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Abstract

Background: N-terminal acetylation is one of the most common protein modifications in eukaryotes and occurs
co-translationally when the N-terminus of the nascent polypeptide is still attached to the ribosome. This modification
has been shown to be involved in a wide range of biological phenomena such as protein half-life regulation, protein-
protein and protein-membrane interactions, and protein subcellular localization. Thus, accurately predicting which
proteins receive an acetyl group based on their protein sequence is expected to facilitate the functional study of this
modification. As the occurrence of N-terminal acetylation strongly depends on the context of protein sequences,
attempts to understand the sequence determinants of N-terminal acetylation were conducted initially by simply
examining the N-terminal sequences of many acetylated and unacetylated proteins and more recently by machine
learning approaches. However, a complete understanding of the sequence determinants of this modification remains
to be elucidated.

Results: We obtained curated N-terminally acetylated and unacetylated sequences from the UniProt database and
employed a decision tree algorithm to identify the sequence determinants of N-terminal acetylation for proteins
whose initiator methionine (Met) residues have been removed. The results suggested that the main determinants of
N-terminal acetylation are contained within the first five residues following 'Met and that the first and second positions
are the most important discriminator for the occurrence of this phenomenon. The results also indicated the existence
of position-specific preferred and inhibitory residues that determine the occurrence of N-terminal acetylation. The
developed predictor software, termed NT-AcPredictor, accurately predicted the N-terminal acetylation, with an overall
performance comparable or superior to those of preceding predictors incorporating machine learning algorithms.

Conclusion: Our machine learning approach based on a decision tree algorithm successfully provided several
sequence determinants of N-terminal acetylation for proteins lacking 'Met, some of which have not previously been
described. Although these sequence determinants remain insufficient to comprehensively predict the occurrence of
this modification, indicating that further work on this topic is still required, the developed predictor, NT-AcPredictor,
can be used to predict N-terminal acetylation with an accuracy of more than 80%.
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Background

N-terminal acetylation of proteins (N®-acetylation) is a
co-translational modification that takes place when the
N-terminus of the nascent polypeptide is still attached
to the ribosome [1]. This modification represents one of
the most common protein modifications in eukaryotes,
occurring on more than 80% of human proteins [2].
Figure 1 depicts the major pathways of N-terminal pro-
cessing for eukaryotic proteins. The initiator methionine
(iMet) of the nascent chain is recognized and cleaved off
by methionine aminopeptidase if the amino acid residue
following the ‘Met has a radius of gyration not greater
than 1.29 A (i.e, Gly, Ala, Ser, Cys, Thr, Pro, and Val)
[3]. Subsequently, N-terminal acetylation of the proteins
may occur depending on the amino acid sequence
context of their N-terminal region. Humans possess six
N-terminal acetyltransferase (Nat) enzymes, which
catalyze this reaction (NatA, B, C, D, E, and F). NatA
and D act on the nascent chains from which ‘Met resi-
dues have been cleaved off [1]. The substrate specificity
of NatD is very strict, and its only known substrates are
histone H2A and H4 [4]. Therefore, the majority of
acetylation on proteins lacking the 'Met residue is cata-
lyzed by NatA. In contrast, NatB, C, E, and F act on nas-
cent chains that retain the 'Met residue [1]. Similar to
NatA, three of these Nat enzymes, NatB, C, and E con-
stitute ribosomal proteins, whereas NatF is associated
with the Golgi surface and specifically acetylates trans-
membrane proteins [5].

