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Abstract

Background: Many computational approaches have been used for target prediction, including machine learning,
reverse docking, bioactivity spectra analysis, and chemical similarity searching. Recent studies have suggested that
chemical similarity searching may be driven by the most-similar ligand. However, the extent of bioactivity of
most-similar ligands has been oversimplified or even neglected in these studies, and this has impaired the
prediction power.

Results: Here we propose the MOst-Similar ligand-based Target inference approach, namely MOST, which uses
fingerprint similarity and explicit bioactivity of the most-similar ligands to predict targets of the query compound.
Performance of MOST was evaluated by using combinations of different fingerprint schemes, machine learning
methods, and bioactivity representations. In sevenfold cross-validation with a benchmark Ki dataset from CHEMBL
release 19 containing 61,937 bioactivity data of 173 human targets, MOST achieved high average prediction
accuracy (0.95 for pKi ≥ 5, and 0.87 for pKi ≥ 6). Morgan fingerprint was shown to be slightly better than FP2.
Logistic Regression and Random Forest methods performed better than Naïve Bayes. In a temporal validation, the
Ki dataset from CHEMBL19 were used to train models and predict the bioactivity of newly deposited ligands in
CHEMBL20. MOST also performed well with high accuracy (0.90 for pKi ≥ 5, and 0.76 for pKi ≥ 6), when Logistic
Regression and Morgan fingerprint were employed. Furthermore, the p values associated with explicit bioactivity
were found be a robust index for removing false positive predictions. Implicit bioactivity did not offer this
capability. Finally, p values generated with Logistic Regression, Morgan fingerprint and explicit activity were
integrated with a false discovery rate (FDR) control procedure to reduce false positives in multiple-target prediction
scenario, and the success of this strategy it was demonstrated with a case of fluanisone. In the case of aloe-
emodin’s laxative effect, MOST predicted that acetylcholinesterase was the mechanism-of-action target; in vivo
studies validated this prediction.

Conclusions: Using the MOST approach can result in highly accurate and robust target prediction. Integrated
with a FDR control procedure, MOST provides a reliable framework for multiple-target inference. It has prospective
applications in drug repurposing and mechanism-of-action target prediction.

Keywords: Explicit bioactivity, False discovery rate, Logistic regression, Mechanism-of-action target, Most-similar
ligand, Target prediction
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Background
Target identification is key to understanding the
mechanism-of-action of active compounds discovered
from phenotypic screening or found in traditional herbal
medicines. Various experimental methods, including
affinity chromatography, drug affinity responsive target
stability, and proteomics have been used for target iden-
tification [1]. However, these experimental approaches
are laborious, expensive, and often unsuccessful. In
contrast, computational target identification (also called
“target prediction” or “target inference”) approaches are
inexpensive, and effective. It is readily integrated with
experimental validation, and can quickly narrow down
potential targets to a handful of most likely candidates.
A number of computational tools are available for target
prediction [2]; they can be classified by algorithms into
four major classes, namely, machine learning, inverse
docking, bioactivity spectra analysis, and chemical simi-
larity searching; the merits and flaws of each approach
can be found elsewhere [3]. In this study, we will focus
on chemical similarity searching.
Chemical similarity searching is based on the observa-

tion by medicinal chemists that structurally similar com-
pounds usually have similar biological activities [4]. In
practice, compounds are represented by two-dimensional
(2D) fingerprints, and the similarity can be measured by
Tanimoto coefficient (Tc) metrics [5]. Fingerprint-based
similarity searching is widely used for target prediction. By
fitting distribution of similarity between different ligand
sets with extreme distribution, Keiser et al. developed the
Similarity Ensemble Approach (SEA) to quantitatively cal-
culate the correlation between different targets [6]. SEA
has been successfully used in predicting new targets [7]
and off-targets associated with side effects [8] of existing
drugs. Similarity can also be measured by molecular
shapes. For instance, Armstrong et al. proposed three-
dimensional (3D) descriptors incorporating shape, chiral-
ity and charges to compare chemicals [9, 10]. One merit
of molecular shape is that it can be used to detect similar-
ity between structurally unrelated compounds, which is
impossible for fingerprints. Work has been done to com-
bine fingerprint similarity (2D) with shape similarity (3D)
to improve target prediction [11, 12]. More recently, the
chemical similarity network was used for target inference
based on global comparison [13]. Discovering binders of a
new structural class by chemical similarity searching is dif-
ficult because this approach requires high similarity with
known ligands to make predictions.
Indeed, fingerprint-based similarity searching approaches

