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Abstract

Background: Manual assessment and evaluation of fluorescent micrograph cell experiments is time-consuming and
tedious. Automated segmentation pipelines can ensure efficient and reproducible evaluation and analysis with
constant high quality for all images of an experiment. Such cell segmentation approaches are usually validated and
rated in comparison to manually annotated micrographs. Nevertheless, manual annotations are prone to errors and
display inter- and intra-observer variability which influence the validation results of automated cell segmentation
pipelines.

Results: We present a new approach to simulate fluorescent cell micrographs that provides an objective ground
truth for the validation of cell segmentation methods. The cell simulation was evaluated twofold: (1) An expert
observer study shows that the proposed approach generates realistic fluorescent cell micrograph simulations. (2) An
automated segmentation pipeline on the simulated fluorescent cell micrographs reproduces segmentation
performances of that pipeline on real fluorescent cell micrographs.

Conclusion: The proposed simulation approach produces realistic fluorescent cell micrographs with corresponding
ground truth. The simulated data is suited to evaluate image segmentation pipelines more efficiently and
reproducibly than it is possible on manually annotated real micrographs.
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Background
Fluorescence microscopy is widely used for quantitative
cell experiments in e.g. microbiology, virology and adja-
cent fields of life science. This imaging technique allows
the acquisition of micrographs depicting cell compart-
ments (as e.g. nuclei, plasma, sub-cellular structures by
the means of markers and dyes for specific proteins, e.g.
showing cell nuclei by marking the DNA with DAPI or
the cell plasma by an Alexa marker or Boron. However,
the quantitative manual assessment and analysis of the
resulting image material revealing various functional and
morphological properties of cells and cell compartments
demand high precision, much time and repetitive work.
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Human observers perceive these analysis tasks as tedious
and hence tend to errors. Novel large-scale imaging tech-
niques, e.g. the whole slide scanning technology, enable
the acquisition of huge amounts of image data in the ter-
abyte scale and further increase the problems described.
Possible solutions to conquer the rising challenge of flu-
orescent “big data” [1] are automated or semi- automated
image processing approaches and methods which ensure
a time-efficient, objective and reproducible analysis. In
the past years, a plethora of different methods and tools
have been proposed for the automated and interactive
assessment and analysis of fluorescent micrographs of
various applications [2–4]. An overview of free image
analysis tools, specifically for fluorescent micrographs, is
given in [5].
In order to find the best fitting image-processing

method for a specific analysis task, and more specifically
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the segmentation approach for the most crucial step
within an image-processing pipeline, the methods have
to be evaluated with respect to some ground truth data.
To date, expert based cell-delineation is generally consid-
ered as “gold standard” for the generation of ground truth
data. To this end, various benchmark collections of cell
micrographs including user annotations are offered on the
Internet, e. g. by the Broad Institute [6, 7]. Nevertheless,
manual assessment and cell-based annotations of image
data is tedious, error prone and suffers from a high inter-
and intra-observer variability. Especially so, if fluorescent
micrographs with complex image data depicting touch-
ing, overlapping over even overlaying cells are considered.
A widely accepted alternative method to validate image
segmentation algorithms is based on simulated or syn-
thetic image data which implicitly provide ground truth
information.
Some cell simulation approaches use exclusively graph-

ical methods. Nattkemper et al. [8] model the cell shape
with a sum of radial Gaussian functions for the fluores-
cent contour, the cell contour and the corona contour.
The cell texture is interpolated between these three lines.
Lehmussola et al. describe a cell shape model based on
deformed regular polygons with cell texture generate with
Perlin noise [9]. Themethod is extended in the framework
SimuCell [10]. In [11] cells and nuclei are modeled using
basic geometric shapes such as circles and ellipses and the
borders are then varied. Also some variations in illumina-
tion and noise are considered. E.g. Ghaye et al. [12] model
the physical imaging process. In first step, cells shapes are
simulated with the method presented by Lehmussola et
al. [9]. The cell texture is then simulated with fluorescent
clusters aiming at modeling a fluorescent dye received
by surface receptors. Svoboda et al. [13] also model the
imaging process to simulate three dimensional cells. The
cell shapes are generated by deformation of geometri-
cal objects by partial differential equations. The texture
is initially simulated by Perlin noise and then distorted
with the imaging system. In [14] a method is proposed
for generation of 3D+t benchmark based on an object
video database. This database is filled with synthetic cells
proposed in [15].
The Murphy lab is the leading laboratory in building

cell models. They focus on extracting biological meaning-
ful parameters instead of simulating realistic fluorescent
microscopy images. Nevertheless, their models can be
used to simulate cell images. For example, Zhao et al.
[16] describe generative statistical models for cell and
nuclei separately. They propose a parametric medial axes
model for the shape of the nuclei and use the ratios
between distances from cell outline and nucleus out-
line to the cell center for the cell shape . Buck et al.
[17] give an overview of the cell models developed at
Murphy’s laboratory.

