 15 indel (25,2,-) 99.48 99.59 12887
5 mismatch

8000 15 indel (25,2,12) 99.52 99.61 13170
5 mismatch

The overall Meta-aligner results for hg19 in the case of very high error rates (e = {10; 15; 20} %) and read lengths of L = {1000;4000; 8000} bps). Number of reads of length L

is N =10%/L

Meta-Aligner’s performance improves as read length is
increased. Although BWA-SW takes less run time, its
recall and precision are worse than Meta-aligner. In the
case of Seqalto, it failed to align any reads with L = 1000
bps and € = 10%. In addition, its run time for L =
1000 and € = 5% is over 100000 seconds, which is out
of range of Fig. 3. Fraction of unique reports for these
tests is also provided in Additional file 1: Figure S10 and
S11. These results show that large fraction of reads are
uniquely reported for Meta-aligner (in comparison with
other aligners). More results are presented in Additional
file 1: Section 6.

Conclusion

We propose Meta-aligner, a new method for alignment
of long-reads based on the genome structure. We show
that genome structure has implicit information which
should be taken into account for designing a more effi-
cient alignment algorithm. Meta-aligner handles reads
classified based on the genome structure within three
classes. First, reads with many short sub-fragments orig-
inating from unique regions of the genome are aligned
uniquely, fast and almost accurately by only considering
two sub-fragments of such read. The remaining reads
are categorized into two classes based on the number of
copies of their short sub-fragments as either low or high
copy number reads. Reads for which a major number of
sub-fragments come from low copy number regions of the
genome are handled by assigning a small list to them. Sub-
sequently, the same procedure is executed for high copy

number reads with a larger list. Results show the accu-
racy and high mapping percentage of Meta-aligner for
long PacBio reads. Another key point to note is that Meta-
aligner has a mechanism to estimate its key parameters
from the input read set and reference genome to further
optimize its performance for real genomes by adopting to
their statistics.

Methods

Parameters definition and synthetic read set construction:
The variations between target and reference genomes
is statistically modelled by randomly dispersed substitu-
tions and indels. It is also assumed that the variation
rate is «. The reads are also assumed to be noisy with
an error rate € which is a mixture of substitutions and
indels. Let R denote the set of sequenced reads of length
L. Meta-aligner method consists of a PE algorithm for
parameters estimation and two stages, namely alignment
and assignment. The proposed PE algorithm, alignment
and assignment procedures are illustrated in Additional
file 1: Figure S7-S9 and are detailed in Additional file 1:
Algorithms 1-4.

PE algorithm: In the PE algorithm, Meta-aligner esti-
mates the values ¢, d, mismatch and indel error rates (€34
and €g), and the normalized cutting distance for local
alignment. These parameters are estimated by running
alignment stage for the first N; input reads. Meta-aligner
first aligns these reads with £ = 25 and d = 2. Then,
local alignment of the anchored reads provides an esti-
mation of mismatch and indel error rates. Subsequently,
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Fig. 3 Comparison of Meta-aligner and other long-read aligners. One million reads of lengths [ = {300; 500; 1000} bps with sequencing error rate
€ = {2;5;,10}% from hg19 are used in this test run. In a and b, recall rates and precision for different L and € = 5% are shown. In ¢ and d, recall rates
and precision for L = 1000 bps and different values of € are shown

Meta-aligner estimates the best pair (¢,d = |épl +
0.5]) for values of £ € {15,20,25,30, 35,40, 45,50} to
achieve the lowest anchoring time. Subsequently, its recall
rate is close to the maximum recall rate of this set. The
normalized cutting distance for local alignment is set
to5 x €g.