have performed well in terms of accuracy and speed ac-
cording to various benchmark tests of target prediction.
Recently, the results of several studies imply that the
most-similar counterpart of the target drives high predict-
ive accuracy of fingerprint-based similarity searching

[12, 14]. Despite these advances, the explicit bioactivity
data of the most-similar ligand were oversimplified as
implicit values like “active” or “inactive”. Our insight is
that, if the query compound has the same similarity as
two most-similar ligands belonging to targets A and B,
then the probabilities of query compound being active
on target A or B should not be equal. Instead, the more
potent known ligand should suggest better probability.
To verify this insight, we will investigate, the effects on
prediction performance by explicit or implicit bioactiv-
ity in current study.
Finally, we describe a method in which we use the fin-

gerprint similarity and explicit bioactivity data of ligands
most-similar to query compounds to make inferences
about their targets. We name this method “MOST”, repre-
senting “MOst-Similar ligand-based Target inference”.
MOST showed high prediction accuracy with a reduced
false positive rate.

Methods
Generation of Ki dataset from CHEMBL database
The bioactivity data of all human targets in CHEMBL
release 19 and 20 [15] were downloaded via an in-house
script written in Python. The direct binding (confidence
score=”9”) bioactivity data with type “Ki” of each target
were extracted and processed. Bioactivity data with
unspecified concentration/activity values, unspecified
concentration/activity units, unspecified references, and
ambiguous operators were classified as “ineffective” and
excluded. For multiple records for one target-ligand pair,
if the Ki values were from the same publication, the
smallest Ki (i.e. highest pKi) value was taken to reflect
experimental optimization and/or remove unclear
stereoisomer annotations [16]. After this step, if there
were still multiple measurements for one target-ligand
pair, which were from different publications (tested in
the same or different labs), the mean Ki values were
taken.

Generation of sevenfold cross-validation dataset
Bioactivity data from preprocessed CHEMBL19 were
used to generate cross-validation datasets. Targets
which had less than 10 ligands and more than 10,000
ligands were filtered out. To make consistent compari-
son, only targets occurring in both CHEMBL19 and
CHEMBL20 were kept. Finally, the benchmark Ki data-
set was comprised of 173 targets annotated with 61,937
bioactivity data (Additional file 1: Table S1). These
targets were covered by major drug target types, includ-
ing 79 receptors, 60 enzymes, and 12 transporters
(Additional file 1: Figure S1A). These targets were
annotated with different number of ligands: 71 targets
had 10–100 ligands; 82 targets had 100–1,000 ligands;
and 20 targets had 1,000–10,000 ligands (Additional
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file 1: Figure S1B). The annotated ligands were further
categorized into three classes by their Ki values. Percent-
ages of ligands of with Ki values less than 1 μM, between
1- and 10 μM, and greater than 10 μM ligands were
76.7%, 17.2%, and 6.2%, respectively (Additional file 1:
Figure S1C). However, such proportions were varied for
specific targets (Additional file 1: Figure S1C).
15% of the ligands of each target were randomly

selected to comprise the test set, and the rest were
treated as the training set. This procedure was repeated
seven times to make sure that the whole dataset was
sampled [14]. In the training set, each ligand was se-
lected and the most-similar ligand was generated by
comparing the selected ligand with remaining ligands. In
the test set, the most-similar ligand was acquired by
comparing the query compound with ligand sets in the
training set. To see how similar query compounds were
with their most-similar counterparts, the distribution of
Tcmost was determined as shown in Additional file 1:
Figure S2A. A large fraction (85.4%) of query com-
pounds had very similar (Tcmost ≥ 0.8) ligands, both in
the training and test sets. Scatter plots of pKiquery vs
pKimost clearly showed that the principle, “structurally
similar chemicals have similar bioactivities” [17], applies
to the benchmark dataset; although there are also excep-
tions–some potent compounds had similar but weak
binder counterparts, which is consistent with previous
observations [18]. Moreover, the calculated Pearson
correlation coefficient showed that structurally similar
chemicals have more close bioactivities (Additional file 1:
Figure S2B), suggesting that pKimost may also be a strong
predicator for the activity of a query compound.
Two threshold values of pKi were applied to label a