The biological effects of N-terminal acetylation had long
been unclear because mutant yeast lacking Nat enzymes
appeared to grow normally [6]. However, the diverse func-
tions of this modification have begun to be uncovered
over the past decade; these include regulations of protein
half-life, protein-protein and protein-membrane interac-
tions, subcellular localization, folding, and aggregation [1].
As many proteins are N-terminally acetylated, it is ex-
pected that new functional roles of this modification will
continue to emerge in the future.
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N-terminally acetylated proteins have been traditionally
identified by comparing the N-termini of proteins from
yeast lacking one or more of Nat enzymes with those
expressed in wild-type strains [6—9], and more recently by
proteomic approaches [2, 10-13]. These studies identified
many acetylated and unacetylated proteins but were un-
able to determine the complete sequence requirements
for this modification, suggesting that the substrate specifi-
city of these enzymes is rather broad [14, 15]. Machine
learning approaches have also been utilized for predicting
N-terminal acetylation based on the amino acid sequence
of the N-terminal region. The representative methods in-
clude NetAcet [16], which exerts simple feed-forward
neural networks for prediction, and Motifs tree [17],
which utilizes detailed sequence motifs for the input of
the decision tree method. These approaches, however, do
not provide explicit processing pathways and therefore
cannot be used to study sequence requirements for this
modification. Specifically, NetAcet uses a neural network,
which is a black box model, for constructing the predictor.
Therefore it is difficult to infer the sequence requirements.
Similarly, although Motifs tree utilizes a decision tree al-
gorithm, which is a white box model, it uses physicochem-
ical sequence features extracted from AAindex [18] as
input vectors of the learning, thus preventing a
straightforward inference of the sequence requirements of
N-terminal acetylation from purely a sequence context.

A major objective of this study was to identify rules
regarding amino acid sequences that determine the occur-
rence of N-terminal acetylation for nascent proteins whose
‘Met residues have been removed by methionine
aminopeptidase. Establishing these rules will allow us to in-
vestigate the roles of N-terminal acetylation using protein
databases, which would be expected to facilitate studies on
the roles of this modification. In consideration of the limita-
tions presented by previous assessment strategies, we used
a decision tree algorithm incorporating only the sequence
context of the N-terminus as input vectors to determine
rules that link N-terminal sequence and acetylation because
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Fig. 1 Overview of the major pathways of N-terminal processing for eukaryotic proteins. 'Met: initiator methionine; Xxx1 and Xxx2: the first and second
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this approach provides transparent processing pathways.
The performance of the developed tool, N-Terminal Acetyl
Predictor (NT-AcPredictor), was also compared to existing
predictors with respect to accuracy to determine its poten-
tial utility as a tool to predict the occurrence of N-terminal
acetylation.

Methods

Dataset

UniProt (Swiss-Prot, ver. 201611) [19] was downloaded
from its official website (http://www.uniprot.org/), from
which N%-acetylated and unacetylated sequences lacking
the 'Met residues and tagged with both an Evidence Codes
Ontology (ECO) code of 0000269 (experimental evidence
used in manual assertion) and a PubMed ID(s) were col-
lected. We then looked at the individual N-terminal 10-
residue sequences and removed duplicate sequences from
the dataset, resulting in 411 acetylated (positive) se-
quences and 701 unacetylated (negative) sequence candi-
dates. We did not remove sequence redundancy by
sequence homology because there are many sequences in
our dataset that share homologous relationships but their
acetylation status is different each other. While the validity
of the 411 positive sequences is ensured by the ECO code,
we noticed that the absence of a tag “acetylated” is not ne-
cessarily equal to “unacetylated”. Therefore, randomly ex-
tracted negative sequence candidates were further verified
whether there are experimental evidence for not being
acetylated by reading the original literature(s) linked
through the PubMed ID(s), resulting in collecting 400
verified negative sequences. From this dataset, 400 se-
quences (positive: 200, negative: 200) were randomly se-
lected as the training dataset, and the remaining
sequences (positive: 211, negative: 200) were used as the
test dataset. The N-terminal sequences of all these 811
proteins are provided in Additional file 1.