In order to simulate own synthetic fluorescent images
for comparison and evaluation, the software frame-
work SimuCell [10] is a freely available tool on the
Internet: https://github.com/AltschulerWu-Lab/simucell.
Also, Ruusuvuori et al. [18] describe the evaluation of
image processing methods for micrographs using a syn-
thetic benchmark data set which can be downloaded from:
http://www.cs.tut.fi/sgn/csb/simcep/benchmark.
In summary, there has been quite some work in the field

of fluorescent micrograph simulation, ranging from image
rendering over geometric and biological modeling of cell
compartments to the availability of cell synthesis tools.
Although all of these approaches synthesize fluorescent
micrographs, expert human observers can easily distin-
guish between simulated and real micrographs based on
the visual appearance of the simulated cells.
Our method aims at simulating photo-realistic fluores-

cent cell micrographs. To cover the visual appearance of
cell nuclei and plasma textures and structures depicted
in real fluorescent micrographs, the methods to simulate
and render individual cells are based on the textural input
from real image data.
For a visual evaluation of our approach, we have con-

ducted an expert observer study with four exemplary
data sets. We can show that images simulated with our
approach cannot be distinguished from real images in
contrast to images simulated with SimuCell. Additionally,
the graphical image features depicted by real images and
in micrographs simulated with our method are visually
comparable.
Finally we exemplarily show that the simulated fluo-

rescent micrographs can be used to validate an image
segmentation pipeline. To this end we apply such an image
segmentation pipeline to simulated data sets containing
cells with increasing degree of overlap and show that the
computed segmentation performances yield valid results.

Methods
First we present four image data sets which have been
used as input material for the simulation methods in this
study. In the following, we explain our cell simulation
approach and then we describe the evaluation of the sim-
ulated fluorescent images with an expert observer study
and objective measurements. Finally an image segmenta-
tion pipeline is applied to a set of the synthetically gener-
ated fluorescent micrographs to show that the described
simulation approach can be used for the evaluation of
segmentation algorithms.

Basic data sets
Cell segmentation algorithms are often developed and
optimized only for especially dedicated sets of fluorescent
cell image data, mostly related to some clinical problem.
The segmentation complexity of such data sets narrows

https://github.com/AltschulerWu-Lab/simucell
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the segmentation performance and depends on the cell
type (e.g. macrophages, stem cells, protoplasts, etc.), the
sample preparation, the fluorescent dyes and the imag-
ing process (e.g. bright-field, confocal, phase contrast,
etc.) process. The complexity from cell type results from
the related cell shapes ranging from round over bipolar
to irregular shapes. The complexity resulting from the
preparation process results from the cell density and the
distribution on the slide. The complexity from the imaging
process results from noise and sharpness, since not all cells
can be imaged sharp in one field of view. Furthermore, the
complexity of touching and overlapping to overlaying cells
is considered.
All those parameters contribute to a total complexity.

The data sets used in this paper cover a broad range of
segmentation complexity and are presented in order of
increasing segmentation complexity: protoplasts, B cells
and macrophages.
The data set with protoplasts (cf. Figure 1a) has a low

segmentation complexity. The protoplasts are round and
show high intensity with partly intensity variability inside
single cells. The background shows weak fluorescence.
The images of the data set show a high signal to noise ratio
(in short snr). The data set is described in detail in Held
[19] and is available as Additional file 1.
The B cell data set consists of two channels. The first

channel depicts DAPI stained B cell nuclei (cf. Figure 1b)
while the second channel shows the corresponding
Phalloidin-Rhodamin stained B cell cytoskeleton (cf.
Figure 1c). The segmentation complexity is different

for both channels. For the DAPI stained nuclei, the
segmentation complexity lies between the protoplasts
and the B cell cytoskeleton. DAPI staining often leads
to images with high SNR so that the nuclei can
be separated from the background using thresholding.
A separation step is rarely necessary as nuclei often lie
isolated due to their location inside the cytoplasm. For
these reasons the segmentation of nuclei is usually used
as seed points for the segmentation of the cytoplasm in
literature. Due to the high variability of intensities inside
the B cells as well as the high variability of shape, the
micrographs with the B cell cytoskeleton show a higher
segmentation complexity than the corresponding nuclei.
The experimental data is described in more detail in [20]
and is available as Additional file 2.
The data set with the CD11b/APC-stained (cf.

