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Abstract

Background: Reconstructing transcript models from RNA-sequencing (RNA-seq) data and establishing these as
independent transcriptional units can be a challenging task. Current state-of-the-art tools for long non-coding RNA
(lncRNA) annotation are mainly based on evolutionary constraints, which may result in false negatives due to the
overall limited conservation of lncRNAs.

Results: To tackle this problem we have developed the Zipper plot, a novel visualization and analysis method that
enables users to simultaneously interrogate thousands of human putative transcription start sites (TSSs) in relation
to various features that are indicative for transcriptional activity. These include publicly available CAGE-sequencing,
ChIP-sequencing and DNase-sequencing datasets. Our method only requires three tab-separated fields (chromosome,
genomic coordinate of the TSS and strand) as input and generates a report that includes a detailed summary table, a
Zipper plot and several statistics derived from this plot.

Conclusion: Using the Zipper plot, we found evidence of transcription for a set of well-characterized lncRNAs and
observed that fewer mono-exonic lncRNAs have CAGE peaks overlapping with their TSSs compared to multi-exonic
lncRNAs. Using publicly available RNA-seq data, we found more than one hundred cases where junction reads
connected protein-coding gene exons with a downstream mono-exonic lncRNA, revealing the need for a careful
evaluation of lncRNA 5′-boundaries. Our method is implemented using the statistical programming language R and is
freely available as a webtool.

Background
The introduction of RNA-sequencing (RNA-seq) has
revolutionized the field of molecular biology, revealing
that up to 75% of the human genome is actively tran-
scribed [1]. The majority of this transcriptome consists
of so-called long non-coding RNAs (lncRNAs). Recon-
structing accurate transcript models for these lncRNAs
is a major challenge when processing RNA-seq data. In
general, lncRNA transcripts are less abundant compared
to protein coding genes [2], often resulting in a lack of
junction reads from which transcript models are
inferred. In addition, lncRNAs are frequently located in
the vicinity of protein coding genes and could therefore
represent unannotated extensions of untranslated regions

(UTRs) rather than independent transcriptional units.
Finally, transcript reconstruction from RNA-seq data
often gives rise to large numbers of single-exon tran-
scripts. Distinguishing single-exon fragments that repre-
sent independent transcriptional units from those that
result from genomic DNA contamination or incomplete
transcript assembly is not straightforward.
State-of-the-art tools for lncRNA annotation based on

evolutionary constraints such as PLAR (pipeline for
lncRNA annotation from RNA-seq data) [3] and slncky
[4], might filter out some putative lncRNA transcripts
depending on stringent conservation criteria. PLAR
removes transcripts that are short (< 2 kb) and lowly
expressed (FPKM < 5) and focuses on the annotation of
syntenic lncRNAs. Given the limited conservation of
lncRNAs [5] and given that both tools exclude any
transcript that partially or totally overlaps protein-
coding genes, such approaches may result in a large
number of false negatives.
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LncRNA transcript models can be refined and filtered
by integrating complementary datasets on chromatin
state (i.e. ChIP sequencing (ChIP-seq) for histone marks
or DNase sequencing (DNase-seq)) and transcript
boundaries (i.e. CAGE sequencing (CAGE-seq) to mark
the transcription start site (TSS) or 3P-seq to mark the
3′ end of poly-adenylated transcripts) [6]. Transcripts
for which the transcription start site coincides with a
CAGE-peak and is in close proximity to a H3K4me3 or
H3K27ac mark are more likely to be independent
transcriptional units compared to transcripts that lack
these features.
GRIT [7] is a command line-based tool that uses

CAGE in conjunction with RNA-seq data but does not
take advantage of other important layers of genomic
information such as open chromatin (DNase-seq) and
histone marks (ChIP-seq data) typically associated with
active transcription.
To tackle the challenge of establishing lncRNAs as

independent transcriptional units we have created the
Zipper plot, a novel visualization and analysis method
available as a quick and user-friendly webtool [8] that
employs publicly available CAGE-seq, ChIP-seq and
DNase-seq data across a large collection of tissue and
cell types. The user only needs to provide a list of
genomic features (one per line), each consisting of three
tab-separated fields: chromosome, human genomic
coordinate (hg19) of the TSS and strand. Our webtool
will retrieve the closest CAGE-seq/DNase-seq/ChIP-seq
peak to each TSS for thousands of genomic features at
the same time. The closer these peaks are, the higher
the evidence of independent transcriptional activity for
the set of genomic features.

