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Abstract

Background: Recent advances in bioimaging and automated analysis methods have enabled the large-scale
systematic analysis of cellular dynamics during the embryonic development of Caenorhabditis elegans. Most of
these analyses have focused on cell lineage tracing rather than cell shape dynamics. Cell shape analysis requires
cell membrane segmentation, which is challenging because of insufficient resolution and image quality. This
problem is currently solved by complicated segmentation methods requiring laborious and time consuming
parameter adjustments.

Results: Our new framework BCOMS (Biologically Constrained Optimization based cell Membrane Segmentation)
automates the extraction of the cell shape of C. elegans embryos. Both the segmentation and evaluation processes are
automated. To automate the evaluation, we solve an optimization problem under biological constraints. The performance
of BCOMS was validated against a manually created ground truth of the 24-cell stage embryo. The average deviation of
25 cell shape features was 5.6%. The deviation was mainly caused by membranes parallel to the focal planes, which either
contact the surfaces of adjacent cells or make no contact with other cells. Because segmentation of these membranes
was difficult even by manual inspection, the automated segmentation was sufficiently accurate for cell shape analysis. As
the number of manually created ground truths is necessarily limited, we compared the segmentation results between
two adjacent time points. Across all cells and all cell cycles, the average deviation of the 25 cell shape features was 4.3%,
smaller than that between the automated segmentation result and ground truth.

Conclusions: BCOMS automated the accurate extraction of cell shapes in developing C. elegans embryos. By replacing
image processing parameters with easily adjustable biological constraints, BCOMS provides a user-friendly framework. The
framework is also applicable to other model organisms. Creating the biological constraints is a critical step requiring
collaboration between an experimentalist and a software developer.
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Background
Owing to recent advances in microscopic technology,
biological labeling and digitization technology, large-
scale live imaging with high spatiotemporal resolution is
now possible. The live imaging technique accompanied
by advanced computational methods has realized the
automated analysis of biological dynamics. The usual
automated technique, cell tracking during embryonic
development, has been successfully performed in the

nematode Caenorhabditis elegans [1–4], zebrafish [5],
and Drosophila melanogaster [6, 7].
The embryonic development of C. elegans proceeds

through a stereotypical pattern of cell divisions, known
as an invariant cell lineage. Automated cell tracking
exploits the invariant cell lineage, enabling large-scale
systematic analysis of cellular dynamics in wild type and
mutant embryos. Comparing the cell tracking results of
different individuals, researchers have revealed small dif-
ferences in cell division timings, cell cycle lengths and
cell positions during embryonic development [1, 3, 8]. Cell
tracking has been combined with the reporter gene
expression of multiple genes and merged onto a reference
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lineage for gene expression profiling [9, 10]. Noting that
the generated profile distinguishes nearly all pairs of em-
bryonic cells [10], Du et al. [11] constructed a strategy that
detects homeotic transformations on genetic perturbations
by comparing the mutant and wild-type profiles, and infers
the system-level mechanistic model of differentiation [11].
On the other hand, cells form stereotypical shapes dur-

ing essential cell movements [12], cell–cell interactions
[13] and morphological changes [14, 15]. Such shape
changes have mainly been analyzed by visual inspection,
which limits the analysis to only part of the embryonic
development [16]. Given that automated cell tracking
enables a wide variety of systematic analyses, its applica-
tion to cell shape dynamics would provide us with unpre-
cedented knowledge.
In cell tracking analysis, fluorescently labeled cell nuclei

are segmented by image processing and are temporally as-
sociated [17]. The cell shape dynamics can be captured by
a nearly identical procedure, which labels the cell mem-
branes rather than the nuclei. However, membrane seg-
mentation is more difficult than nuclear segmentation,
not only because the segmentation itself is more complex,
but also because a high segmentation quality is required.
Whereas cell nuclei are thick, well-separated spherical

structures, cell membranes are thin planar shapes that
contact each other, forming complicated networks. The
segmentation is especially difficult for membranes that
are parallel to the focal planes. In conventional confocal
microscopy, the effective sampling resolution depends
on the point spread function, which is worse in the axial
(z) direction than in the planer (x–y) direction. Therefore,
membranes parallel to the focal planes are sometimes
imaged discontinuously. Additionally, unlike nuclei (which
remain spherical), spherical cells can become squashed or
expand lamellipodia and filopodia. These dynamics are
difficult to segment using a shape model.
The primary objective of nuclear segmentation is to

quantify the cell positions, so the segmentation quality is
less important for nuclear shapes than for cell shapes. In
membrane segmentation, the analysis must quantify the
cell shape features, so the segmentation quality is critical.
High segmentation quality is not easily maintained,

