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Abstract

Background: Analysis of genome-wide association studies (GWAS) with “time to event” outcomes have become
increasingly popular, predominantly in the context of pharmacogenetics, where the survival endpoint could be
death, disease remission or the occurrence of an adverse drug reaction. However, methodology and software that
can efficiently handle the scale and complexity of genetic data from GWAS with time to event outcomes has not
been extensively developed.

Results: SurvivalGWAS_SV is an easy to use software implemented using C# and run on Linux, Mac OS X &
Windows operating systems. SurvivalGWAS_SV is able to handle large scale genome-wide data, allowing for
imputed genotypes by modelling time to event outcomes under a dosage model. Either a Cox proportional
hazards or Weibull regression model is used for analysis. The software can adjust for multiple covariates and
incorporate SNP-covariate interaction effects.

Conclusions: We introduce a new console application analysis tool for the analysis of GWAS with time to event
outcomes. SurvivalGWAS_SV is compatible with high performance parallel computing clusters, thereby allowing
efficient and effective analysis of large scale GWAS datasets, without incurring memory issues. With its particular
relevance to pharmacogenetic GWAS, SurvivalGWAS_SV will aid in the identification of genetic biomarkers of patient
response to treatment, with the ultimate goal of personalising therapeutic intervention for an array of diseases.

Keywords: Genome-wide association study, Pharmacogenetics, Time to event, Cox proportional hazards, Weibull,
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Background
Genome-wide association studies (GWAS) have revolu-
tionised our understanding of the genetic basis of a wide
variety of complex human traits and diseases. GWAS
are designed to detect associations between single
nucleotide polymorphisms (SNPs) across the entire gen-
ome and outcome. The focus of most GWAS have been
binary phenotypes or quantitative traits, for which profi-
cient software tools for analysis have been developed,
such as SNPTEST [1] and PLINK [2].

“Time-to-event” outcomes have become increasingly
relevant, particularly in the context of pharmacogenetic
studies, where the outcome of interest could be based on
overall survival [3], time to remission [4] or progression-
free survival [5] after treatment/therapy intervention. The
traditional approach to the analysis of time to event data
is through survival modelling, and the underlying models
used are the same when applied to genetic association
studies. However, the challenge arises from the scale and
complexity of genetic data, and the need to incorporate a
range of analytical models, which require computationally
efficient software. Currently, there is a paucity of such
powerful tools for survival analysis of GWAS.
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There are many recent GWAS published with a focus
on survival outcomes such as He et al. [6], Phipps et al.
[7], Johnson et al. [8] and Wu et al. [9]. In these studies,
genome-wide time to event analyses were conducted
using standard statistical software, such as R or SAS,
which are limited by memory and not easily amenable to
high-performance computing (HPC) solutions to improve
efficiency. Programs such as ProbABEL [10] exist for this
type of analysis, but are limited to the use of only the Cox
proportional hazards model and also do not allow ex-
ploration of SNP-covariate interaction effects. This is
a particularly important feature for the analysis of
pharmacogenetic data, where it is often desirable to
test for drug or dose interactions with SNPs.
We have developed the software tool SurvivalG-

WAS_SV, which has addressed these challenges, and
currently employs a single SNP analysis approach using
two commonly used analysis models. Key features in-
clude: (i) compatibility with widely used programs such
as IMPUTE [11], thereby directly accommodating im-
puted data without the need for file conversion; (ii) a
range of survival analysis methods are available with the
foundation in place for implementing extensions; (iii)
options for testing SNP-covariate interactions, showing
overall and individual test of association p-values; and
(iv) compatibility with high performance parallel com-
puting clusters.
SurvivalGWAS_SV is the second program to be

released under the SurvivalGWAS Suite, which also
includes the complementary power calculator “Survi-
valGWAS_Power” [12].

Implementation
User interface
SurvivalGWAS_SV is a console application utilising
command line inputs. The software is run from a com-
mand prompt terminal, compatible with Linux, Windows
and Mac OS X. The program requires little interaction
from the user since a script of commands can be submit-
ted to the program. This is useful for the analysis of large
data files: the user can specify “batches” of the data file to
analyse in parallel using multiple computer nodes, where
each core can run a different part of the analysis. The
program requires Mono [13] to run the software on Linux
and Mac OS X, but this does not compromise speed or
efficiency.