Results and discussion
Implementing the Zipper plot as a webtool
The Zipper plot is freely available as a webtool (front-
end) at [8] and has been implemented using the
JavaScript library jQuery, PHP and HTML5. The back-
end (server) contains a peak-based database (see
Methods) and the necessary code to retrieve and sort
the closest CAGE-seq/ChIP-seq/DNase-seq peak to each
TSS, to create the plot (see “Zipper plot construction”)
and to compute several statistics to assess the TSS-peak
associations (see “Summary statistics and generation of
html summary reports”). This code was written using the R
statistical programming language [9] along with the data.-
table [10], ggplot2 [11], knitr [12], R.utils [13], grid [9] and
gridExtra [14] packages. The communication between the
web interface and our server is established using PHP.
Due to memory constraints on our server, we limited the

number of genomic features per input file to 20,000. How-
ever, to allow users to integrate our tool as part of bigger
pipelines, we have made our scripts available at Github [15].

Database querying
To start using the webtool, the user only needs to
upload a list of genomic features (one per line), each
consisting of three tab-separated fields: chromosome,
human genomic coordinate (hg19) of the TSS and
strand. Optionally, users can provide an additional
fourth column containing labels for the genomic features
being studied.
If the user has a file from another genomic build (e.g.

hg38), we propose two alternatives to convert it to hg19:
1) hgLiftOver [16]: a webtool where users can upload a
file with “chrN:start-end” or BED format and select the
new genomic build of interest; 2) CrossMap [17]: a tool
that supports more file types as input, including BAM,
SAM and BigWig among others. Detailed information
about its usage and download can be found at [18].
Importantly, hgLiftOver can also be installed locally on

unix-based systems by downloading the executable [19]
and appropriate chain files [20].
In a second step, the user has to select the data type of

interest among the ones available in our database
(CAGE-seq, ChIP-seq or DNase-seq peaks; see Methods)
and has the option to run the analysis in one sample
type of interest or across all available sample types. In
the first option, the user knows in advance in which
tissue the set of genomic features are more likely to be
expressed; with the second option, each individual
genomic feature is analyzed across all samples and the
sample in which the peak is most closely associated to
the genomic feature is retained for further analysis.
Importantly, all CAGE-peaks are used by default but the
user can set a more stringent threshold if desired (tags
per million mapped reads (tpm) > 0). A detailed user
guide can be found at [21].

Zipper plot construction
Once the user’s input is uploaded to our website and the
data type of interest has been selected, the data.table
package [10] is used to sort TSSs from the user’s input
in a chromosome-wise manner and to perform a fast
binary search (O(log n) time) in compiled C to retrieve
the closest ChIP-seq/DNase-seq/CAGE-seq peak to each
TSS. It retrieves the “start” and “end” genomic coordinates
of the closest peak, always considering the “start” as the
part of the peak closest to the TSS. The Additional file 1:
Methods (“Definition of the distance between a TSS and
the closest peak” section) contain three different examples
on how these coordinates are determined.
The peaks are then ranked based on the distance from

the TSS to the “start” of the closest peak and a Zipper
plot is generated with the aid of the ggplot2 package
[11]: peaks overlapping with the TSS are placed at the
top of the plot and the zipper starts to open as the peaks
are located further away from the TSSs. By default, the
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Zipper plot is visualized in a +/− 5 kilobase (kb) window
around the TSS but the window size can be adjusted by the
user. Figure 1 shows in detail how the Zipper plot is built.

Summary statistics and generation of html summary
reports
In parallel with the construction of every Zipper plot,
two statistics named Zipper Height (ZH) and Area
Under the Zipper (AUZ) are calculated. ZH corresponds
to the quotient between the number of genomic features
with a peak overlapping with the TSS and the total num-
ber of genomic features being studied (ZH ∈ [0,1]). The
AUZ_global is computed as the sum of all the areas
between the closest peak and the TSS of each genomic
feature (for a detailed explanation see “Definition of the
sum of all areas between the closest peak and the TSS”
and “Small AUZ values, areas in the plot and how
AUZ_window is calculated (Fig. 3d)” in the Additional
file 1: Methods).
However, since the distribution of peaks upstream or