Construction of a predictor

In this study, we constructed a predictor based on the
decision tree algorithm, classification and regression tree
(CART) [19]. For the learning process, we conducted 5-
fold cross-validation of a grid search to identify the best
parameter for the maximum depth of the tree, changing
the parameter by single digit increments from 2 to 10.
We encoded amino acids to one-hot vectors with 20 di-
mensions using a sparse encoding method in accordance
with a frequently used method [16, 20]. The sparse en-
coding method allowed us to readily infer the biological
meanings of the machine learning by connecting a top-
ology of the resultant tree with amino acids on each leaf.
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Performance evaluation metrics

To evaluate the performance of predictors, true positive
rate (TPR), specificity (SPC), positive prediction value
(PPV), accuracy (ACC), Matthews correlation coefficient
(MCCQ), and F1 score were used. These performance in-
dicators were calculated using the formulas given below,
where TP, TN, FP and EN are true positive, true nega-
tive, false positive and false negative, respectively.

TP
TPR=———
TP+ FN
TN
PC=——
SPC TN + FP
TP
PPV = ————
TP+ FP
TP+ TN
ACC = +
TP+ FP+FN+TN
TP x TN-FP x FN
MCC =
\/(TP + FP)(TP + FN)(TN + FP)(TN + EN)
. 2TP
" 2TP+FP+FN
Results

The first five residues determine the occurrence of
N-terminal acetylation

We first investigated how the k-mer length affects the
performance of predicting N-terminal acetylation. We
constructed a variety of predictors by changing k-mer
length singly from 1 to 10-mers and in 10 steps from 10
to 40-mers, and then evaluated their respective perform-
ance on the training dataset using the Mathews correl-
ation coefficient (MCC), which is one of the most robust
measures for performance evaluation. As shown in Fig. 2,
the MCC value jumped from 1-mer to 2-mer and
reached a plateau at 4-mer, suggesting that main
sequence determinants of N-terminal acetylation for
proteins without ‘Met are located within the N-terminal-
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Fig. 2 Performance of predictors constructed using various k-mer
lengths on the training dataset. The k-mer length does not include 'Met
.
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most 5 residues, with the first two residues being the
most important. Also, when we used other criteria such
as accuracy or F1 score, the results remained essentially
the same. To further investigate whether the important
residues are within the N-terminal region, we con-
structed predictors wherein we changed the starting pos-
ition of the 5-mer input one residue at a time from the
N-terminus and evaluated the performance of each pre-
dictor (Additional file 2: Figure S1). As expected, the
best performance was obtained from the predictor con-
structed using the first five residues. Thus, these results
indicate that the amino acid residues that function most
strongly in determining the N-terminal acetylation reside
within the N-terminal-most five residues.

The first position Ser and Ala are the primary
determinants of N-terminal acetylation

As up to 8-mers of identical sequences were con-
tained in the positive and negative datasets, we uti-
lized 10-mers of sequence as input vectors and
positive and negative flags as a learning target value
for constructing a predictor based on the CART. The
resultant flowchart of the decision tree and regular
expression of the derived sequence are shown in Fig. 3
and Additional file 2: Figure S2, respectively. As can
be seen in the flowchart, the 1st position Ser and Ala
were the primary discriminators for the occurrence of
N-terminal acetylation. The result seems reasonable
because the two amino acids are the two most fre-
quent 1st position amino acids of N-terminally acety-
lated proteins in our dataset (Table 1), totaling 87.3%
(Ser: 44.0%, Ala: 43.3%) of the acetylated proteins.
However, even though the large majority of N-
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acetylated sequences begin with Ser or Ala, these two
residues are clearly not an ultimate discriminator for
N-terminal acetylation as they are also common 1st
position residues among the unacetylated proteins
(Table 1).