ligand is “active” (represented by 1) or “inactive” (repre-
sented by 0) to a target. When pKi ≥ 5 was applied, 93.8%
were categorized as “active”, while 6.2% were “inactive”. If
pKi ≥ 6 was applied, 76.7% were labeled as “active”, while
23.3% were “inactive” (Additional file 1: Table S1). Inactive
data were included in model training and testing since evi-
dence has shown that negative information can improve
the prediction performance [19].

Generation of temporal validation dataset
The whole Ki dataset from CHEMBL19 was used as
training set for temporal validation. By comparing with
CHEMBL19, which was released in 2014, the newly
added bioactivity data in CHEMBL20 (released in 2015)
was identified and used to generate the test set. In total,
there were 173 targets annotated with 3,754 Ki data. In
this dataset, when pKi ≥ 5 was applied, 91.3% were cate-
gorized as “active”, while 8.7% were “inactive”. If pKi ≥ 6
was applied, 75.7% were labeled as “active”, while 24.3%
were “inactive” (Additional file 1: Table S1).

Calculation of fingerprint and similarity
Two fingerprint schemes were used in this study–ECFP-
4-like Morgan (radius = 2) [20] calculated by RDKit [21]
and FP2 calculated by OpenBabel [22]. Once fingerprints
were derived, the similarity between compound pairs
was calculated by Tanimoto coefficient (Tc) [5].

Machine learning methods
Machine learning models, including Naïve Bayes [23],
Logistic Regression [24], and Random Forests [25], were
used in this study for comparison. The probability to be
active (pa ) as calculated by Naïve Bayes (Eq. 1) or by
Logistic Regression (Eq. 2) is expressed as follows:

p y ¼ active j Tcmost ; pKimostð Þ

¼ p Tcmost ; pKimost jy¼active
� �

p y ¼ activeð Þ
p Tcmost ; pKimostð Þ

ð1Þ

p y ¼ active j Tcmost ; pKimostð Þ

¼ 1

1 þ e− a0þa1Tcmostþa2pKimostð Þ
ð2Þ

where Tcmost is the similarity between query compound
and the most-similar ligand, while pKimost is the activity
of the most-similar ligand. The sum of probabilities to
be active (pa) and inactive (pi) always equal to 1. Fitting
Naïve Bayes, Logistic Regression, and Random Forests
models were realized by a machine learning package in
scikit-learn [26].

Workflow of MOST
The workflow adopted by MOST to make predictions
for a query compound with reference to a series of tar-
gets is depicted in Fig. 1. Firstly, the Tc values between
the query compound and annotated ligands of target
are calculated. Secondly, the most-similar ligand is
identified by ranking the Tc values. Thirdly, the Tc and
pKi of the most-similar ligand (Tcmost and pKimost) are
fed into a trained model to generate probabilities (p value)
measuring how likely it is that the query compound is in-
active. If explicit activity is used, the pKimost is used “as-it-
is” in model training and testing. If implicit activity is
used, pKimost≥5 or 6 is then simplified as 1, and pKimost<5
or 6 is simplified as 0. Once the probabilities have been
generated by machine learning models, if pa>pi , the query
compound is predicted to be active; otherwise, it is consid-
ered to be inactive. The probability to be inactive, pi , is
treated as p values in MOST for FDR control. If multiple-
target predictions are made spontaneously, the FDR
procedure is implemented to control the risk of false
positives.
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Performance evaluation
The performance of MOST was evaluated by calculations
of accuracy and Mathews Correlation Coefficient (MCC)
[27, 28], according to the following equations:

accuracy ¼ TP þ TN
TP þ FN þ TN þ FP

ð3Þ

MCC ¼ TP � TN − FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð4Þ
where TP is true positives, TN is true negatives, FN is

false negatives, and FP is false positives.