downstream of the TSSs can be asymmetric, AUZleft
(sum of all the areas for cases where the closest peak
was found upstream the TSS) and AUZright (sum of all
the areas for cases where the closest peak was found
downstream the TSS) are considered independently
(see “Rationale for calculating both positive and

negative distances between closest peaks and TSSs” in
Additional file 1: Methods for more details).
The closer the peaks are distributed around the TSSs,

the smaller the AUZ and the higher the evidence of
independent transcriptional activity for the set of
genomic features. A “closed zipper” (AUZ = 0) indicates
an overlap between the closest peak and TSS for all the
genomic features being studied. We have also incorpo-
rated the AUZ_window, which depends on the window
size choice (by default +/− 5 kb) and is computed using
only those peaks that lie within the window. The method
virtually sets to 5 kb (or other value if the user changes
the default window size) all those distances that are
located more than 5 kb away from the TSS. This allows
a quick visual comparison between two Zipper plots
built using the same window size. Following the same
reasoning as the paragraph above, we have incorporated
both AUZ_window_right and AUZ_window_left separ-
ately. Of note, ZH and AUZ are negatively correlated.
A one-sided p-value (AUZ_pval) is calculated by com-

paring the AUZ of the Zipper plot built with the user’s
input to 100 (by default) or 1000 random Zipper plots
created by selecting as many random locations as the
number of genomic features supplied by the user while
maintaining the same distribution of TSSs per chromo-
some. Since truly random locations picked uniformly

Fig. 1 The closest CAGE-seq/ChIP-seq/DNase-seq peak to each TSS is rapidly retrieved using a binary search. a The process of finding the closest
CAGE peak takes into account the strand information supplied by the user (ChIP-seq and DNase-seq data are unstranded). If a TSS is located on
the positive DNA strand (TSSs on chromosomes 1, 3, 6 and 8), peaks with a genomic coordinate greater than the TSS are considered downstream
(=positive distance) of the genomic feature. If a TSS is located on the negative DNA strand (third TSS on chromosome 5), peaks with a genomic
coordinate greater than the TSS are considered upstream (=negative distance) of the genomic feature. Peak widths and overall peak enrichment
for each region (signalValue for ChIP-seq and DNase-seq data; tpm expression values for CAGE-seq) are simultaneously retrieved. b Once the distances
to the closest peaks have been retrieved they are ordered and placed on top of a vertical axis representing the TSS. Since the Zipper plot is visualized
(by default) in a 5 kb window, peaks that are wider than 5 kb or are further away from the TSS will not appear (i.e. TSS on chromosome 8; darker region
will appear whereas the faded region exists but it is not displayed)
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along the length of each chromosome are not represen-
tative of possible lncRNA TSSs, we have excluded from
the selection those genomic regions containing gaps,
centromeres, telomeres, heterochromatin and repetitive
regions from [22, 23] using the BEDTools suite [24].
The p-value is computed dividing the number of random
cases with AUZ values smaller than or equal to the AUZ
for the user case by the total number of repetitions. The
p-value represents the chance of finding a random Zipper
plot with an AUZ_global smaller than or equal to the
AUZ_global of the actual use case or, in other words,
whether it is likely that the set of TSSs chosen by the user
was randomly selected or not. Therefore, the smaller the
p-value, the higher the likelihood your set of genomic
features are truly independent transcriptional units.
When evaluating genomic features in one sample type,

the closest peaks in that sample type are retrieved for
both the random TSSs and the user input. Optionally,
the closest peak in each sample type can be retrieved for
each TSS and, for each TSS, a TSS p-value is calculated
comparing how many tissues have a peak as close (or
closer) to the TSS than the one found in the tissue
chosen by the user.
On the other hand, if the user selects all sample types,

the closest peaks among all possible sample types are

retrieved for both the random TSS and the user input.
AUZs are calculated and a p-value is calculated similarly
to the case where the user selects one sample type.
Eventually, the knitr package [12] is used to generate an

html report containing 1) the Zipper plot; 2) all the afore-
mentioned parameters/statistics; 3) a summary table listing
closest peaks, peak widths and overall peak enrichment
information.