Anchoring step of the alignment stage: In the alignment
stage, all reads are first divided into non-overlapping con-
secutive smaller fragments of length ¢; forming an array
of K; = | Li/£1] fragments for the ith read oflength L;. The
1%t and 2"4 fragments of all reads are aligned to the refer-
ence genome using any aligner capable of mapping reads
with a Hamming distance of d;. If any of these fragments
is uniquely aligned, a tag is assigned to the fragment, rep-
resenting its corresponding position and flag (forward or
reverse directions) on the reference genome. In the case
that two fragments are uniquely aligned and they confirm
each other, that read is anchored to the confirmed posi-
tion. The first two fragments confirm each other if the
difference of their aligned positions is in the range

1 —%, 0 +4],

and have the same flags. Parameter ¢ is set to accommo-
date for indels within two fragments of length ¢;. Reads
with confirmed fragments are removed from the set of

reads R. Subsequently, the third fragment of the remain-
ing reads are aligned to the reference genome, and the
reads are anchored if two fragments out of three confirm
each other. The anchored reads are then removed from
the set. As explained in Additional file 1: Algorithm 1,
the fragments are progressively added and anchored reads
with exactly two confirmed fragments are removed from
the set. In general, the i" and ;™ uniquely aligned frag-
ments of each read confirm each other if the difference of
the mapped positions falls in the following range,

[(—i) 1 —%),(—i) L +9)].

The procedure stops whenever R = # or all fragments
are processed. Up to this step, we have considered non-
overlapping fragments. However, the aforementioned
algorithm can be applied to overlapping fragments as well.
For this case, anchoring is repeated [¢;/51] times, such
that at the ith step, we start from the (i — 1) x S;-th base
of all reads, for all i € {1,---,[€1/S11}. We recommend
that overlapped fragments are used for very noisy read and
reads of length less than 300.

Local alignment step of the alignment stage: The
anchored reads can be aligned by any local alignment
algorithm. We use Smith-Waterman, which provides the
highest sensitivity. Such high sensitivity is necessary for
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long-reads with high error rate. We consider the normal-
ized cutting distance which shows the number of columns
and rows that is used in the local alignment table relative
to each read length, in the local alignment process. This
parameter is between 0 and 2 and its default value is 0.05.
Constructing tables of the assignment stage: At this
stage, all reads remaining in R are divided into over-
lapping fragments of length ¢;. A default value for the
overlapping fragments’ length is initially set to £;/2. All
fragments are then aligned by considering a maximum list
of size L, consisting of possible positions with a distance
smaller than d; from the reference genome. Subsequently,
fragments with more than L,; positions are discarded.
The list of positions of the i fragment of a given read r
is denoted by T;(r). In order to emphasise the number of
reported positions for each fragment, we assign a score
to each reported position as a function of the reported
aligner score and its number of reported positions. We
propose an exponential weight to incorporate the effect of
number of reported positions, as follows,

S (i) = Sa (iz)) e 0210

where S, (i; j) and |T;(r)| denote the reported score of the
aligner for the jth element of T; and the size of T;(r),
respectively.

Constructing paths of the assignment stage: Consider
a position p € Tj(r). If p confirms another position
q € Tj(r), Vj > 1, we construct a path consisting of p
and g, subsequently removing them from the tables. We
continue this procedure by searching for all possible paths
consisting of the remaining positions within tables. The
score of each path is set to the sum of scores of all its posi-
tions. Subsequently, paths are sorted in a decreasing order.
In most cases, a gap separates the paths with relatively
higher scores from those with relatively smaller scores.
The paths with relatively higher scores are then selected
according to the parameter (Sgn) which determines the
threshold of relatively higher scores.

Selecting paths of the assignment stage: After local
alignment of each path of r to the corresponding location
of the genome, paths with low alignment scores are fil-
tered out and a list of possible positions is reported for r.
Reads with any reported list are removed from R.
Repeating the assignment stage: After this step, the
same procedure can be applied to all reads in R with larger
fragments of length ¢, > ¢; and larger maximum list size
of £2.

Additional files

Additional file 1: Supplementary file. (PDF 848 kb)
Additional file 2: PE algorithm simulations. (XLSX 66 kb)
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