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Abstract

Background: Advances in cloning and sequencing technology are yielding a massive number of viral genomes. The
classification and annotation of these genomes constitute important assets in the discovery of genomic variability,
taxonomic characteristics and disease mechanisms. Existing classification methods are often designed for specific
well-studied family of viruses. Thus, the viral comparative genomic studies could benefit from more generic, fast and
accurate tools for classifying and typing newly sequenced strains of diverse virus families.

Results: Here, we introduce a virus classification platform, CASTOR, based on machine learning methods. CASTOR

is inspired by a well-known technique in molecular biology: restriction fragment length polymorphism (RFLP). It
simulates, in silico, the restriction digestion of genomic material by different enzymes into fragments. It uses two
metrics to construct feature vectors for machine learning algorithms in the classification step. We benchmark CASTOR
for the classification of distinct datasets of human papillomaviruses (HPV), hepatitis B viruses (HBV) and human
immunodeficiency viruses type 1 (HIV-1). Results reveal true positive rates of 999%, 99% and 98% for HPV Alpha species,
HBV genotyping and HIV-1 M subtyping, respectively. Furthermore, CASTOR shows a competitive performance
compared to well-known HIV-1 specific classifiers (REGA and COMET) on whole genomes and pol fragments.

Conclusion: The performance of CASTOR, its genericity and robustness could permit to perform novel and accurate
large scale virus studies. The CASTOR web platform provides an open access, collaborative and reproducible machine
learning classifiers. CASTOR can be accessed at http://castor.bioinfo.ugam.ca.
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Background

Genomic sequence classification assigns a given sequence
into its related group of known sequences with similar
properties, traits or characteristics. It is a fundamental
practice in different research areas of microbiology yield-
ing major challenges in comparative genomics. Accurate
genomic sequence classification and typing could help
to enhance the phylogenetics and functional studies of
viruses [1]. They also help in determining pathogenic-
ity, developing vaccines, studying epidemiology and drug
resistance [1, 2]. Recent advances in DNA sequencing
and molecular biology techniques provide an immense
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collection of genomic information. Such data volume
raises challenges for genetic-based classification tech-
niques. Three main approaches have been designed and
implemented to classify different types of viruses based
on their genomic sequence characteristics. The first is
sequence alignment-based approach which is widely used,
e.g. in similarity search methods (BLAST [3], USEARCH
[4], etc.) and in pairwise distance based-methods (PASC
[5], DEmARC [6], etc.). The second is phylogenetic-based
approach. It is implemented in several tools, e.g. REGA
[7, 8] and Pplacer [9]. The aim of these methods is to
place an unknown sequence on an existing phylogenetic
tree of a set of reference sequences. Each time a given
sequence has to be classified, it is realigned with the
set of reference sequences. Then, either a new phyloge-
netic tree is inferred or the given sequence is placed in
the existing tree. The third is alignment-free approach
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including methods based on nucleotide correlations [10]
and sequence composition [2, 11]. It transforms sequences
or their relationships to feature vectors and then con-
structs a phylogeny, a statistical model or a machine
learning model [12, 13]. These methods are reviewed in
Vinga and Almeida [12], Mantaci et al. [14], Xing et al.
[15] and Bonham-Carter et al. [13]. Restriction fragment
length polymorphism (RFLP), a molecular biology tech-
nique [16], is used to type different virus strains [17-21].
Several algorithmic approaches have tackled theoreti-
cal and experimental problems related to the restriction
enzyme data such as restriction mapping problem (see
chap. 2 [22]), phylogeny estimation [23-25], SNP geno-
typing [26] and analysis of RFLP digitized gel images
[27, 28]. However, large scale computational sequence
classification based on the RFLP technique is not yet cov-
ered in literature. Due to the genetic polymorphism in
DNA sequences, fragments resulting from enzyme diges-
tions are different in terms of number and length between
individuals or types. A set of restriction enzymes grounds
a fragment pattern signature for each sequence. There-
fore, similar sequences ought to have similar fragment pat-
terns and thus similar restriction site distributions. This
a priori knowledge could be used to build a machine
learning model where sequences are represented by
restriction site distributions as a feature vector and a
class feature corresponding to a taxonomic level (genus,
species, etc.). In this paper we introduce CASTOR, a
machine learning web platform, to classify and type
sequences. CASTOR integrates a new alignment-free
method based on the RFLP principle. Our iz silico method
is independent of the sequence structure or function
and is also not organism-specific. CASTOR is designed
to facilitate the reuse, sharing and reproducibility of
sequence classification experiments.