Validation and applications of the Zipper plot
To assess the usefulness of our webtool, we first investi-
gated a set of 36 well-characterized lncRNAs proposed by
[4]. The Zipper plot created using only the FANTOM5
(CAGE-seq) data showed that 26 out of 36 lncRNAs have
a CAGE peak within +/− 5 kb from their TSSs in at least
one of the sample types present in our database (Fig. 2a;
detailed output available in Additional file 2: Table S1).
Moreover, when also including H3K4me3 and DNaseI
(marks for active transcription and open chromatin)
together with H3K4me1 and H3K27ac (marks for active
enhancer RNAs), 32 out of 36 lncRNAs have peaks
within +/- 5 kb from their TSSs (Fig. 2b). These results
demonstrate that, while most of the well-characterized
lncRNAs have evidence for transcription initiation at or
near their presumed TSS, some may be incompletely

Fig. 2 There is evidence of transcriptional activity for 32 out of 36 well-characterized lncRNAs using the Zipper plot. a Zipper plot and associated
statistics for the set of 36 well-characterized lncRNAs proposed by [4] using CAGE-seq data. Even though the visualization contains a +/− 5 kb
window, it is clear that the closest CAGE peaks for 26 lncRNAs are within +/− 2.5 kb from the TSS. Both AUZ_right_pval and AUZ_left_pval are
smaller than 0.01, suggesting that the set of TSSs are more closely associated with CAGE peaks compared to random regions in the genome.
b Heatmap showing the distance between TSSs and CAGE-seq, DNase-seq, H3K4me1, H3K4me3 and H3K27ac peaks. Darker colours represent
peaks that are closer to the TSSs. LncRNAs marked with an asterisk do not have enough evidence of transcriptional activity. (nt = nucleotides)
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annotated with respect to their TSS. This is especially
apparent from the CAGE-seq Zipper plot (Fig. 2a).
As a second example application of the Zipper plot, we

evaluated the transcriptional independence of all human
lncRNAs listed in Lncipedia 3.1 [25]. We studied the
distribution of the closest CAGE-seq peaks (FANTOM5
data) around the TSSs of all mono-exonic and all multi-
exonic human lncRNA transcripts (21,102 and 90,508

respectively) (Fig. 3a–c) and found that 589 mono-exonic
lncRNAs (2.8%) presented a CAGE-peak overlapping with
the TSS and 6256 (29.7%) had a peak within a +/− 5 kb
window. On the other hand, 14,419 multi-exonic lncRNAs
(15.9%) presented a CAGE-peak overlapping with the TSS
and 45,878 (50.7%) had a peak within a +/− 5 kb window
(Fig. 3d). These differences, also reflected in greater
AUZ_global values in the former case, suggest that

Fig. 3 Fewer mono-exonic lncRNAs have CAGE-seq peaks overlapping with their TSSs compared to multi-exonic lncRNAs. This is reflected in
smaller Zipper Height (ZH) and higher Area Under the Zipper (AUZ) values. a) As described in the “Database querying” section, users may provide an
additional fourth column in the input file with labels for each TSS (optional). b) FANTOM5 data (CAGE-seq) and “All sample types” workflow was
selected. c) The data.table package was used to retrieve the closest CAGE-seq peak to each TSS. d) Peaks are ranked based on the distance from the
TSS to the closest peak and a Zipper plot is generated. Since both plots are visualized in a +/− 5 kb window, AUZ_window values can be directly
compared: smaller values (multi-exonic lncRNAs) represent higher evidence of independent transcriptional activity for the set of genomic features
being studied. This conclusion can also be made looking at the ZH values: a bigger ZH value means a higher proportion of lncRNAs with a CAGE peak
overlapping with the TSS. Finally, both AUZ_right_pval and AUZ_left_pval are smaller than 0.01, so it is unlikely that the set of TSSs from mono and
multi-exonic lncRNAs were randomly selected
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numerous mono-exonic lncRNAs might not be truly
independent transcriptional units.
We hypothesized that at least a fraction of mono-

exonic lncRNAs were actually extensions of UTRs from
upstream protein coding genes or genomic DNA
contamination. To further investigate this hypothesis,
we first retrieved the intron lengths for all RefSeq
protein coding genes (hg19; using the UCSC Table
Browser data retrieval tool) [26, 27] and found that 80%
of them are smaller than or equal to 5827 nucleotides.
In a second step, we artificially “stitched” mono-exonic
lncRNAs that do not have a CAGE peak within 500
nucleotides from their TSSs to the 3′ end of any pro-
tein coding gene located within 5827 nucleotides on
the same strand. This process led to 536 mono-exonic
lncRNAs stitched to upstream protein coding genes.
If these lncRNAs were truly unannotated portions of