Figure 1d) cytomembrane of murine bone marrow
macrophages shows the highest segmentation complexity.
The intensity variability of the cell texture is high inside
the cytomembrane and the texture shows high variability
over the whole image data set. Also the shape variability
is high. Additionally, overlaps in the cytoplasmic chan-
nel increase segmentation complexity. The data set is
described in detail in Held et al. [21] and is available as
Additional file 3.

Cell image simulation
The proposed approach for the simulation of fluorescent
cell images is an extension of the cell simulation frame-
work presented in [11], which makes use of information

Fig. 1 Example data sets ordered with respect to increasing segmentation complexity a) micrograph showing chlorophyll inside chloroplasts after
Fluorescein diacetate (FDA) staining; b) Multi channel data set of naive murine B cells from C57Bl/6 mice B cells. Immunofluorescent staining was
performed for DNA (DAPI); c) Immunofluorescent staining was performed for F-Actin (Phalloidin-Rhodamin); d) LPS activated macrophages with
immunofluorescent staining CD11b/APC; Scale bars corresponds to 30 μm
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obtained from real fluorescent images. The individual cell
shapes are simulated with a statistical shape model (ASM)
described in the next section. Individual cell textures are
added by mapping the textures of real hand-labeled cells
to simulated cell shapes.

Cell shape simulation
In [22] an statistical shape model (ASM) based on the
works of Cotes et al. [23] is presented, which has specif-
ically been adapted for the generation of cell shapes. To
simulate cell shapes in this paper, we improve the method
by preventing the generation of invalid, small cell shapes.
In order to build a cell model for a certain type of cell

(stem cells, macrophages, protoplasts, etc. ), a representa-
tive and hand-labeled set of real cells is needed.
First, the contours of the hand-labeled cells are sam-

pled withN many equally spaced points. In the next steps,
the mean point of the N contour points is calculated and
the mean point is removed from the N contour points to
transform the contour to an image independent coordi-
nate system. The the contour is aligned to other contours
with respect to the first and second principal axis. The
contour points are stored into a descriptive vector vi for
each shape. To ensure a one to one point correspondence
between the descriptive vectors vi of all shapes, we aligned
the contour representations by minimizing the Eucle-
dian distances between corresponding points. A principle
component analysis (PCA) on the contour points results
in a mean cell shape xm and a transformation matrix P
composed of the Eigenvectors from the PCA.
Using the mean cell shape xm and the first n Eigenvec-

tors a new cell shape x can be generated with a random
vector b and

x = xm + Pb with
∣
∣b − P−1xm

∣
∣ > rmin.

This constraint prevents the generation of invalid, small
cell shapes. The parameter rmin depends on the simulated
cell type.

Cell texture simulation
The texture mapping approach presented in [22] is able
to map the cell texture of any delineated real cell (from
a reference image) to the shape of a simulated cell shape
based on both contours. During the synthesis of cells with
irregular shapes this approach may in some cases lead
to a distorted texture, especially salient in bright texture
regions. To reduce this distortion effect in comparison to
previous work [22], we developed a new texture mapping
algorithm based on energy minimization. In addition to
the shape information which has already been used in the
previous work [22], the new algorithm also incorporates
the intensity information inside the cells. During the map-
ping process, the texture of a hand-labeled reference cell
acts like an elastic tissue spanned between fixation points.

The ductility of the elastic tissue varies according to the
local intensities of the cell patch. Adjacent pixels with high
intensity have less ductility compared to adjacent pixels
with low intensities.
The texture mapping process is conducted by minimiz-

ing an energy function consisting of three energy terms
acting as elastic energies between different sets of points.
The term Efix is calculated between the fixation points
vfix, the energy term Eborder between points vborder on the
boundary of the real texture patch and the energy term
Ebulk between adjacent points vbulk of the real texture
patch. The three energy terms are weighted with factors
wfix,wborder and wbulk leading to the equation

E = wfixEfix (vfix)+wborderEborder (vborder)+wbulkEbulk (vc) .

To prepare the real texture for the texture mapping, ref-
erence points of the texture are initially aligned to the new
cell shape. Then the points of the real texture patch are
stored to the appropriate vectors vfix, vbor and vbulk and
are used as input to the texture mapping process.
The minimization process is conducted with a gradi-

ent descent algorithm [24]. The points of the real texture
are expanded iteratively to the new cell shape by apply-
ing forces according to the energy terms. The weights
wfix, wborder and wbulk have to be adapted for each cell
and texture type. The forces corresponding to the energy
equation are illustrated in Fig. 2 and their effects on the
texture are shown in Fig. 3. The forces corresponding to
the energy terms Eborder and Efix are proportional to the
distance between the point and its neighbors and act like
springs.