Methods

Overview of the approach

In this paper, we propose an in silico approach to identify
and classify viral DNA sequences based on their restric-
tion enzyme sites using supervised machine learning tech-
niques. Like other supervised learning approaches, the
proposed one is divided into two main units (Fig. 1). The
classifier construction unit builds and trains classifica-
tion models (or classifiers). It requires a set of reference
viral genomic sequences, their classes and a list of restric-
tion enzyme patterns. It starts by creating a training set
including a group of feature vectors. The latter is com-
puted from the distribution of the restriction site patterns
on the given DNA sequences and then refined by fea-
ture selection methods. A collection of learning classifiers
are then trained and evaluated using 10-fold cross vali-
dation in order to choose the best classifier. The second
unit (prediction unit) is intended to predict the classes
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or annotations of given viral sequences. The inputs of
this unit are a classifier, a set of DNA sequences and
the same list of restriction enzyme patterns used to train
the classifier.

Restriction fragment pattern-based features

Here, we propose a set of features simulating the out-
come of the RFLP technique. From REBASE database [29],
we extracted a list of 172 type II restriction enzymes and
their recognition sites. Type II family cleaves (cuts) DNA
sequences precisely on each occurrence of the recognition
site. Then, the restriction digestion of DNA sequences is
computationally simulated. In order to build a training set,
for a sequence s and enzyme z we compute two metrics
representing the distribution of the digested fragments:
the number of cuts of the enzyme (CUT(s,z)) and the
root mean square of digested fragment lengths (RMS(s, z))
calculated as

RMS(s,z) =

i=1

where 7 is the number of fragments (CUT (s,z) + 1) and
I; is the length of the i fragment in linear genomes. For
circular genomes n = CUT (s, z). Other metrics could be
easily computed from the fragment digestion to construct
the feature vectors.

Feature selection methods

The selection of an optimal subset of features improves
the learning efficiency and increases the predictive perfor-
mance. Feature selection techniques reduce the learning
set dimension by pruning irrelevant and redundant fea-
tures. Two relevant methods of feature reduction are
provided. The first method (topAttributes) ranks the fea-
tures according to their information gain [30] and selects
a subset of top-k features. Information gain estimates
the mutual information between a feature and the target
class. The second method (correlation) uses the Spear-
man’s rank correlation coefficient to construct a set of
uncorrelated features. The correlation coefficient between
two feature ranking vectors u and v of size n is computed
as follows:

6> 1 (ui —vi)?
O nm2-1)

p=1 (2)

A two-tailed p-value is computed to test the null
hypothesis which states that two feature vectors are
uncorrelated. In order to remove one of the two corre-
lated features, two strategies could be used: discarding
the feature with the largest sum of absolute correlation
coefficients or the one with the smallest information
gain score.
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Fig. 1 Overview of CASTOR kernel architecture. The kernel is composed of two main units (classifier construction and prediction). White rectangles
represent input and output data; grey and curved rectangles represent processes. TS and VS are training set and validation set, respectively

Learning and evaluation

We explored three types of classifiers: (1) symbolic meth-
ods (C4.5 decision tree (J48) [31] and random forests
(RFT) [32]), (2) statistical methods (naive Bayes classi-
fier (NBA) [33, 34], support vector machine (SVM) [35]
and K-nearest neighbors (IBK) [36, 37]) and (3) ensemble
methods (Adaboost (ADA) [38] and Bagging (BAG) [39]
both combined with J48); see Additional file 1: Table S1 for
more details. A 10-fold cross-validation strategy is used to
assess the performance of the trained classifiers. Perfor-
mance measures are weighted according to the number of
instances and computed for the overall classification. The
performance measures are:

TPR = TP/(TP + FN), (3)
FPR = FP/(FP + TN), (4)
Precision = TP/(TP + FP), (5)
2 X TPR x Precision
F — measure = — . (6)
TPR + Precision

where TP, TN, FP, and FN are the number of true positive,
true negative, false positive and false negative predic-
tions, respectively. TPR and FPR are the true positive rate
and the false positive rate, respectively. We used Weka
data mining program to perform the training and the
evaluation [40].

To include a negative class in the training sets, two
approaches could be used. First, provide manually con-
structed negative class from collected relevant data. Sec-
ond, build it with the provided negative class gener-
ator. This generator constructs altered sequences data
from a sampling with replacement of the positive set
sequences. To alter the sampled sequences, we reshape the
RFLP length distribution of the training set by randomly

shrinking, expanding or keeping unchanged the length of
the sampled sequences. Then, each sequence is randomly
shuffled while preserving k-mer counts.