Inputs
SurvivalGWAS_SV is set up in a very simplistic way.
Firstly, the user is required to specify the two data files
that will be read into the program. This must be a geno-
type file (.gen or.impute) or a variant call format (VCF)
text file that contains the SNP genotype probabilities
(imputed or non-imputed), and a sample file (.sample)

that contains all the covariate, survival time and censor-
ing indicator information for each individual. The soft-
ware supports VCF files containing the SNP genotype
probabilities, dosages and/or hard genotype calls. In
some circumstances, the user would have the genotype
files compressed, either in a.zip or.gz file format, both of
which can be read into the software directly. Secondly,
the user specifies details about terms to include in their
analysis model, such as covariates and/or interaction,
whilst also specifying the censoring indicator and
observed survival time. Thirdly, the user must specify
the range of SNPs to be analysed, to enable efficient par-
allel computing. Lastly, the user must enter the chosen
analytical method to use and the name of the file for
which the analysis output will be saved. If the user is
analysing covariates within the model, but does not
require summary statistics for the covariates to be
included in the output file, an option is available for only
printing the results for the SNP or interaction effects.
This is helpful when creating graphical summaries, such
as Manhattan plots, using other programs. Table 1 gives
a brief description of all the available commands.

Conversion & validation
Before the data can be analysed, a number of conver-
sions and quality control measures must be performed
by the software. When the genotype file is read in, one
SNP at a time, either directly typed or imputed, Survi-
valGWAS_SV will convert the genotype probabilities for
each subject into a “dosage” under an additive model for
the minor allele. This enables appropriate analysis for
imputed SNP data by taking account of the uncertainty
in the imputation process. The dosage model is given by
Si ¼ pi1 þ 2pi2 , where pi1 and pi2 are the probabilities
that subject i carries 1 or 2 minor alleles, respectively, at
the SNP.
SurvivalGWAS_SV throws exemptions whenever the

user has specified an incorrect command or states a
header that cannot be found in the data files. In such an
event, the program will exit the application and will re-
quire re-submission of the task. The program also han-
dles missing values within the .sample file. If a subject
has missing values (in the form of “NA”) for survival
time, censoring indicator or a covariate used in the
model then the subject is removed from the analysis
with their corresponding SNP information.

Analysis
Analysis can be carried out using one of two
methods: (i) a Cox proportional hazards model; or (ii)
a parametric Weibull regression model. Both methods
have their advantages under different scenarios. More
details about power and choice of method can be
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found in Syed et al. [14]. Software for performing
power calculations under a range of pharmacoge-
netic time to event scenarios is also available from
Syed et al. [12].
The Cox proportional hazards model is widely consid-

ered the ‘standard’ approach when modelling time to
event outcomes. It is a semi-parametric model where
the hazard ratio takes a parametric form in terms of the
regression coefficients, but the baseline hazard is
unspecified. A disadvantage of this model is that the dis-
tribution of survival times is unknown. In cases where
the proportional hazards assumption is not valid, other
analysis models or extensions to the Cox-regression
model should be considered.
The Weibull regression model is a parametric survival

model with completely specified hazard and survivor
functions. The Weibull model is beneficial when the

hazard ratio is not proportional over time or the data
have an accelerated failure time feature. For more infor-
mation on the estimation of the Weibull regression
model parameters please refer to Syed et al. [12].

Output
The output from the analysis is saved in a text file, the
name of which is specified by the user. Each individual
parameter analysed is recorded in a list under a header
row that specifies the values in each column. It includes
the variable name (can be the SNP ID, covariate or inter-
action name), rs ID, chromosome number, base-pair
position, effect and non-effect alleles, coefficient value
for each variable analysed, along with its hazard ratio,
standard error, confidence intervals (only for Cox pro-
portional hazards) and corresponding p-value (Wald test
for Cox model and a score test for the Weibull model).
The Weibull regression model output will also comprise
of a row for the intercept and shape parameter. There is
also output for the likelihood ratio test of the overall
model, effect allele frequency (the frequency at which
the most common allele occurs within a population),
minor allele frequency (MAF) and the IMPUTE info
measure of imputation quality [1].