Fig. 2 Force diagram of texture mapping approach during the
adaption process. The outer contour represents new cell shape. The
inner contour represents contour of the used texture. Green points are
fixation points vfix between new cell shape and texture. Red points are
border points vbor on texture which are not fixation points. Blue points
are points in the inner of the texture. Green arrows indicate forces
between corresponding points. Red arrows indicate forces between
border points. Blue arrows indicate forces between bulk points vbulk
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Fig. 3 Visualization of the effect of forces employed in the energy mapping approach for a exemplary B cellcytoskeleton. The different textures in a)
and c) - e) show textures with varying settings compared to texture b) simulated with settings used for evaluation: a) weaker force between bulk
points resulting in stronger distortion of areas with high intensity indicated by blue arrow; c) stronger force between bulk points resulting in smaller
areas with high intensity indicated by blue arrow; c) weaker force between border points resulting in serrated contour (corresponding point
indicated by green arrow surrounded by serrated areas with border points indicated by red arrows); e) weaker force between corresponding points
resulting in smaller texture size

The force f bulk corresponding to the energy term Ebulk
uses spring constants depending on the intensity of adja-
cent pixels according to the following equation

f bulk(p) =
∑

n∈N
log (1 + I (p)) log(1 + I(n)) ∗ (p − n)

where p = (

xp, yp
)T is the currently processed pixel,

n = (xn, yn)T the adjacent neighbor in the 8-connected
neighborhood N and I(p) the intensity of correspond-
ing pixels in the texture. During the energy minimization
process, the points in the texture are processed in ran-
dom order. The forces applying at the current point are
summed up and the point is thenmoved a limited distance
according to the force. After convergence of the energy
minimization empty pixels in the new cell shape are filled
by interpolation.

Cell location simulation
To determine the location of Nc cells on an image, we
assign each cell to a defined number of cell clustersNcluster
and arrange each cell regarding a defined maximum cell
overlap Jmax in the respective cluster.
In a first step, we generate Nclusters randomized

coordinates to determine the center of each cell cluster.
Then all Nc cells on an image are subsequently processed.
The current cell is assigned randomly to a certain cluster.
If this cell is the first cell in a cluster, the cluster center
is determined as the cell location. Each further cell in a

cluster is arranged at a final location regarding the maxi-
mum overlap Jmax with the cells which have already been
arranged in this cluster. To determine the final location,
the cell is initially placed at the cluster center and a direc-
tion of movement is randomly generated. Then the cell
is incrementally moved along the random direction while
the overlap to adjacent cells Jcur is calculated with the Jac-
card index. The final location is reached when the overlap
to adjacent cells Jcur drops below the maximum overlap
Jmax. These steps are repeated until a location has been
assigned to each cell.

Cell image generation

The simulation algorithms presented above are integrated
into a common software framework [11]. The framework
implements a pipeline for fluorescent cell image simula-
tion within several steps. First steps simulate the cell shape
and texture. Then the cells are positioned on the image. In
the last steps, artifacts and noise are added to the simu-
lated images. For this paper, we used the newly developed
methods to simulate cell shapes and textures. The cells
are positioned in a fixed amount of clusters located at
randomized positions on the image. Background artifacts
were simulated with Perlin noise [25]. In a last step
Gaussian noise was added to the images.
To simulate fluorescent images for the evaluation of

simulation methods, parameters of the simulation algo-
rithms have been separately adapted to reproduce the
visual appearance of real microscopic images from the
four segmentation tasks described in the past section.



Wiesmann et al. BMC Bioinformatics  (2017) 18:176 Page 6 of 12

These parameters are then used to simulate four data
sets with 30 microscopy images for each segmentation
task. These data sets are later referred to as data sets
reproducing realistic overlap.
In order to examine the influence of overlapping cells

with respect to graphical image properties, as well as
the segmentation performance, we additionally simulate
a sequence of data sets for each of the four tasks where
all simulation parameters are kept constant except the
parameters to steer the cell overlap. All cells on each image
are located in a single cluster. Then the cell overlap is var-
ied in four degrees, namely from isolated over touching
to overlapping and finally overlying cells. We simulated 30
images per segmentation task and degree of cell overlap.