Datasets

In this study, we applied our approach to a wide range
of viruses. We selected one dsDNA virus (human papillo-
mavirus (HPV)), one dsDNA-RT virus (hepatitis B virus
(HBV)) and one ssRNA-RT virus (human immunodefi-
ciency virus type 1 (HIV-1)). (1) HPVs have a circular dou-
ble stranded DNA genome of ~8000 bp and belong to five
genera (Alpha, Beta, Gamma, Mu and Nu). HPVs belong-
ing to a genus share over 53% identity of their complete
genomes and ones in the same species level share over 62%
of identity [41, 42]. We assessed the performance of HPV
classification in the genus and species taxonomic levels. At
the species level, we selected only the Alpha HPV genus
representing the most abundant and diverse genomes in
databases. It is divided into thirteen species (Alpha 1-
11, Alpha 13-14). Unfortunately, some HPV genera (Mu
and Nu) and Alpha HPV species (1, 5, 8, 11 and 13) were
underrepresented and were therefore discarded. (2) HBV
genomes are smaller (3200 bp) and are circular partly
double stranded DNA. HBVs are classified into eight
genotypes (A—H) with at least 8% divergence among their
genomic sequences [43]. We evaluated the performances
of our method for the genotyping of HBV strains. HPV
and HBV complete genome sequences were downloaded
from the NCBI RefSeq database [44]. The taxonomic
annotations were extracted from the NCBI Taxonomy
database [44]. (3) HIV-1 genomes have two copies of
positive-sense single-stranded RNA with ~9700 bp. Phy-
logenetically, HIV-1 strains are divided into four groups:
M, N, O and P [45, 46]. M group strains are worldwide
prevalent. They are categorized into pure subtypes (A-D,
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F-H, ] and K) and recombinant forms (up to 70 CRFs
and URFs). Genetic variations among subtypes are about
20-30% for env gene, 7-20% for gag gene and 10% for
pol gene [47]. For HIV-1 classification, we studied com-
plete genomes (CGs) and fragments covering pol gene
from the position 2253 to 3554 with respect to HXB2 ref-
erence sequence and having a minimum size of 1 Kbp
(pol fragments). HIV-1 sequences were extracted from
the Los Alamos HIV sequence database (http://www.hiv.
lanl.gov/). For all the datasets, only complete, curated
and well-annotated sequences were selected. Moreover,
each class ought to have an adequate number of genomic
sequences in order to have a representative genetic
diversity.

Simulation studies

Raw viral sequence datasets, described above, were class-
size imbalanced, ie., the difference in the number of
genome sequences belonging to each class was relatively
large. Generally, epidemiological studies are conducted on
host-specific viruses (human, cattle, etc.) with the high-
est prevalence and pathogenicity [48, 49]. This leads to
more data for some groups of viruses over others. Usu-
ally, training standard classifiers on imbalanced datasets
affects their performance (mainly sensitivity and speci-
ficity) and misleads the interpretation of their accuracy
[50, 51]. Under-sampling majority class approach has been
shown to perform well [52] and could be used with stan-
dard algorithms. Hence, from each previous dataset, we
randomly performed under-sampling, without replace-
ment, of the larger classes to have relatively the same
sizes as the other classes. In order to identify the best
parameters of the classifiers, we randomly sampled 10
datasets for each of the HPV genera, HPV Alpha species,
HBV genotypes, HIV-1 M subtypes CGs and HIV-1 M
subtypes pol fragments data. For each obtained sample,
we performed a 10-fold cross-validation study with dif-
ferent classifiers built as follows. We constructed all the
combinations of the two metrics (CUT and RMS), the
two feature selection methods (topAttributes and correla-
tion) and the seven learning algorithms. This construction
yielded 28 combinations x 10 datasets = 280 experiments
for each virus classification.