FDR control procedure
FDR control was implemented by the ‘p_adjust’ method in
the ‘stats’ library of the R package (version 3.1.2) for the
Benjamini-Hochberg [29] algorithm or by the ‘q value’
method in the ‘bioconductor’ library of the R package for
the Storey-Tibshirani [30] algorithm.

Animals and fecal pellet output
Male C57BL/6 J mice weighing around 22 g (6-week old)
were purchased from the Laboratory Animal Services
Center, The Chinese University of Hong Kong, Hong

Kong. The mice were fed with a standard rodent diet ad
libitum with free access to water and were housed in
rooms maintained at 22 ± 1 °C with a 12 h light/dark cycle
(lights on 6:00–18:00).
Mice were randomly divided into 6 groups with 10

mice per group. Saline and aloe-emodin (3.75 mg/kg,
7.5 mg/kg, 15 mg/kg, 30 mg/kg, and 60 mg/kg) were
intragastrically administrated at 9:00 a.m. All the mice
were placed in individual cages without water or food.
The fecal pellets for each mouse were recorded continu-
ously for 2 h. In a parallel study, mice were randomly
divided into 4 groups with 10 mice for each group.
Saline and atropine (2 mg/kg and 4 mg/kg) were intra-
gastrically administrated 20 min before aloe-emodin
(15 mg/kg) treatment. Then mice were placed in individ-
ual cages without water or food, and fecal pellets for
each mouse were collected within 2 h.

Results
Performance of MOST in sevenfold cross-validation
To evaluate the performance of MOST, three factors
were evaluated in a combinational way. These factors
are (1) machine learning methods (Naïve Bayes, Logistic
Regression or Random Forests), (2) fingerprint schemes
(Morgan or FP2), and (3) representation of bioactivity of
the most-similar ligand (explicit or implicit). Accuracy
and MCC under different conditions are summarized
(Table 1). Firstly, Logistic Regression or Random Forests
performed better than Naïve Bayes in almost all cases in
terms of average accuracy and MCC; there were only
marginal differences between Logistic Regression and
Random Forests. Secondly, Morgan fingerprint was
slightly better than FP2 in most cases. Thirdly, explicit
pKi were as good as implicit pKi in terms of average ac-
curacy. The best performance of MOST were achieved
when Logistic Regression/Random Forests and Morgan
fingerprint were used. For active data defined by pKi ≥ 5,
the average accuracies were about 0.95, with MCC ran-
ging from 0.50 to 0.59. While for active data defined by
pKi ≥ 6, the average accuracies were about 0.87, with
MCC ranging from 0.61 to 0.63.

Performance of MOST in temporal validation
To avoid overestimation of model quality with cross-
validation, we used a temporal dataset to evaluate the per-
formance of MOST. Newly added Ki data in CHEMBL20
were predicted by MOST trained with Ki data in
CHEMBL19 and the results are summarized (Table 2). In
general, the performance of MOST was slightly worse in
temporal validation than in cross-validation. Logistic
Regression outperformed Random Forests and Naïve
Bayes in this temporal validation. Morgan fingerprints
were better than FP fingerprints. Similar with the cross-
validation results, models with explicit- and implicit pKi

Fig. 1 Workflow of MOST for target prediction
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Table 2 Overall performance of MOST in temporal validation