The second position constitutes the important
discriminator for the occurrence of N-terminal acetylation
The trained decision tree revealed that the 2nd position
amino acid plays a key role in determining the
occurrence of N-terminal acetylation (Fig. 3 and
Additional file 2: Figure S2). As can be seen in the flow-
chart, N-terminal acetylation occurs when the 1st pos-
ition is Ala and the 2nd position is not Pro or Arg
(A[*PR]), determining 29.5% (=118/400) of the total
acetylation states. While N-terminal acetylation does not
occur when the 1st position is neither Ser nor Ala and
the 2nd position is not Asp ([*AS][*D]), determining
36.8% (=147/400) of the total acetylation states. These
results indicate that N-terminal acetylation is facilitated
when Asp is in the 2nd position, while it is inhibited
when Pro and Arg are located in the 2nd position. Also,
the flowchart shows that N-terminal acetylation is facili-
tated when the 1st position is Ser and the 4th, 5th, and
8th position are not occupied by Arg, Pro and Pro, re-
spectively (SXX[*R][*"P]XX["P]), indicating that 4th pos-
ition Arg, 5th position Pro, and 8th position Pro are
inhibitory to N-terminal acetylation. This sequence motif
determines 23.8% (=95/400) of the total acetylation state.
To verify and facilitate the interpretation of the results
from the predictor output, we examined the residue com-
position in the first ten positions of N-terminally acetylated
and unacetylated proteins in our dataset (Table 1). As
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Fig. 3 Flowchart of the present predictor, NT-AcPredictor. The dedsionv tree was generated by training the CART algorithm on the training dataset
(see "Methods"). The residue numbers in the flowchart do not include 'Met. Straight lines and dashed lines with arrows denote “Yes” and “No”
paths, respectively. Ac and unAc indicate N®-acetylated and unacetylated status, respectively. The numbers shown along with the arrows indicate
the number of cases that followed the path. The numbers represent outputs of the learning rather than parameters of the predictor. These results
were obtained using the training dataset presented in Additional file 1
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Table 1 Residue rankings appearing in the first ten positions of N-terminally acetylated and unacetylated proteins
Rank Sequence position
1 2 3 4 5 6 7 8 9 10
Acetylated
1 S (44.0) D (17.3) T(109) A (13.6) A (129 K(9.7) A(11.2) A (14.8) A(12.7) A (129
2 A (433) E(14.0) A (9.0) G (95) K (9.5) L (9.5) K (10.5) K(9.2) K (9.7) G (92
3 T(54) S(11.2) K (9.0) E (9.0) T(9.2) A (8.8) V (8.8) E (88) E(7.5) L (90)
4 G (44) A (10.5) P (8.5) V (85) V (8.0) V(8.3) S (85) V (8.8) G (7.3) K(7.3)
5 V (1.5) G (7.8) S (85) S(7.8) S(7.3) G (80) L(7.) L (8.0) I(7.1) E 6.9
Unacetylated
1 G (24.3) K (13.3) S (16.3) K (13.8) S(11.5) K (10.3) K(11.0) K (10.8) K (10.8) V (9.8)
2 A (21.5) L (12.8) K (9.3) L (8.8) A(113) L (9.5) L (85) R (9.5) L (10.5) A(9.3)
3 P (20.8) R (9.0) E (6.8) T(7.8) K (8.8) A (83) E (85) S (93) R (8.5) G (7.8)
4 V (18.8) A (8.5) A (6.3) A (7.3) D (7.5) E (8.0) A (83) E(7.3) G (83) S (7.8)
5 S (7.8) P (7.0) G (6.0) R (7.0) V (7.0) T(73) G (7.5) V (6.8) A (7.8) L(7.3)

Data were taken from the dataset in Additional file 1. The numbers in parentheses represent the percentage frequency of the corresponding amino acid appearance in

the respective positions. Only residues ranked within the top five in each position are presented