Results and discussion

The Results section is divided into four parts: first,
we show how the RFLP signatures are suitable for
viral classification; second, we assess the performance
of several competing classification algorithms on dif-
ferent virus datasets; third, we compare the predic-
tion made by CASTOR against widely used meth-
ods for HIV-1 datasets, one of the most difficult
to classify and fourth, we present the CASTOR web
platform.
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Classification with RFLP signatures in virus families

Figure 2 highlights the natural RFLP cuts in the col-
lected HPV, HBV and HIV-1 datasets. The second col-
umn of the figure shows the multidimensional scaling
(MDS) plot of the first two dimensions of distances
between the feature vectors of the genomes. The sepa-
ration between the different HPV genera (Fig. 2a) could
approximatively be drawn, which is partly the case for
the HPV species. The Cohesion [41] and Silhouette [53]
indexes allow to measure the compactness and sepa-
rability of classes. Here, both indexes show moderate
values (between 0.2 and 0.8 for Cohesion index and
—0.2 to 0.7 for Silhouette index) indicating that the
classes are not well distinct. Several instances could be
mislabeled or share the same RFLP cut patterns with
other classes. This results in low or negative values of
Silhouette index in HPV Alpha 3, 7 and HPV Gamma
(Fig. 2a). With CASTOR, the best HPV Alpha Species
classification obtains a TPR of 0.992 and FPR of 0.002
in 10-fold cross-validation analyses of 118 instances (see
Table 1). The power of RFLP cuts in classification of
viruses could be observed in HBV genotypes heatmap
(see Fig. 2b). HBV highlights three genotypes (A, E and
F) with Cohesion indexes for most instances above 0.7
indicating very coherent classes. But B and C genotypes
have values between 0.1 and 0.6. The Silhouette index
plots show several instances of B, C, E and G genotypes
that have an striking disagreement with their assigned
classes (Silhouette index < —0.1). Even with these con-
straints, CASTOR achieves the genotyping of 230 HBV
instances with TPR of 0.996 and FPR of 0.001 accord-
ing to a 10-fold cross-validation study (see Table 1).
The HIV-1 cut site patterns have more variability among
pure subtypes and CRFs (Fig. 2c). Likely, the MDS plot
shows a moderate subtype clustering for the main HIV-1
subtypes. But this clustering is not well separated com-
pared to HPV and HBV. This variability among classes
is reflected in low values of the Cohesion index (<
0.4). All, suggesting either variability, noise or misla-
belling. For instance, > 30% of HIV-1 B and HIV-1 C
instances tend to have RFLP cut patterns of other subtypes
(negative Silhouette indexes). With CASTOR, the sub-
typing of HIV-1 group M within 18 main subtypes was
assessed for 597 instances with a TPR of 0.983 and
FPR of 0.001.

Previously, it has been clearly shown that RFLP has a
power for classification in several viruses such as HPV
[17, 18], HBV [20] and HIV [19]. But these studies are
mostly limited to two to five classes. To the best of
our knowledge, our study constitutes the first large scale
and multi-class analyses of RFLP cut for classification. It
provides the basis to explore large and various types
of classifications, in particular those based on machine
learning methods.
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Fig. 2 Class cohesion of three virus datasets. The four columns illustrate the separability and compactness of three virus complete genomes datasets
based on 172 restriction enzyme cuts. The first column shows heatmaps of CUT clustered by x-axis. The samples in the y-axis are grouped by studied
classes followed by intra-class clusterings. The second column shows MDS of the CUT distances between samples. The third and fourth column
represent, respectively, the Cohesion and Silhouette indexes of the classes. a Classes in HPV are Alpha species, Beta and Gamma genera. b Classes

in HBV are A-H genotypes ¢ Classes in HIV-1 are M pure subtypes and CRFs

Table 1 CASTOR best accuracies on the classification of five datasets

Group of virus Organism Classification # of classes # of instances TPR FPR F-measure Classifier ID
| (dsDNA) HPV Genera 3 125 0.992 0.005 0.992 PMSHPVO1
Alpha species 8 118 0.992 0.002 0.992 PMSHPVO02
VIl (dsDNA-RT) HBV Genotypes 8 230 0.996 0.001 0.996 PMSHBVO1
VI (ssRNA-RT) HIV-1 Groups 4 76 1.000 0.000 1.000 PMSHIVO1
M Subtypes 18 597 0.983 0.001 0.983 PMSHIVO2

This table contains the best results of the experimental study performed on the different datasets. The evaluation measures are obtained with 10-fold cross-validation
analysis. The column Classifier ID contains the corresponding models available in CASTOR platform
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Machine learning classifier tuning and performance