Active data defined by Performance

pKi≥ 5 Accuracy

Naïve Bayes Logistic Regression Random Forests

Morgan FP2 Morgan FP2 Morgan FP2

Explicit pKi 0.750 0.670 0.905 0.901 0.893 0.871

Implicit pKi 0.741 0.696 0.896 0.894 0.896 0.897

MCC

Naïve Bayes Logistic Regression Random Forests

Morgan FP2 Morgan FP2 Morgan FP2

Explicit pKi 0.275 0.110 0.272 0.184 0.283 0.136

Implicit pKi 0.267 0.138 0.292 0.213 0.256 0.192

pKi≥ 6 Accuracy

Naïve Bayes Logistic Regression Random Forests

Morgan FP2 Morgan FP2 Morgan FP2

Explicit pKi 0.633 0.554 0.755 0.736 0.724 0.709

Implicit pKi 0.632 0.556 0.761 0.737 0.759 0.726

MCC

Naïve Bayes Logistic Regression Random Forests

Morgan FP2 Morgan FP2 Morgan FP2

Explicit pKi 0.357 0.225 0.382 0.321 0.319 0.273

Implicit pKi 0.334 0.212 0.370 0.307 0.381 0.300

Table 1 Overall performance of MOST in sevenfold cross-validation

Active data defined by Performance

pKi≥ 5 Accuracy

Naïve Bayes Logistic Regression Random Forests

Morgan FP2 Morgan FP2 Morgan FP2

Explicit Ki 0.927 ± 0.003 0.929 ± 0.003 0.948 ± 0.003 0.949 ± 0.002 0.948 ± 0.001 0.946 ± 0.004

Implicit Ki 0.939 ± 0.002 0.937 ± 0.003 0.948 ± 0.003 0.949 ± 0.003 0.950 ± 0.002 0.949 ± 0.003

MCC

Naïve Bayes Logistic Regression Random Forests

Morgan FP2 Morgan FP2 Morgan FP2

Explicit Ki 0.352 ± 0.013 0.345 ± 0.017 0.495 ± 0.010 0.484 ± 0.025 0.530 ± 0.017 0.504 ± 0.032

Implicit Ki 0.554 ± 0.008 0.543 ± 0.022 0.558 ± 0.013 0.585 ± 0.023 0.585 ± 0.014 0.560 ± 0.023

pKi≥ 6 Accuracy

Naïve Bayes Logistic Regression Random Forests

Morgan FP2 Morgan FP2 Morgan FP2

Explicit Ki 0.848 ± 0.004 0.842 ± 0.002 0.866 ± 0.002 0.862 ± 0.002 0.861 ± 0.004 0.853 ± 0.004

Implicit Ki 0.860 ± 0.004 0.855 ± 0.004 0.867 ± 0.003 0.863 ± 0.003 0.867 ± 0.004 0.862 ± 0.004

MCC

Naïve Bayes Logistic Regression Random Forests

Morgan FP2 Morgan FP2 Morgan FP2

Explicit Ki 0.561 ± 0.014 0.540 ± 0.009 0.617 ± 0.009 0.602 ± 0.007 0.609 ± 0.013 0.581 ± 0.013

Implicit Ki 0.624 ± 0.011 0.610 ± 0.612 0.632 ± 0.012 0.618 ± 0.011 0.632 ± 0.013 0.618 ± 0.012
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had almost the same accuracy. The best performance was
achieved when Logistic Regression and Morgan finger-
print were employed. The average accuracy was about
0.90 with MCC ranging from 0.27 to 0.29, when active
data was defined by pKi ≥ 5, and it was about 0.76 with
MCC ranging from 0.37 to 0.38, when active data was de-
fined by pKi ≥ 6.

Benefits of using explicit pKi
To investigate the differences resulting from explicit-
and implicit activity modes, one of the sevenfold cross-
validation results was analyzed (Additional file 1: Table
S2). Logistic Regression and Morgan fingerprint were
chosen because they achieved the best performance. It
was clear that more positive predictions (for both TPs
and FPs) were made by explicit activity mode, compared
with implicit activity mode. When all predictions were
displayed in a scatter plot of pKimostvs Tcmost, many FPs
were found to be predicted by most-similar ligand with
weak affinity, and using explicit activity enhanced this
tendency (Fig. 2a and b, left panels).
Former study suggested that setting the lower thresh-