Evaluation
Two types of evaluations were applied. First, we evalu-
ate the visual appearance of the simulated fluorescent cell
micrograph with individual ratings obtained from a group
of life-science- as well as computer science experts. Sec-
ondly, we evaluate the synthetic fluorescent micrograph
cell data with graphical image features. After validation we
use the simulated cell images for evaluation of commonly
used segmentation pipelines for cell segmentation.

Simulation: expert observer study
For this study we have prepared image sets of fluores-
cent micrographs for all four tasks described above. Each
image set contained ten real images, ten images simu-
lated with our approach and furthermore tenmicrographs
simulated with the SimuCell software tool [10] as ref-
erence. The images simulated with our own approach
were randomly chosen from the available data sets with
realistic overlap. For the images simulated with the Simu-
Cell tool, the parameters were adapted in such a way
that simulated images have the most likely appearance
for the corresponding data set. Experts from biology and
micro-biology visually assessed all four image data sets
of 3×10 fluorescent micrographs and rated the realism
with respect to the expected and known biological prop-
erties. Experts from image-processing domain rated the
same images with respect to the graphical properties. This
means the image processing experts search for image dis-
tortions like simulation artifacts. Both groups rated the
images on a scale from 0 to 5 with “0” being “confidently
simulated” and “5” being “confidently real”. The four image
sets were shown in sequence, but for each image set the
real and simulatedmicrographs were presented in random
order. A LCD-TV (Phillips 52PFL96320/10) was used to
display each single micrograph for 20 seconds, alternat-
ing with a dark gray screen depicted for two seconds. All
observers noted the rating of the observed images on a
questionnaire. After each one of the four image sets the
observers took a break of five minutes.

Simulation: objectivemeasurements
In literature (as e.g. [26]), various objective measures for
the description of image properties have been proposed.
Some of these measures have e.g. been applied in [16]
for the comparison of real and simulated images cells. In
this work we try to address and evaluate image proper-
ties with high influence on the segmentation quality as
well as on human visual perception. Thus, we calculate
the average intensity inside the cell shape and the edge
strength. Specifically, the edge strength is computed with
the summed mean difference (SMD) method

SMD = 1
NC

NC∑

c

1
Nc

Nc∑

pc

abs(I(pc) − Ac)

where NC is the the number of cells, Nc the number of
pixels in cell c, I

(

pc
)

the intensity of pixel pc and Ac =
1
Nc

∑Nc
pc I (pc) the average intensity of cell c.

Segmentation: evaluation of cell segmentation algorithms
In order to proof that the fluorescent micrographs simu-
lated with our approach are suited for the evaluation of
cell segmentation algorithms, we examine the influence of
increasing overlaps between adjacent cells to the segmen-
tation performance of a state of the art image processing
pipeline for fluorescent image segmentation. For each of
the four fluorescent image data sets described above (pro-
toplasts in FDA staining, B cells in DAPI and Rhodamin
stains, macrophages with CD11b/APC stains) we simu-
lated five data sets with increasing cell overlap including
one set with the same degree of overlap measured on cor-
responding original image data set. Tomeasure the degree
of overlap, human experts annotated the original data sets
including the overlaps between adjacent cells. The Jac-
card index describing the degree of overlap is calculated
based on these expert annotations and then input to the
simulation.
Figure 4 shows a state of the art image-processing

pipeline conventionally used for the segmentation of cel-
lular fluorescent micrographs [19]. For preprocessing and
conditioning a Difference of Gaussian (DoG) filter with
parameters σhigh and σlow is applied; a k-means cluster-
ing approach [19] with parameter k for the number of
clusters is used for figure-ground separation. For the sepa-
ration of adjacent cells a a hybrid watershed [27] approach
is used for protoplasts and the B cell nuclei. For the B
cell cytoskeleton and macrophage cyto-membrane seeded
watershed approach [28] with nuclei position from DAPI
channel is performed. The watershed algorithms have a
parameter w for weighting edge-strength against the dis-
tance transform, a parameter σws for edge calculation with
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Fig. 4 Typical segmentation pipeline for fluorescence cellular micrographs

a derivative of Gaussian filter and the parameter amin
describing the minimum cell size.
For all examined data sets these parameters are auto-

matically optimized by a coordinate descent algorithm
to the simulated ground truth data with respect to the
combined Jaccard metric. Further details are layed out
in [19]. All results are validated using a three-fold cross-
validation.
To avoid a bias during evaluation of cell segmentation, a

second segmentation pipeline presented in the Additional
file 4 has been applied for the segmentation of the
synthetic images.

Results
In the following section, we present the results obtained
from the observers study evaluating and graphical image
features of the simulated images in comparison to
real microscopic images. Furthermore, we present seg-
mentation results of the simulated fluorescent micro-
graphs obtained with a state-of-the-art image-processing
pipeline.