The CASTOR platform relies on machine learning meth-
ods for the classification of viruses based on RFLP sig-
natures of nucleotide sequences. The platform is detailed
in the CASTOR web platform section. Three impor-
tant parameters constitute the kernel of each CASTOR
classifier: a metric, a feature selection method and a
learning algorithm. To assess the different combination
of the models, we performed a 10-fold cross-validation
of the 280 experiments associated to each of the five
datasets (HPV genera, HPV Alpha species, HBV geno-
types, HIV-1 M subtypes CGs and HIV-1 M subtypes
pol fragments). From the overall results of the five virus
classifications, it is not obvious to distinguish the best
candidate between CUT and RMS metrics. In the geno-
typing of HBV, CUT performs better than RMS (p-value =
0.0012, Wilcoxon/Kruskal-Wallis test) while in the HPV
genera and species classifications RMS performs better
than CUT (p-values 5.00E-03 and 0.0293, respectively;
Wilcoxon/Kruskal-Wallis test) (Additional file 1: Figure
S1). However the mean of weighted F-measures for both
methods is in all cases > 0.906 (with a minimum of
0.793 and a maximum of 0.996). The same analyses were
performed on HIV-1 CGs and pol fragments. CUT per-
forms slightly better than RMS in both datasets when
comparing the mean of weighted F-measures (p-values
0.0213 and 0.0237 for CGs and pol fragments, respec-
tively; Wilcoxon/Kruskal-Wallis test). Due to the variabil-
ity of HIV-1, the mean of weighted F-measures falls to
0.857 in CGs and 0.793 in pol fragments (Additional file 1:
Figure S1). Hence for the remaining of our study, we will
fix the RFLP metric according to its performance on the
corresponding datasets.

Additional file 1: Figure S2 presents the comparative
analyses of the two feature selection methods (correla-
tion and topAttribute) in the 280 experiments for each
dataset. The mean of weighted F-measures of the two fea-
ture selection methods are not statistically different in
all datasets (based on the Wilcoxon/Kruskal-Wallis test).
In fact, the results of the two methods are correlated
for the three viruses with the Spearman’s rank corre-
lation coefficient ranging between 0.772 and 0.968 (see
Additional file 1: Figure S4). In these simulations, the
seven learning algorithms have various performances
according to the different datasets. The algorithm J48 has
the worst weighted F-measure values (see Fig. 3). How-
ever, its performance improves when combined with RFT
or BAG algorithms. In general, SVM performs better in
four of five datasets with mean of weighted F-measures >
0.906 and ranks number one in HPV Alpha species,
HBV genotypes and HIV-1 subtypes classifications and
four in HPV genera classification. It is followed by RFT,
NBA and IBK. However, RFT and NBA are affected
by a large variance (Fig. 3). These rankings are clearly
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observable on Additional file 1: Figure S3 and Figure
S4 presenting respectively the correlations CUT/RMS
and topAttribute/correlation grouped by algorithms.
While most algorithms have similar performance with
CUT or RMS, Naive Bayes surprisingly performs better
with CUT.

Assessing the performance CASTOR on HIV-1 data

CASTOR exhibits high accuracy for different HIV-1
classification

Table 2 highlights CASTOR prediction accuracies on five
CG and seven pol fragment HIV-1 classifications. For each
dataset, the best performing models (classifiers) have been
identified according to a 10-fold cross-validation analysis.
The F-measure of the best classifier for the HIV-1 groups
M, N, O and P indicates that all the sequences are correctly
classified (for CGs and pol fragments). For the predic-
tion of the main HIV-1 pure subtypes as well as CRFs,
F-measures are above 0.971 (with FPR < 0.003) for both
CGs and pol fragments when the pure subtypes and CRFs
are separate models. When combining pure subtypes and
CREFs, the F-measure still remains above 0.971 for CGs
but it drops to 0.919 when the classes are balanced to 30
instances per class or 0.962 for 200 instances per class. It
appears that the CASTOR models are underperforming
when we try to predict between pure subtypes and CRFs
(F-measures of 0.795 and 0.885 for CGs and pol fragments,
respectively).

Comparing COMET, REGA and CASTOR

Next, we compared the performance of CASTOR against
the most powerful and widely used HIV-1 specific pre-
dictors namely COMET [2] and REGA version 2.0 [7, 8]
(Fig. 4). These comparisons are based on CG as well as
pol fragment data. It is important to notice that these pro-
grams are fixed and do not allow neither any change on
the trained classes nor new training samples. Here the
actual training of COMET and REGA includes respec-
tively 55 and 22 classes for either CG or pol fragments.
To avoid under-represented classes, CASTOR was trained
on 18 classes for CGs and 28 classes for pol fragments
(models are available under the classifier IDs PMSHIV02
and PMSHIVO03, respectively). We performed three com-
parisons (see Fig. 4). The first, named complete sampling,
assesses the performance of each method on 10 percent of
randomly sampled Los Alamos HIV data. This sampling
permits to assess the performance of the predictors to fit
realistic data with unknown classes. The second, named
specific subtypes, focuses, for each method, only on the
corresponding trained subtypes. The third, named com-
mon subtypes, compares the performance of the methods
on the intersection of the 3 trained subtypes. This strategy
is used due to the fact that the training of COMET and
REGA cannot be changed. Thus, it is difficult to adapt or
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Fig. 3 Learning algorithm evaluation on five datasets. This figure illustrates
the prediction of a HPV genera, b HPV Alpha species, ¢ HBV genotypes, d H