old (k) of Tc could reduce FPs [14]. Thus we calculated
the fraction of data (f ) when Tc ≥ k, while the difference
between fTP and fFP was used as a trade-off index.
Ideally, a best k means keeping as many TPs as possible
and as few FPs as possible at the same time, which is,
the maximum difference between fTP and fFP. The fTP
started to fall when Tc ≥ 0.4, indicating that Tc ≥ 0.4 was
a minimum requirement for removing substantially un-
related compound pairs (Fig. 2a and b, middle panels).
The difference between fTP and fFP reached a maximum
when Tc ≥ 0.85 in both explicit- and implicit bioactivity
modes. However, the extent of difference (fTP-fFP) at this
point was only about 0.2, suggesting that increasing the
Tc threshold may not be a robust way to reduce FPs pre-
dicted by MOST.
We then wondered if setting the p value threshold

could be a better way to reduce FPs without losing too
much TPs. A decreased p value threshold led to rapidly
decreased fFP and slowly decreased fTP, which was only
observed with explicit-, but not implicit bioactivity mode
(Fig. 2a and b, right panels). Moreover, the maximum
difference between fTP and fFP occurred when p ≤ 0.1:
0.60 for active data defined by pKi ≥ 5, or 0.40 for active
data defined by pKi ≥ 6. These results suggested that set-
ting the upper threshold of p value in explicit bioactivity
mode was a better way to reduce FPs than Tc.

Multiple-target prediction by MOST integrated with FDR
control
One important application of MOST is to predict novel
targets of known drugs, which is key to repurposing
drugs and inferring side effects. In such cases, the drug

will be compared with known ligands of thousands of
human targets. Encouraged by the benchmark results,
we evaluated MOST in multiple-target prediction, where
the query compound was searched against 1,439 human
targets. To avoid too many false positive predictions,
FDR control procedures were introduced to correct the
p values generated by the Logistic Regression model
(Fig. 3a).
Bioactivity data of some drugs can be found in refer-

ences but not the CHEMBL database, which gave us the
opportunity to test if MOST can predict novel targets of
such drugs in a multi-target prediction scenario. We
used fluanisone, an antipsychotic and sedative drug ap-
proved for schizophrenia [31], as an example to illustrate
how MOST can be used to predict novel targets for ap-
proved drugs (Fig. 3b). The p values of fluanisone
against 1,439 human targets were calculated by Logistic
Regression model with Morgan fingerprint trained by
the CHEMBL 20 benchmark dataset in explicit bioactiv-
ity mode. The distribution of p values suggested that
either the Benjamini-Hochberg or Storey-Tibshirani
methods are suitable for correction (Fig. 3c). The pre-
dicted targets were ranked by adjusted p values and
Tcmost. Among the top 5 predicted targets, adrenoceptor
alpha 1B (ADRA1B) and adrenoceptor alpha 1D
(ADRA1D) are known human targets of fluanisone (pKi

equals to 7.85 and 8.15, respectively), documented in lit-
erature [7] but not in CHEMBL database. ADRA1B and
ADRA1D were ranked as the 2nd and 3rd targets ac-
cording to adjusted p values and Tcmost (Fig. 3d). Fluani-
sone was related to the two targets because it was quite
similar (Tc = 0.70) to a common ligand (Fig. 3e),
CHEMBL8618, which potently acts on ADRA1B (pKi =
9.02) and ADRA1D (pKi = 9.52). MOST assigned low
p values to both targets (3.4E-04 and 8.2E-04) and
made them top hits.

Investigating mechanism-of-action target of aloe-emodin
for laxative effect with MOST
Another important application of MOST is to predict
the mechanism-of-action targets of active compounds
discovered from phenotypic screening and traditional
medicine. We used the laxative aloe-emodin to illustrate
how MOST can be used to predict mechanism-of-action
targets.
Aloe-emodin belongs to anthraquinone, a class of

chemicals commonly found in the Traditional Chinese
Medicine (TCM) herbs Aloe vera and Rhubarb. Aloe-
emodin is found to have antibacterial, antiviral, hepato-
protective, anticancer, and anti-inflammation effects [32].
More interestingly, aloe-emodin has a laxative effect,
which is in line with the traditional TCM use of Rhubarb
as a laxative; however, the mechanism-of-action target of
neither the herb nor aloe-emodin is not fully understood.
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By using MOST, we searched aloe-emodin against
1,439 human targets, and found that acetylcholinesterase
(ACHE) was the top target (Fig. 4a). Aloe-emodin was
similar (Tc = 0.50) to CHEMBL3233826, the rhein-
derived compound which potently (pKi = 8.97) inhibits
ACHE [33]. Actually, aloe-emodin was shown to inhibit
ACHE with pKi = 4.57 in an early study [34]. ACHE is
the enzyme involved in the rapid hydrolysis of acetylcho-
line in numerous cholinergic pathways. Inhibition of
ACHE results in accumulation of acetylcholine and hy-
perstimulation of the gastrointestinal smooth muscles