Simulated fluorescence images
Figure 5 shows fluorescent micrographs simulated with
our approach described above, using the basic data sets as

Fig. 5 Comparison between real and simulated images: a), b), c) protoplast; d), e), f) DAPI stained nuclei; f), g), h) F-Actin channel of B cells; i), j), k)
macrophages; a), d), f, and i) are real images, b), e), g), and j) are simulatedwith our approachwhile c), f), h), and k) have been simulated with SimuCell
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input data for shape and texture modeling. Furthermore,
Fig. 5 depicts fluorescent micrographs rendered with the
freely available SimuCell software tool which is based on
computer graphic methods. The software allows param-
eters to be controlled on simulated images, such as the
amount of cells per field-of-view, the cell distribution and
the cell overlap. The data sets simulated by our approach
are provided as additional files named Additional files 5, 6
and 7. The images simulated with SimuCell can be found
in the Additional file 8.

Simulation: expert observer study
Results of our expert observer study are presented sep-
arately for biologists in Fig. 6 and for image processing
experts in Fig. 7. While the image processing experts
only had a short introduction on how the fluorescent cell
images look like, the graphs shows similar characteristics
for both groups. The protoplasts received amedium rating
but with higher standard deviation compared to other cell
types. The B cell nuclei and the B cell cytoskeleton images
received high ratings of realism for real images and images
simulated with our approach. The ratings for the images
simulated with SimuCell lie in the range of ratings for
simulated images ranged equal and smaller to 2. For the
macrophages, both user groups can distinguish between
simulated and real images. As the experts can determine
the images simulated with SimuCell as simulated, further
evaluations are only done with images simulated with our
approach.

Simulation: objective measurements
To determine how an increasing overlap between adja-
cent cells influences the image properties, we measured
the intensity and the SMD within the cells on the
simulated micrographs. The intensity measurements are

Fig. 6 Review of graphical image properties by life scientists. The
segmentation task corresponding to: (1) protoplasts, (2) B cell nuclei,
(3) B cell cytoskeleton and (4) macrophages. Error bars represent the
corresponding standard deviation

Fig. 7 Review of graphical image properties by computational
scientists. The segmentation task corresponding to: (1) protoplasts, (2)
B cell nuclei, (3) B cell cytoskeleton and (4) macrophages. Error bars
represent the corresponding standard deviation

shown in Table 1. For all cell types (protoplasts, B cells,
macrophages) the mean intensity inside the cell contour
increases within cells with a rising overlap. Table 2 shows
that this observation is not as clear for the SMDmeasure-
ments. The average SMD values increase for protoplast
with increasing overlap, but decrease for B cell nuclei,
B cell cytoskeleton and the macrophages with increasing
overlap. For all types of cells, the fluorescent micrographs
simulated with parameters (amount of cells and overlap
factor) reproducing properties of real images show a lower
intensity and lower SMD inside cells. Nevertheless, the
differences are less than 0.387σ for the intensity measure-
ment and hence acceptable. The difference for B cell nuclei
is 1.58σ , while for other cell types it is less than 0.46σ .

Segmentation: evaluation of segmentation pipeline
Figure 8 visualizes the segmentation performances
obtained with the state-of-the-art cell segmentation
pipeline (described above) for fluorescent cellular micro-
graphs on the simulated images. For all data sets
(protoplasts, B-cells, macrophages) the segmentation
performance decreases with increasing overlap. Perfor-
mance measurements using the same image segmentation
pipelines shows a combined Jaccard index of 0.74 on
images simulated with our approach compared to 0.62 on
the corresponding real images. A segmentation perfor-
mance of 0.92 was obtained on simulated images with the
B cell nuclei and Wiesmann et al. [20] calculated a perfor-
mance of 0.73 on real images. For B cell cytoskeleton, we
obtained 0.68 on simulated images and again Wiesmann
et al. [20] reached 0.64.We calculated a segmentation per-
formance of 0.78 on simulated macrophages images in
comparison to 0.688 on real images of Held [19]. Hence,
the segmentation performance values obtained over all
simulated data sets are higher than on real images.
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Table 1 Average mean intensity measured on simulated and real fluorescent cellular micrographs