respectively. p is the p-value of the statistically significance of the weighted
Wilcoxon/Kruskal-Wallis test
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F-measure mean differences among the algorithms computed with the

perform other classification studies or larger benchmark
analyses. Figure 4 shows that for CGs, REGA performs
the best followed by CASTOR and for pol fragments
COMET outperforms, followed again by CASTOR. In the
two types of data, when not performing the best, REGA
or COMET performance drops drastically by more than
10% and ranks at the third position (Fig. 4). Meanwhile
CASTOR ranks second in both two types of data. With

Table 2 Evaluation of HIV-1 classification with CASTOR

CGs, CASTOR obtains a correct classification of 72.41%
against the sampling of Los Alamos HIV data when REGA
obtains 76.77%. But when testing predictors on their
trained classes, the percentage of correct classification
drastically increases to 98.33 and 96.61% respectively for
REGA and CASTOR. This result remains almost the same
when comparing only the common trained classes among
the three predictors (Fig. 4). These common classes cover

Classification #of classes #of instances [min - max] instances/class  TPR FPR F-measure  Classifier ID
Complete genomes  Groups (M, N, O and P) 4 76 [4-32] 1.000 0.000 1.000 PMVHIVGCO1
Pure subtypes 6 189 [30-36] 0995 0.001 0995 PMVHIVGC02
CRFs 12 234 [10-30] 1.000 0.000 1.000 PMVHIVGCO3
Pure subtypes and CRFs 18 423 [10-36] 0981 0001 0981 PMVHIVGC04
Pure subtypes vs CRFs 2 200 [100-100] 0.795 0205 0.795 PMVHIVGCO05
pol fragments Groups (M, N, O and P) 4 94 [4-45] 1.000 0.000 1.000 PMVHIVPLO1
Pure subtypes 6 1800 [300-300] 0.983 0.003 0983 PMVHIVPLO2
CRFs 16 480 [30-30] 0971 0.002 0971 PMVHIVPLO3
CRFs 6 1200 [200-200] 0993 0.001 0.993 PMVHIVPLO4
Pure subtypes and CRFs 23 690 [30-30] 0920 0.004 0919 PMVHIVPLOS
Pure subtypes and CRFs 12 2400 [200-200] 0962 0.003 0.962 PMVHIVPLO6
Pure subtypes vs CRFs 2 200 [100-100] 0885 0.115 0.885 PMVHIVPLO7

This table contains the TPR, FPR and F-measure of 12 HIV-1 classifications obtained with 10-fold cross-validation analysis. For each classification, the number of corresponding
classes and instances are given. The range [min-max] indicates the interval of instance frequencies per class used during the training of each model. The column Classifier ID

contains the corresponding models available in CASTOR platform
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a Complete genomes b pol fragments
# of instances 551 461 418 413 413 11156 10949 10451 10771 10381
# of classes 51 29 8 6 6 71 48 21 22 15
100 —_———— —_— S ——

-
W

% of correct classifications
(] w
W (=]

[ -
Complete sampling

Specific subtypes

Common subtypes

B COMET

intersection of the classes of the three trained predictors

B REGA

Complete sampling

Specific subtypes Common subtypes

I CASTOR

Fig. 4 Performance of CASTOR with COMET and REGA predictors on HIV-1 datasets. The panels a and b show the percentage of correct
classifications for HIV-1 complete genomes and HIV-1 pol fragments, respectively. The number of instances and the associated classes for each
sampling is presented above the panels. Complete sampling corresponds to 10% of Los Alamos HIV data selected randomly. In specific subtypes
sampling, the predictors are assessed against their trained classes. In common subtypes sampling, the predictors are assessed against the