via muscarinic M2 and M3 receptors [35, 36]. Indeed,
one of the ACHE inhibitors, acotiamide is approved as a
prokinetic agent for treating functional dyspepsia [37].
Given these facts, we tested whether the laxative effect

of aloe-emodin is mediated by the acetylcholine signal-
ing pathway. In C57 mice, aloe-emodin significantly in-
creased the production of fecal pellets within 2 h after
treatment with doses of 15-, 30-, and 60 mg/kg (Fig. 4b).
The intragastric pre-treatment of atropine (2- and
4 mg/kg), given 20 min beforehand, totally abolished
the stimulatory effect of aloe-emodin (15 mg/kg) on

Fig. 2 Prediction results of MOST in one dataset of sevenfold cross-validation with Logistic Regression method and Morgan fingerprint. a and b,
the predicted results derived from different “active” data definition: pKi≥ 5 and pKi ≥ 6. Results generated by using explicit and implicit Ki of
most-similar ligand in model training are compared. Left panels, the predicted results in Tcmost vs pKimost scatter plot. Middle panels, the fraction of
data regarding to the increasing threshold of Tc. Right panels, the data fraction regarding to the decreasing threshold of p values. The difference
between fTP and fFP was plotted in black, dash line. In all panels, true positives are colored red, while true negatives are blue; false positives are
cyan, while false negatives are orange

Huang et al. BMC Bioinformatics  (2017) 18:165 Page 7 of 11



mice fecal pellet output (Fig. 4c). These results suggest
that the cholinerigic pathway is involved in the laxative
effect of aloe-emodin on mice colonic motility.

Discussion
Utilizing the fact that similar compounds have similar
bioactivity profiles [17, 38], similarity searching is one of
the most simple, but robust, approaches to ligand-based
target prediction. The earliest example was PASS, in
which chemicals were represented by MNAs (multilevel
neighborhoods of atoms) descriptors [39]. A Bayesian
model was employed to train 31,000 bioactive sub-
stances, and the biological activity spectra, including 319

types of pharmacological effects, action mechanisms and
toxicities, were predicted in the form of probabilities. By
analyzing the similarity between ligand sets of various
targets, Keiser et al. proposed SEA, which uses ensemble
similarity to make target prediction [6]. In SEA, the
relationship of a compound with a biological target is
determined by calculating the sum of fingerprint similar-
ities of known ligands annotated with that target, and
Tc ≥ 0.57 was used to remove substantially unrelated
ligands. The prediction significance was accessed by
“BLAST-like” Z-score and p values according to a pre-
fitted probability distribution in SEA. Unlike SEA, the
mean of similarity to multiple ligands of target is utilized

Fig. 3 Predicting novel targets for the drug fluanisone by MOST with FDR control. a, scheme of integrating MOST with FDR control procedure. b,
the structure of fluanisone. c, the distribution of p value of predicted targets, which was generated by searching fluanisone against 1,439 human
targets via MOST. d, top 5 hits of target prediction for fluanisone. Two novel targets of fluanisone, adrenoceptor alpha 1B (ADRA1B) and
adrenoceptor alpha 1D (ADRA1D), were characterized by reference (Keiser et al. [7]) but not CHEMBL database. The adjusted p values were calculated by
Benjamini-Hochberg algorithm. e, the inference process of fluanisone novel targets by MOST. Fluanisone was found to be similar (Tc= 0.70) to compound
CHEMBL8618, which potently acts on ADRA1B and ADRA1D. They were assigned small p values by MOST
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with multi-category Bayes classifiers to improve the per-
formance of ligand-based target inference [40, 41]. How-
ever, it seemed not to be necessary to use all ligand
information, whether in sum or mean, when relating
compound with target annotated with multiple ligands.
It was firstly demonstrated with MCM algorithm [42],
and later proved in TargetHunter, that performance of
similarity searching can be dominated by top similar li-
gands [14]. Except Bayes classifiers, other machine learn-
ing methods such as Support Vector Machines (SVMs)
[43], Logistic Regression [12, 44], and Random Forests
[28], were also employed for task of target prediction.
In the current study, we demonstrated that, solely