Intensity Not touching Touching Overlapping Overlaying Realistic overlap Real image

protoplasts 149,55 152,41 156,93 173,65 150,16 156,26

nuclei 105,93 105,90 108,06 115,86 105,16 107,13

B cells 27,22 27,13 27,76 30,39 28,04 30,77

macrophages 74,98 72,48 74,25 80,46 71,41 80,67

Discussion
Simulated fluorescence images
While the simulation of fluorescent cellular micrographs
(or in the large scale of any other micrograph) gives the
possibility to control important parameters in the result-
ing images, such as the number of cells, cell distribution
in the field-of-view, and the cell overlap, still some of the
parameters depend on the quality of the input image data
used for cell shape and texture modeling. Thus, image
artifacts resulting from various sources during the imag-
ing process cannot be easily removed from the images.
Slide preparation leaves dye or cell fragments in the back-
ground. Illumination artifacts may result frommicroscopy
and noise may be present in real images especially on
images taken from cells marked with fluorescent makers
with long wavelength.
In the following we discuss some solutions to these

problems. The simulated fluorescent images contain an
equal or higher background gray value level compared
to the original micrographs, while otherwise simulated
images would depict an unnatural edge between the
cytoplasm and the image background. Nevertheless, the
higher background levels increase segmentation complex-
ity as the figure-ground separation is usually based on
this contrast. Illumination artifacts in the input images
used for cell modeling can be estimated with retrospec-
tive shading correction [29] but not fully removed form
input images. If a retrospective illumination correction
is performed before using the cell data for texture sim-
ulation, the resulting correction artifacts propagate to
simulated images. The minimum noise level of the micro-
graph can be determined by the noise on the cells in the
input images. The noise existing on the images, and on
which the simulation is based on, can not be removed
without producing artifacts that can be recognized by
human observers. Higher noise levels can be simulated by

adding additional noise. Thus, an input data set with high
quality is mandatory to simulate high quality images.

Simulation: expert observer study and objective
measurements
The proposed texture simulation algorithm reduces dis-
tortion of regions with high intensity. In image data sets
with high cell shapes variability, e.g. in macrophage cell
spreading experiments, the proposed approach reaches its
limit when relatively small cell patches are mapped to rel-
atively large shapes. In these cases, the texture mapping
algorithm has to stretch the patch strongly which leads to
stronger distortions.
This also implicates that some of the simulated images

depict reduced intensities inside the cells compared to the
cells on real images (see Table 1). This also coincides with
lower SMD values (see Table 2).
Table 1 shows an increasing mean intensity in the cells

with an increasing overlap factor or cells with adjacent
cells. This phenomenon was to be expected, because in
the overlapping regions the fluorescent intensities of both
cells are additive. The SMD values of the edges also rise
with increasing overlap. Here, we also observe an addi-
tional contribution in regions where cells overlap, since
we did not explicitly blur the texture of cells lying in the
background. This observation can be used to extend the
cell simulation model in a next step to generate even more
realistic fluorescent micrographs.
During the observer study most of the biologists looked

distinctively at cells and made their decision based on the
appearance of the cells in order to decide if the image
could be real or not. On the other hand, the image pro-
cessing experts and computer scientist searched for sim-
ulation artifacts and for unnatural edges, repetitive struc-
tures and distortions in the cell textures. Together, both
groups cover a wide set of image appearance properties,

Table 2 Average summed mean differences (SMD) on simulated and real fluorescent cellular micrographs

smd Not touching Touching Overlapping Overlaying Realistic overlap Real image

protoplasts 19,02 18,96 18,96 17,75 19,14 22,66

nuclei 16,31 16,34 16,46 16,30 16,27 13,05

B cells 4,82 4,88 5,03 5,55 5,07 5,06

macrophages 8,14 7,79 8,22 8,93 7,66 7,48
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Fig. 8 Visualization of segmentation results obtained on series of data
sets showing cells with increasing overlap and the data sets with
realistic overlap for all four segmentation tasks. Error bars represent
the corresponding standard deviation

thus supporting the hypothesis that the proposed fluores-
cent micrograph simulation delivers more realistic images
than the compared computer graphics approach.
For all assessed cell types (protoplasts, B cells,

macrophages), the observed realism for the SimuCell
images is lower compared to real fluorescent micrographs
as well as fluorescent micrographs simulated based on
our proposed approach using shape and texture modeling.
The cell texture of images simulated with the SimuCell
software is generated with Perlin noise [25] and therefore
appears homogenous for all cells depicted in the simulated
images set.
Protoplasts show average rating for realism with large

standard deviation for all images. The experts, both biolo-
gists and computer scientists, were not able to distinguish
between real images and simulated images and assigned
ratings for realistic images to simulated images and ratings
for simulated images to realistic images.
For both B cells compartments, namely the nuclei and

the cytoskeleton, both expert groups assigned high real-
ism ratings for real images and images simulated with our
approach. The ratings for the images simulated with the
SimuCell tool were significantly reduced. In contrast to
the protoplast images the experts of both groups could
clearly determine the images provided by the SimuCell
tool as “simulated". All experts tend to rate real images and
images simulated with our approach with higher ratings
of realism.
The ratings for the macrophages show, that the experts

were able to distinguish between simulated and real cells
and also between simulated images from our approach
and the SimuCell tool. This shows that the proposed
approach currently comes to its limits when cells with
highly variable shapes are simulated. This problem could
be solved in a next development step if manually anno-
tated cells are grouped according to their shape and then

multiple cell shape models are calculated, each of them
with less variability.