upstream coding genes, we should find junction reads span-
ning one exon from a protein coding gene and another
exon from a lncRNA. To evaluate this, we used RNA-seq
data from The Cancer Genome Atlas (TCGA) [28, 29] and
Universal Human Reference RNA (UHRR) samples [30, 31]
(see Methods). Since junction reads that are shared
between exons of overlapping lncRNAs and protein coding
genes cannot be assigned unambiguously, they were
excluded from the analyses. Next, we established a mini-
mum of at least one junction read linking a lncRNA to an
upstream protein coding gene and a minimum overlap of
two nucleotides between the junction read and the protein
coding gene exon and a minimum overlap of two nucleo-
tides between the junction read and the lncRNA exon.
Strikingly, we found spanning reads for 135 out of

the 536 cases (25.19%) based on the TCGA RNA-seq
data and for 35 (6.53%) based on UHRR RNA-seq
data (Additional file 3: Table S2).
We also tried to stitch multi-exonic lncRNAs that do

not have a CAGE peak within 500 nucleotides from their
TSSs in the same manner as we did for mono-exonic
lncRNAs, resulting in 675 multi-exonic lncRNAs
stitched to upstream protein coding genes. We found
spanning reads for 127 out of the 675 cases (18.81%)
based on the TCGA RNA-seq data and for 33 (4.89%)
based on UHRR RNA-seq data (Additional file 3: Table
S2). Of all the junction reads from the TCGA RNA-seq
data found to span a protein coding gene and a lncRNA,
92.59% of them entirely overlap with protein coding

gene exons and 88.15% of them entirely overlap with
lncRNA exons. On the other hand, 89.31% of the junc-
tion reads from UHRR RNA-seq data entirely overlap
with a protein coding gene exons and 91.91% of the
junction reads entirely overlap with lncRNA exons.
Both TCGA and UHRR samples shared junction reads

for 34 mono-exonic and 31 multi-exonic lncRNAs
stitched to an upstream protein coding gene. Table 1
shows the distribution of junction reads spanning a
protein coding gene and downstream lncRNA based on
the TCGA RNA-seq data.
These results support our hypothesis and reveal the need

for a careful evaluation of lncRNA 5′-boundaries using
CAGE-seq data and histone marks as demonstrated here
or alternative procedures such as 5′-RACE(-seq) [32].
To further expand the applicability of our tool, we

plan to integrate publicly available data from methods
that detect nascent RNAs (GRO-seq and PRO-seq), to
extend the number of samples when new data becomes
available and to allow users to work with their own data.

Conclusion
We have created the Zipper plot, a novel visualization
and analysis method available as a webtool [8] that
allows researchers to quickly evaluate the reliability of
the annotation of thousands of novel transcripts and
lncRNAs at the same time. Using the Zipper plot we found
evidence of transcription for a set of well-characterized
lncRNAs and observed that fewer mono-exonic lncRNAs
have CAGE peaks overlapping with their TSSs compared
to multi-exonic lncRNAs. Using publicly available RNA-seq
data, we discovered more than one hundred cases where
junction reads connected protein-coding gene exons with a
downstream mono-exonic lncRNA, revealing the need for
a careful evaluation of lncRNA boundaries.
We also recognize a limitation in our webtool: the

presence of a CAGE-peak and activating histone marks
at the TSS is indicative of independent transcription, but
the absence of such features does not imply the opposite.
Low abundant transcripts may not show up in the
CAGE-seq data because of too low sequencing depth or
the expression of the lncRNA may be restricted to a tissue
of cell type not (yet) included in the CAGE-seq, ChIP-seq
and DNase-seq database. Importantly, TSSs of RNA tran-
scripts reconstructed from RNA-seq data might appear
several nucleotides downstream of a CAGE-seq peak.

Table 1 Distribution of junction reads (JR) from 1460 TCGA samples connecting protein-coding gene exons with a downstream
mono and multi-exonic lncRNA

1 < = JR < = 10 11 < = JR < = 100 JR > 100 Total

Protein coding gene +mono-exonic lncRNA 86 37 12 135

Protein coding gene +multi-exonic lncRNA 81 31 15 127

These junction reads suggest that the latter are actually extensions of untranslated regions from upstream protein coding genes. Detailed information for each
individual case can be found on Additional file 3: Table S2
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Particularly for low abundant RNA transcripts, this incon-
sistency may be the result of an incomplete transcript as-
sembly due to non-uniformity of read coverage towards 5′
ends and should be carefully examined.