75 and 93% of the overall instances of the sampling of
CGs and pol fragments, respectively. The mean TPR of
CASTOR is higher than 0.950 in the case of either pure
subtypes or CRFs. The TPR of REGA drops to 0.835
when assessing CRFs and remains almost perfect for pure
subtypes (Table 3). In pol fragments, COMET outper-
forms CASTOR and REGA in all comparisons. Applying
the three methods, COMET, REGA and CASTOR, on
10% random sampling of Los Alamos HIV data, the per-
centages of correct classification were 91.74, 72.48 and
86.64%, respectively. This result is confirmed when com-
paring only the common trained classes where COMET
reaches 95.57% and CASTOR 89.51%. Note that REGA
could not perform higher than 76% and has a mean TPR
of 0.953 for pure subtypes competing with COMET. In
CREF instances, COMET and CASTOR obtain almost an
equal mean of TPR around 0.930 (Table 4). REGA can-
not perform well in CRF classification and has a mean of

TPR equal to 0.570. CASTOR has higher FPR values com-
pared to the two other programs in overall classifications.
This fact is not surprising since REGA and COMET are
specifically tuned to predict HIV data. Their predictions
with lower scores tend to be discarded or ambiguous. For
instance, COMET has 32% of its CG predictions that are
unassigned as well as 5% of its pol fragment predictions.
Hence, these numbers are higher than the false positive
values of CASTOR, but they are not included in the FPR
computation. However, it will be interesting to include in
CASTOR a threshold of inclusion of a given sequence into
a class. This could help reducing the FPR but it would
require deeper analyses. It also should be associated to the
open-set classification problem that is beyond the scope
of this paper.

Even though CASTOR is not a specific HIV-1 clas-
sifier, it competes with the most powerful methods in
HIV-1. Unlike COMET and REGA, CASTOR provides

Table 3 Performances of HIV-1 predictors on complete genome classification

COMET REGA CASTOR
# of instances TPR FPR F-measure  TPR FPR F-measure TPR FPR F-measure
CRFs HIV1_01_AE 100 0960  0.000  0.980 0970 0000  0.985 1.000  0.000 1.000
HIV1_02_AG 10 0900 0000 0947 0700 0000 0824 0900 0007 0818
Mean 0930 0000  0.964 0.835  0.000  0.905 0950  0.004  0.909
Pure subtypes  HIVI_A 100 0660 0000  0.795 0990 0000  0.995 0940 0000 0969
HIV1_B 100 0910 0000 0953 1.000 0000  1.000 0960 0003 0975
HIV1_C 100 0970 0000  0.985 1.000  0.000  1.000 0970 0003 0980
Mean 0847 0000 0911 0997 0000  0.998 0957 0002 0975

This table contains TPR, FPR and F-measure of COMET, REGA and CASTOR on the prediction of HIV-1 M pure subtypes and CFRs complete genomes. The shown classes
belong to the common subtypes sampling. The CASTOR model used in this evaluation is PMSHIVO2
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Table 4 HIV-1 predictor performances on pol fragment classification
COMET REGA CASTOR
#ofinstances  TPR FPR F-measure  TPR FPR F-measure  TPR FPR F-measure
CRFs HIV1_01_AE 1000 0.989 0.000 0.993 0.007 0.000 0.014 0.956 0.001 0.975
HIV1_02_AG 1000 0.952 0.002 0.967 0.000 0.000 0.000 0.853 0.005 0.897
HIV1_06_cpx 698 0.924 0.000 0.958 0.938 0.000 0.965 0927 0.003 0.943
HIV1_07_BC 1000 0.977 0.000 0.988 0.988 0.000 0.993 0.982 0.002 0.980
HIV1_08_BC 399 0965 0000  0.981 0990 0000 0.9% 0972 0001 0970
HIV1_11_cpx 58 0828 0000  0.906 0690 0000 0816 0897 0006 0588
HIV1_12_BF 222 0860 0000 0925 0374 0000 0544 0932 0008  0.807
Mean 0.928 0.000 0.960 0.570 0.000 0.618 0.931 0.004 0.880
Pure subtypes — HIVI_A 1000 0966 0001  0.980 0968  0.106 0654 0891 0006 0917
HIV1_B 1000 0.995 0.001 0.993 0.945 0.000 0.970 0.817 0.007 0.866
HIV1_C 1000 0.990 0.001 0.991 0.997 0.000 0.997 0912 0.003 0.942
HIV1_D 1000 0.938 0.000 0.968 0911 0.000 0.953 0.892 0.010 0.899
HIV1_F 1000 0.927 0.000 0.962 0.970 0.000 0.985 0914 0.003 0.940
HIV1_G 1000 0915 0001 0952 0929 0007  0.931 0.778 0003  0.860
Mean 0955 0001 0974 0953 0019 0915 0867 0005  0.904