Example commands
Assuming all data files and software are in the same
folder, the command line in a Linux terminal for the
analysis of 10000 SNPs and 2 additional covariates using
a Cox proportional hazards model is as follows:
mono SurvivalGWAS_SV.exe -gf=data.gen -s

f=data.sample -t=event_times -c=censoring
-cov=covariate1,covariate2 -chr=1 -lstart
=0 -lstop=10000 -m=cox -p=onlysnp -o=out
put.txt
Each command is separated by a space. The user can

specify the exact location of the data files and where the
output file will be saved. e.g., /DIRECTORY/DATA/
output.txt
An example of a shell script (.sh) to distribute the

analyses between 10 computer cores within a Linux clus-
ter, using a sun grid engine batch system is as follows:
#!/bin/bash
#$ -o stdout
#$ -e stderr
DIRECTORY=/SurvivalGWAS_SV #Location of

software and data
str1=0 #Start position in genotype file
str=10000 #Number of SNPs/lines in geno-

type file
no_of_jobs=10 #Number of cores
inc=`expr \($str - $str1 \) \/ $no_of_jobs`

#Increment
#SGE_TASK_ID takes values 1:no_of_jobs

Table 1 List of commands available in the software and their
corresponding usage description

Command Description

-gf= This specifies the genotype file. Typically .gen, .impute,
.gen.gz.

-sf= This specifies the sample file (.sample).

-t= This specifies the time to event (column heading name)
in the sample file.

-c= This specifies the censoring indicator/outcome in the
sample file.

-cov= This specifies the covariates to adjust for in the model.
Each one separated by a comma (,). Categorical factors
need to be converted to binary as software only assumes
continuous or binary covariates.

-lstart= This specifies the line in the genotype file at which the
start position of analysis will occur. Used to break large
files into small batches for parallel computing.

-lstop= This specifies the line in the genotype file at which the
end position of analysis will occur. Typically the number
of lines is equal to the number of SNPs in the file.

-sp= The start position (in base pairs) on the chromosome.
Still need to specify the number of lines in the file
using -lstart & -lstop commands. <optional>

-ep= The stop position (in base pairs) on the chromosome.
<optional>

-chr= This specifies the chromosome number to be output in
the text file.

-p= Enter “onlysnp” if only the results from the SNP analysis
are to be output and “onlyint” if only the results from the
SNP-covariate interaction analysis are to be output.
<optional>

-m= This specifies the choice of method for analysis. This is
either “cox” for the Cox proportional hazards model or
“weibull” for the parametric Weibull regression model.

-o= This specifies the name of the file for output to be saved
in. e.g., name.txt

-help Outputs a full list of commands and usage help.
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nstart=`expr \($SGE_TASK_ID - 1 \) \* $inc’
nstop=`expr $nstart + $inc – 1`
mono $DIRECTORY/SurvivalGWAS_SV.exe –

gf=$DIRECTORY/data.gen –sf=$DIRECTORY/
data.sample -t=event_times -c=censoring
-cov=covariate1,covariate2 -chr=1 -l
start=$nstart -lstop=$nstop -m=cox
-p=onlysnp -o=$DIRECTORY/output${SGE_-
TASK_ID}.txt

Results and discussion
To evaluate the performance of SurvivalGWAS_SV, we
simulated genotype data using the software HAPGEN2
[15], based on European ancestry individuals from the
HapMap3 [16] reference panel. Approximately 1.5 mil-
lion SNPs were simulated across 22 chromosomes for
1000 patients. We then selected one SNP (rs12425539)
on chromosome 12 as the causal variant, which we used
to generate time to event data. We generated the time to
event data using the power calculator software “Survi-
valGWAS_Power”, which simulated the survival time

and censoring indicator for each individual for this
single replicate of genotype data at the causal SNP. A
treatment covariate (binary) was also simulated for each
patient using a binomial distribution. The active treat-
ment and the placebo were divided evenly (1:1) between
the 1000 patients. Four datasets were simulated with
censoring occurring randomly for approximately 20% of
the sample: (i) proportional hazards data with a signifi-
cant SNP effect only; (ii) proportional hazards data with
significant SNP, treatment and interaction effect; (iii)
accelerated failure time data with a significant SNP effect
only; and (iv) accelerated failure time data with signifi-
cant SNP, treatment and interaction effect. Datasets (i)
and (ii) were analysed using the Cox proportional
hazards model, whereas datasets (iii) and (iv) were ana-
lysed using the Weibull regression model. Only the SNP
term was included in the analysis models for analysing
datasets (i) and (iii). Datasets (ii) and (iv), included SNP,
treatment and interaction terms within the analysis
models. After analysis, the number of SNPs was reduced
by removing SNPs with a MAF < 0.01. This was to
remove rare variants for which there is minimal power