Methods
Establishing a peak-based database using publicly
available datasets
ChIP-seq & DNase-seq from 127 consolidated human
epigenomes already processed in the context of the
Roadmap Epigenomics Project (111 from NIH Roadmap
Epigenomics Mapping Consortium (Release 9 of the
Human Epigenome Atlas) [33] and 16 cell line epigen-
omes from the ENCODE Project Consortium [34, 35])
were retrieved from the “Peak Calling” section at [36].
DNase-seq and ChIP-seq data consists of ENCODE
narrowPeak, broadPeak and gappedPeak files. Detailed
information about these formats can be found at [37].
These files contain lists of peaks that were obtained

by a peak caller algorithm in the context of the Road-
map Epigenomics Project. The peak calling process
identified regions in the genome that were enriched
with aligned reads (“peaks”) as a consequence of the
ChIP or DNase-seq experiment.
We focused our filtering approach on the qValue,

being a measurement of statistical significance for the
signal enrichment of each peak using the false discovery
rate (FDR). We set a FDR < = 0.05, implying that only
those peaks with qValue < = 0.05 were retained in our
database for downstream applications.
The following activating marks [38] were used to con-

struct the database: marks for open chromatin (DNaseI);
acetylation marks commonly found in actively transcribed
promoters (H3K27ac, H3K9ac, and H3K14ac), methylation
marks found in actively transcribed promoters (H3K4me1,
H3K4me2, H3K4me3 and H4K20me1) and modifications
added as consequence of transcription (H3K36me3,
H3K79me2 at 5′ end of gene bodies) adding up to more
than 134 million peaks. (Additional file 4: Table S3).
CAGE-seq expression data (RLE normalized) for

human samples was retrieved from the Functional
Annotation of the Mammalian Genome (FANTOM5)
project [39, 40]. CAGE-seq measures expression by
means of sequencing from the 5′ end (transcription start
site (TSS)) of capped molecules. In case of multiple
replicates per sample type, only one replicate was
retained, bringing the total number of samples to 649 with
a total of 200,737 peaks. (Additional file 5: Table S4).

Obtaining junction reads from publicly available RNA-seq
data
One thousand four hundred sixty RNA-seq samples
from TCGA across different cancer types [28, 29] (See
Additional file 6: Table S5 for detailed information on

cancer type and TCGA barcodes) and 80 UHRR samples
from the Sequencing Quality Control (SEQC) project
publicly available at the Gene Expression Omnibus
(GEO) database with accession number GSE47774
(Sample A: Replicates 1–4; Beijing Genomics Institute)
[30, 31] were mapped to the human genome (GRCh37)
using TopHat2 [41] with default parameters, resulting in
279,507,060 and 12,679,075 junction reads respectively.

Additional files

Additional file 1: Methods. (PDF 1792 kb)

Additional file 2: Table S1. Summary table for the set of 36
well-characterized lncRNAs using CAGE-seq data. (XLS 69 kb)

Additional file 3: Table S2. Junction reads between protein coding
genes and mono/multi-exonic lncRNAs based on RNA-seq data from
TCGA and UHRR; nucleotides of junction read overlapping with lncRNA
and protein coding gene exons. (XLS 65 kb)

Additional file 4: Table S3. Correspondence between Roadmap
Epigenomics names and actual sample types; number of peaks and
number of epigenomes available for each case; peak width and peak
enrichment distributions across chromosomes for narrow, broad and
gapped peaks (for each mark). (XLS 109 kb)

Additional file 5: Table S4. Correspondence between FANTOM5
names and actual sample types; number of CAGE-seq peaks per chromosome;
peak width and tpm distributions across chromosomes. (XLS 101 kb)

Additional file 6: Table S5. Cancer type and barcode for each sample
from TCGA. (XLS 138 kb)

Additional file 7: Table S6. HGNC, Ensembl ID, PMID, chromosome
location, TSS and strand information for the set of 36 well-characterized
lncRNAs. (XLS 26 kb)
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