Segmentation: evaluation of segmentation pipeline
The performance values (cf. Figure 8) obtained from the
cell-segmentation experiments show that the images sim-
ulated for this study with our approach can be segmented
in suitable quality by the state-of-the-art image processing
pipeline presented above. Overall, the performance values
on four experimental data sets and the related segmenta-
tion tasks, are higher on the simulated images than on the
real images. This can be explained based on the fact that
the simulation models depict less image disturbance than
the real images. Also, the simulated fluorescent micro-
graphs depict less artifacts such as cell fragments or dye
blobs, which can have a high impact on the segmentation
performance. Additionally, the evaluation of the original
microscopy images based on human expert annotation
can impair the segmentation accuracy. Human observers
visually assess the cells on the microscopy images and we
use this as the gold standard but the real ground truth
remains unknown. The visual assessment is a subjective
task and different observers create different annotations
of the same micrographs. This fact weakens the validity of
the evaluation and was one of the reasons reason to simu-
late fluorescence micrographs with a well-known ground
truth.
A state-of-the-art segmentation pipeline (consisting

of DoG filtering, k-means clustering and watershed-
approaches) has been applied to the series of simulated
image data sets with increasing overlap of adjacent cells.
As this segmentation pipeline is only able to separate
touching cells, the performance decreases with a rising
overlap factor.
Usually, data sets which are used to evaluate segmenta-

tion algorithms, depict cells that overlap or overlay each
other. Nevertheless, this fact is often omitted in the eval-
uations of segmentation algorithms and the resulting per-
formance measure is calculated as mixture of cells with
different overlap. Thus, the performance values obtained
on the various simulated data sets give a coarse estimate
of the segmentation quality to be expected on new input
data sets with various degrees of overlap.
Among the examined examples, the B cell nuclei can

be segmented and separated with the highest perfor-
mance, even when they overlap. This results from their
high intensity which enables exact figure-ground separa-
tion, and from their convex shape which is preferred by
the watershed algorithms used for cell separation. The
second-best performance was obtained on the data set
with macrophages which depict sufficient intensity for
figure-ground separation, but a much higher variability
on the cell shapes. On the image data set with proto-
plasts, the observed segmentation performance decreases
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because they show high intensity variations and thus the
figure-ground separation is not consistently feasible with
the k-means clustering algorithm. Errors obtained in this
step directly propagate to the successive cell separation
step and hence lead to a lower performance. The seg-
mentation pipeline yields the lowest performance on the
micrographs with the B cell cytoskeleton. This data set
shows high a intensity variability inside the cells inhibit-
ing exact figure-ground separation. Additionally, the cell
shape has a high variability so that the edges of the cells
in the images would be needed for the separation step. As
Table 2 shows, the edge strength is weak for the B cells,
thus preventing an accurate segmentation of the images.

Conclusion
We have presented and validated a new approach for
realistic fluorescent cell image simulation in order to eval-
uate cell segmentation algorithms. Ratings from an expert
observation study show that the simulated images cannot
be easily distinguished from real images by either biolo-
gists or image processing experts. Additionally, graphical
image features of cells lie in the same value range for cells
on real images and cells in micrographs simulated with
our proposed approach. Furthermore, we determined the
limits of our approach on image sets with high shape and
texture variability. A work around lies in clustering the
cells before starting with simulation.
Fluorescent cellular image simulation enables the eval-

uation of cell segmentation algorithms that are indepen-
dent from various image disturbances. If necessary, these
disturbances can also be included in the simulation and
their influence to the segmentation performance can be
measured.
In particular, the presentedmethod allows for the objec-

tive evaluation of image processing algorithms trying to
resolve overlaps of overlapping and overlaying cells. To
gain an adequate ground truth based on expert annota-
tion is time consuming and error prone, especially for
overlapping and overlaying cells. Fortunately, a simulation
inherently provides its own ground truth, even for difficult
scenarios due to overlapping or overlaying cells.
Further improvement of the simulation can be achieved

by optimizing the arrangement of the cells on the images.
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