Fig. 1 Graphical representation from proportional hazards data SNP analysis. Graphical output from simulation study. (Left) Manhattan plot of Cox
proportional hazards analysis SNP p-values & (Right) Cox proportional hazards analysis QQ-plot

Fig. 2 Graphical representation from proportional hazards data SNP-Treatment interaction analysis. Graphical output from simulation study.
(Left) Manhattan plot of Cox proportional hazards analysis interaction p-values & (Right) Cox proportional hazards analysis QQ-plot
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to detect association, and a standard procedure in
GWAS quality control.
Figure 1 presents the results from the Cox proportional

hazards model depicted by Manhattan and QQ-plots for
dataset (i). The Cox proportional hazards analysis was able
to detect the causal SNP association, identifying SNPs to
be genome-wide significant (p < 5×10−8) in the data simu-
lated using the proportional hazards model. The same can
also be said when considering Fig. 2, which depicts the
interaction analysis (SNP-treatment interaction p-values)
for dataset (ii), simulated using the proportional hazards
model.
Figures 3 and 4 represent the results from analysing

the datasets simulated using the accelerated failure time
assumption. Figure 3 shows us that the Weibull regres-
sion analysis identified the association between the
causal SNP and time to event outcome. Figure 4 indi-
cates that the Weibull regression model was able to
detect the interaction effect in dataset (iv).
The entire analysis was run using 8 computer nodes

(64 cores). Each node consisted of a HP Proliant
DL170h G6 server, 2 Intel Xeon(R) E5520 2.27GHz

quad-core CPUs, 36 GB memory and 1 TB of local stor-
age. Running the single SNP analysis of 1.5 million SNPs
across 22 chromosomes for 1000 individuals with no
additional covariates took ~6 h to complete using the
Cox proportional hazards model and ~5 h to complete
using the Weibull regression model. The more covari-
ates added to the analysis and/or the addition of an
interaction, the longer the computational runtime. Each
additional covariate took approximately an extra 0.275 s
for each individual SNP analysed. The Weibull regres-
sion analysis runtime varies greatly; this is due to the
convergence criteria of the Newton-Raphson method
used for estimation of all parameters [12]. Runtime is
also dependent on missing values within the sample file
and whether or not the genotype file is compressed.
Ultimately, cluster specifications and size of data files
are the most influential factors affecting the speed of the
software.

Conclusion
SurvivalGWAS_SV is the first analytics software capable
of applying a range of survival analysis methods to

Fig. 3 Graphical representation from accelerated failure time data SNP analysis. Graphical output from simulation study. (Left) Manhattan plot of
Weibull regression analysis SNP p-values & (Right) Weibull regression analysis QQ-plot

Fig. 4 Graphical representation from accelerated failure time data SNP-Treatment interaction analysis. Graphical output from simulation study.
(Left) Manhattan plot of Weibull regression analysis interaction p-values & (Right) Weibull regression analysis QQ-plot
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genome-wide data, with appropriate handling of imputed
genotypes. The software can be applied to large-scale
GWAS datasets efficiently and effectively, without incur-
ring memory issues.
Survival analysis methodology is evolving quickly, with

the majority of researchers implementing new methods
within the R statistical environment. Future versions of
SurvivalGWAS_SV will employ more complex analysis
techniques and extensions to account for more complex
survival models such as competing risks, whilst integrat-
ing with R to allow for the software to update methodo-
logical changes faster.
SurvivalGWAS_SV will ultimately enable discovery of

genetic biomarkers of patient response to treatment for a
range of complex human diseases, and will offer oppor-
tunities for patient stratification according to predicted
benefit or risk of treatment, allowing personalisation of
therapeutic intervention.
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