expected, the 2nd position, the key discriminator for the oc-
currence of N-terminal acetylation suggested by the pre-
dictor, was most frequently occupied by one of the two
acidic residues, Asp or Glu, in the N-terminally acetylated
proteins. The frequent appearance of the 2nd position Asp
has previously been noted in preceding studies [14, 15]. In
contrast, the same position was frequently occupied by one
of the two basic amino acids, Arg or Lys in the unacetylated
proteins. This finding suggests that the substrate binding
site in Nat enzymes that recognizes the 2nd residue prefers
acidic residues but excludes basic residues. The X-ray crys-
tal structure of yeast NatA complexed with a substrate has
been reported (PDB accession number: 4KVM) [21]. Not-
ably, the substrate binding site of NatA that interacts with
the 2nd position of substrates contains two His residues
(His 72 and 111). Although, the side-chain of the 2nd pos-
ition Ala of the substrate that was co-crystalized with NatA
does not interact directly with these His residues, these
residues may facilitate the interaction with the negatively-
charged carboxyl groups of Asp and Glu when the 2nd pos-
ition of the substrate is Asp or Glu, assuming that the pKys
of these His imidazole groups are higher than the physio-
logical pH and therefore well protonated at the physio-
logical pH. The hypothesis is supported by the fact that
His72 and His111 are 96.7 and 94.7% conserved, respect-
ively, among NatA enzymes from 209 different species
(Additional file 2: Table S1), suggesting that the two His
residues may play an important role in the catalysis of NatA
enzymes. Lastly, although there are two Nat enzymes, NatA
and NatD, that act on proteins lacking 'Met, it is reasonable
to assume that the suggested substrate preference is for
NatA because NatD only catalyzes histone H2A and H4
and the 2nd position of these histones in our whole dataset
(10 histone H2As and one H4) are occupied by Ser.

The electrostatic property of the nascent polypeptide
chain represents an important determinant of N-terminal
acetylation

We also noted in the residue rankings of unacetylated
proteins that the basic residues Lys and Arg are highly
ranked, occurring frequently in the first 10 positions, com-
pared to the acidic residues Asp and Glu (Table 1). The
overrepresentation of basic residues in the N-terminal re-
gion of unacetylated proteins has also been found previ-
ously by Polevoda and Sherman [14]. Conversely, it
appeared that acidic residues are repeatedly ranked high
in the first 10 positions of acetylated proteins (Table 1).
To verify the observation, we calculated the charge states
of the N-terminal 10 residues of acetylated and unacety-
lated proteins across the whole dataset. In the calculation,
we considered only Lys, Arg, Asp, and Glu residues
because they are the only residues that have positive or
negative charges at physiological pH, and defined their
charges to be +1, +1, -1, and -1, respectively. The ob-
tained mean charge states for acetylated and unacetylated
proteins were —0.28 (SD = 1.65) and +0.61 (SD = 1.93), re-
spectively, and the difference was statistically significant
(p-value =2.0 x 107'°) by the Wilcoxon rank-sum test.
These results demonstrate that the N-termini of acetylated
proteins are commonly negatively charged at physiological
pH, whereas the N-termini of unacetylated proteins are
positively charged, suggesting that the electrostatic prop-
erty of the nascent polypeptide chain comprises an im-
portant determinant of N-terminal acetylation.

NT-AcPredictor accurately predicts the occurrence of
N-terminal acetylation

Finally, we compared our predictor, NT-AcPredictor,
with the freely available existing predictors, NetAcet
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Table 2 Performance comparison of NT-AcPredictor with other
predictors

TPR SPC PPV ACC MCC F1
NT-AcPredictor 0.858 0.815 0.830 0.837 0674 0.844
NetAcet 0.384 0.947 0.929 0.587 0.361 0.544
Motifs tree 0929 0.845 0.863 0.888 0.778 0.895

TPR, SPC, PPV, ACC, MCC, and F1 represent true positive rate, specificity, positive
prediction value, accuracy, Matthews correlation coefficient, and F1 score,
respectively. Note that NetAcet was unable to output prediction result for 73
proteins because the predictor did not output the results when the input
sequences did not include Ala, Gly, Ser, or Thr at the position from 2 to 4

and Motifs tree, using our test dataset. As shown in
Table 2, the performance of NT-AcPredictor judged
by various measures was superior to that of NetAcet
and comparable but slightly worse than that of Motifs
tree, demonstrating the comparable predictability of
NT-AcPredictor to the best existing predictor. In
addition to this benchmark test, we verified the ro-
bustness of our algorithm by constructing 10 predic-
tors, each time the training dataset and test dataset
was randomly selected by the same manner described
in the methods section. The results are shown in
Additional file 2: Table S2. The coefficient of
variation (CV) for each evaluation criterion was small,
thus demonstrating that the effect of random
sampling of dataset on the prediction performance is neg-
ligible. All the performance indicators of NT-AcPredictor
shown in Table 2 were within mean + SD obtained from
the 10 predictors, also demonstrating the robustness of
our algorithm.