using the information of most-similar ligands, MOST
achieves high prediction accuracy. We also investigated
the effects of using explicit bioactivity of most-similar
ligand, which has usually been oversimplified as category
values (implicit bioactivity) in previous similarity search-
ing approaches. There was only little difference in pre-
diction accuracy between MOST using explicit- and
implicit bioactivities. In both cases, a large fraction of
FPs were found to result from most-similar ligand with
high Tc (>0.8) but low pKi values. This is an important

finding; it suggests that simply using a Tc threshold
cannot reduce the major part of FPs. In such case, using
explicit bioactivity of most-similar ligand provides a sig-
nificant advantage over implicit bioactivity because, in
explicit bioactivity mode, more potent ligands will gener-
ate better probability, while less potent ligands will give
worse. That’s why when p value threshold was applied, a
large fraction of FPs were removed, while most TPs
remained.
One limitation of the current study was the unbal-

anced training dataset—that is, the dataset included
more “active” data and less “inactive data”. Since we ex-
tracted all Ki data with well-annotated references from
the CHEMBL database, it seemed that researchers may
be more likely to report positive, rather than negative
results in their publications. The effects of skewed data-
set were evaluated by MCC, which is more suitable for
unbalanced datasets. If more negative data from other
sources is included, the prediction performance can be
further improved, as demonstrated in the work by
Mervin et al [19].
We also demonstrated the application of MOST in the

‘real-world’ case of aloe-emodin. Considering there is

Fig. 4 Predicting and validating the mechanism-of-action target which mediated the lataxive effect of aloe-emodin, natural product from
CTM. a, aloe-emodin was predicted to act on acetylcholinesterase (ACHE) by MOST via the most-similar ligand, CHEMBL3233826. The IC50 of
ACHE inhibition by aloe-emodin was reported to be 26.8 μM (Wang et al. [14]). Inhibition of ACHE results in elevating the level of acetylcholine,
activating muscarinic receptors (M2 and M3), and enhancing the gastrointestinal motility. b, aloe-emodin dose-dependently stimulated the fecal pellets
in mice. c, the stimulative effect of aloe-emodin was abolished by muscarinic receptors antagonist, atropine. For each group, the relative fecal pellets
in 2 h were compared with the control group, and tested by unpaired t-test in Prism 6 (n = 10; ****, p < 0.0001; *, p < 0.05). All data in b and c are
presented in Mean ± S.E.M
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large unmet need to elucidate the mechanism-of-action
targets of traditional medicine, MOST can be optimized
for specific application domains, like biological function
networks or disease pathways, which are influenced by
traditional medicine therapies [45].

Conclusions
Taken together, the results reported here show that
MOST is a highly accurate approach to predicting targets.
Logistic Regression and Random Forests learning methods
performed better than Naïve Bayes in cross-validation,
while Logistic Regression outperformed the other two in
temporal validation. MOST has more power to detect
more positive results with explicit activity. The p value,
rather than Tc, is a robust way to filter out false positives.
Integrated with the FDR control procedure, MOST pro-
vides a reliable framework to predict novel targets for
known drugs and to predict the mechanism-of-action tar-
gets for active compounds from traditional medicines.
These capabilities have been demonstrated via the exam-
ples of fluanisone and aloe-emodin. Success of MOST as
reported here may have been partly because many query
compounds had highly similar counterparts in datasets
used in this study. If the query compounds are from a very
different structural class than the ones in training dataset,
MOST may be less accurate. Despite this potential limita-
tion, MOST is a powerful approach to relating pharma-
ceuticals with their potential targets.
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