This table contains TPR, FPR and F-measure of COMET, REGA and CASTOR on the prediction of HIV-1 M pure subtypes and CFRs pol fragments. The shown classes belong to
the common subtypes sampling. The CASTOR model used in this evaluation is PMSHIVO3

an easy way of performing several types of classification
(see Table 2). It also has no restriction on the size of data
and is time efficient. Hence, we completed the analysis by
performing a test on the whole Los Alamos HIV dataset
(without the training sequences of the three methods). For
CGs (3 778 instances), CASTOR completes the test in 1
min 59 s with an accuracy of 91.2%. While for the pol frag-
ments (119 005 instances), it requires 20min10s with an
accuracy of 85.41%. It shows that CASTOR takes 0.01s to
process a sequence that is far more efficient than the time
results indicated in [2] for REGA (28s/sequence), but 10-
fold less efficient than COMET (0.001s/sequence) [2]. Fur-
thermore, due to size issues, it is not possible to perform
such large analyses in actual version of COMET server.
Overall, CASTOR highlights a good accuracy on the clas-
sification of the three studied viruses. However this accu-
racy is slightly lower than specific virus predictors as
shown previously. But it exhibits more analysis capacity,
permitting several and highly accurate set of classifica-
tions. As shown in Table 2, this accuracy is higher than
90% for almost all studies except for comparing HIV-1 M
pure subtypes vs CRFs. For less complex genomes such as
HPV and HBV, the mean of weighted F-measures is higher
than 0.912. CASTOR will allow to increase the class repre-
sentatives, to add or remove classes and also to benchmark
several types of classification. For viruses without exist-
ing predictors, it could accurately cover the needs as it
is for HPYV, instead of relying on the similarity sequence
search such as BLAST [3] or USEARCH [4]. Sequence

search is generally not recommended for subtyping since
it will not allow the identification of novel forms, it
cannot also aggregate common attributes of a class while
predicting [2, 4].

CASTOR web platform

CASTOR is available as a public web platform. It is
composed of four main applications. (1) CASTOR-build
allows users to create and train new classifiers from a set
of labeled virus sequences. It contains default parameters
and advanced options letting users to customize the clas-
sifier parameters. It can be used also to update the param-
eters or input sequences of an already built classifier.
The constructed classifiers can be saved in an exportable
file locally or published to the community via CASTOR-
database described below. (2) CASTOR-optimize con-
structs improved classifiers. Unlike CASTOR-build that
allows users to define metrics, algorithms and feature
selection techniques, it assesses all combinations of the
classification parameters and provides the best fitting
classifier according to the input data. (3) CASTOR-
predict is the kernel application that allows users to
annotate viral sequences according to a chosen classi-
fier. Also, it serves as an evaluation module for clas-
sifiers with labeled test sets. The results are provided
with enriched graphics and performance measures (4)
CASTOR-database is a public database of classifiers
which allows the community to share their expertise
and models. It facilitates experiment reproducibility and
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model refinement. A characteristic viewer and a search
engine of the published classifiers are also implemented.
Hence, from the interface of CASTOR-database, users can
download, reuse, update and comment the classifiers. To
the best of our knowledge, CASTOR constitutes the first
RFLP-based prediction platform for the classification of
viral sequences.

Conclusion

In this paper, we have shown that RFLP has a great per-
formance in large scale sequence classification. We also
provide CASTOR, the first viral sequence classification
platform based on RFLP. We claim that CASTOR can per-
form well for different types of viruses (Group I, Group
VI and Group VII) with mean of weighted F-measures >
0.900 in most cases (see Table 1). In the future, we
will attempt to increase the performance by modelling
the boundaries of the classes and including an open-set
approach to deal with instances from unknown classes.
The CASTOR platform implements several metrics and
classifiers, allowing generic and diverse analyses within
the same environment. CASTOR allows the storage of
models enabling reproducible experiments and open data
access. Even though CASTOR is scaled for viruses, it can
be used and extended easily for other types of organisms,
including whole genome and partial sequences. In the
future, more models will be included, in particular those
specialized in less studied organisms and/or without ded-
icated tools. In addition, scientists could add their tuned
models helping CASTOR to enhance the predictions. We
will also optimize the platform to allow other types of
classification such as functional, disease related and geo-
graphical classifications. Hence, CASTOR could quickly
become a reference in comparative genomics focusing on
various types of sequence classification.

Additional file

Additional file 1: Supplementary data. This PDF file contains
supplementary Table S1 and supplementary Figures S1-S4. (PDF 1638 kb)
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