It is possible that other machine learning methods
provide better prediction performance. To explore the
possibility, we constructed predictors using random
forest and support vector classification (SVC)
methods by feeding the same training dataset used
for the construction of NT-AcPredictor and evaluated
their performances on the same test dataset. The ran-
dom forest method performed worse and SVC per-
formed slightly better than NT-AcPredictor on most
of the performance indicators (data not shown). The
reason that random forest could not outperform the
decision tree approach might have been the negative
influence brought by the probabilistic property of ran-
dom forest.

Discussion

Our comparison test showed that the performance of
Motifs tree is slightly better than NT-AcPredictor.
Even so, the value of using NT-AcPredictor is its
unique feature to provide transparent processing
pathways from which the sequence determinants of
protein N-terminal acetylation can be understood.
While Motifs tree uses physicochemical sequence fea-
tures as input vectors rather than just amino acid
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sequences [17]. Therefore it is difficult to extract the
sequence determinants afterward. Since there is a
trade-off on the relationship between the prediction
performance and perspicuity, this result is under-
standable. In the performance comparison test, there
were 22 cases where NT-AcPredictor outputted cor-
rect answers but not Motifs tree, and there were 43
converse cases where Motifs tree outputted correct
answers but not NT-AcPredictor. Thus it would be
beneficial for users to use both methods in a
complementary manner. NT-AcPredictor is available
from https://github.com/yamada-kd/nTAcPredictor
[22].

When we initiated this study, we hoped to identify
clear rules to determine the occurrence of N-terminal
acetylation for proteins lacking 'Met. However, we
found it difficult to fully predict the acetylated and
unacetylated sequences, suggesting that the substrate
specificity of NatA is broad and that there are mul-
tiple position-specific preferred and inhibitory resi-
dues within the first ten residues, the combinations of
which determine the degree of acetylation. However,
the number of possible combinations is large, and it
is probable that additional position-specific preferred
and inhibitory residues remain to be identified.
Therefore, these need to be identified to improve the
efficacy of our predictor along with a better under-
standing how their different combinations impact the
occurrence of this modification. Other reasons for in-
complete predictability may include 1) the substrate
specificity of NatA not being the same across species;
2) our whole dataset containing a significant amount
of false data; 3) the action of unknown Nat enzymes
on the proteins in our whole dataset; and 4) other
biological factors influencing this modification other
than N-terminal sequences. Further studies will be
required to better understand the complete determi-
nants of N-terminal acetylation.

Conclusions

We employed a decision tree algorithm to understand
rules that linked sequence and N-terminal acetylation.
Our approach successfully provided several sequence
determinants of N-terminal acetylation for proteins
lacking 'Met, demonstrating the usefulness of decision
tree-based approaches for studying the sequence
determinants of this phenomenon. Although the ma-
jority of these sequence determinants have been de-
scribed previously, novel findings include the
facilitating effect of the 2nd position Asp and the in-
hibitory effect of the 2nd position Pro and Arg on
the N-terminal acetylation, suggesting that the
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importance of the 2nd position residue as the key de-
terminant for N-terminal acetylation. The developed
predictor, NT-AcPredictor, was demonstrated to be
able to predict accurately the N-terminal acetylation status
of proteins for which the N-termini had not been experi-
mentally characterized, and thus may be useful to investi-
gate the functional roles of this modification.
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Additional file 2: Figure S1. Predictor performance with 5-mer input.
Figure S2. Regular expression of 10 leaves of the decision tree diagram.
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Table S2. The mean performance from 10 predictors constructed with
randomly selected training dataset. (PDF 262 kb)
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