because the image quality (signal to noise ratio) is
degraded at deeper focal planes by light scattering,
absorption, and aberration [18], and at later time points
by photo-bleaching [19]. As the fluorescence distribution
in cell nuclei approximates a Gaussian distribution [1], a
nucleus can be localized by detecting the locally bright
centric region. However, when extracting cell shape fea-
tures, the dimmer regions must be detected as well, which
is very challenging.
Seeding the membrane segmentation with nuclei has

successfully supported membrane segmentation [20–22],
but is insufficient for accurate segmentation. Therefore,

researchers have adopted additional sophisticated image
processing techniques.
In the first step of sophisticated image processing, the

membrane signals are enhanced by combining multiple fil-
ters. The filter sets include Gaussian or median filters and
Hessian-based membrane enhancement filters [21, 23],
rank filters and Difference of Gaussian filters [24],
anisotropic filters and histogram equalization, and geo-
desic curvature filters and edge detectors [20]. Once
the membrane signals are enhanced, the discontinuous
or gap regions are filled by iterative morphological clos-
ing [21] or tensor voting [23]. Alternatively, a segmen-
tation that is robust to gaps, such as active mesh
framework [22] or viscous watershed [25], is applied.
In all approaches, the parameters must be adequately

set to achieve sufficient performance. The parameters
include the window size and sigma in filtering, the size
of the morphological operations, the noise and water-
shed levels, the weights of the energy terms, the iteration
number, and objective sizes such as cell diameter.
Because each parameter must be optimally valued within
a certain range, the number of parameter sets that must
be tested increases in a combinatorial manner.
In the parameter adjustment process, the segmenta-

tion results must be evaluated in comparisons with the
original membrane images. This evaluation is especially
difficult for images in deeper focal planes, where the
membrane signals are ambiguous. Because we must
assume the cell shapes from upper focal planes, the
evaluation in these deep planes is confounding and, of
course, subjective. Additionally, a parameter set that
properly segments the upper focal planes often fails in
deeper planes, and vice versa. The same is true for im-
ages between early and late time points. Thus, we must
seek a parameter set that performs accurate segmenta-
tion through all focal planes and time points, which is
complicated and requires visual inspection.
When developing a new segmentation method or apply-

ing an existing method to a new problem, the parameter
adjustments and segmentation assessments are iterated
until the accuracy of the segmentation reaches the required
level. As the number of parameter sets is enormous, and
evaluating the segmentation results is complicated and reli-
ant on human imagination, this iterative evaluation process
is subjective, laborious and time-consuming.
In this study, we developed a new framework for cell

shape extraction in C. elegans embryos, which auto-
mates both the segmentation and evaluation processes.
Because it optimizes an objective function under bio-
logical knowledge-based constraints, our framework is
named BCOMS (Biologically Constrained Optimization-
based cell Membrane Segmentation). The performance of
BCOMS is demonstrated in comparisons with cell shapes
in a C. elegans embryo.
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Results
Design
When segmenting cell membranes by a newly developed
or existing method, we must adjust all parameters in the
method for an accurate segmentation. Typical approaches
iterate the following three steps: perform segmentation
with a parameter set, evaluate the segmentation result,
and adjust the parameter set. The iterations terminate
when an accurate segmentation is computed (Fig. 1a). The
main concept of the BCOMS framework is automation of
this process (Fig. 1b). The segmentations in BCOMS are
exhaustively performed over the whole parameter space
and the optimal segmentation is selected by an automated
evaluation method. The evaluation method is formulated
as a constrained optimization problem:

maximize f xð Þ; x ¼ x1; x2⋯; xlð Þ ð1Þ
subject to g xð Þ ¼ ce ð2Þ

h xð Þ¼> cu ð3Þ

where f(x) is the objective function to be maximized in
the optimization problem. The vector x is the set of all
parameter values included in the segmentation method,
and l is the number of parameters in the method. g(x)

and h(x) are given functions that satisfy the equality and
inequality constraints (Eqs. (2) and 3), respectively).
These functions ensure that the optimization problem is
solved under biologically acceptable conditions. There-
fore, the goal of this optimization problem is to find a
set of parameter values xo that maximize the objective
function f(x) under the equality and inequality constraints.
The final segmentation result is the segmentation result
calculated with the parameter set xo. The functions f, g and
h are differently determined in each segmentation problem.
The BCOMS realized the concept by a two-step seg-

mentation framework; embryonic region segmentation
using a level set method [26, 27], and cell membrane
segmentation using a segmented nuclei-seeded water-
shed (Fig. 2, see Methods for details of the segmentation
method). By segmenting the cell membrane, cellular
regions are also simultaneously segmented. The nuclei-
seeds can be prepared by two-color imaging, the cell
membrane and cell nucleus are recorded in separate
channels sequentially, and then segmenting the cell nu-
clear regions. The cell nucleus images are only used for
giving the seeds.
In the embryonic region segmentation process (Fig. 2a),

the segmentation results computed over the whole param-
eter space are evaluated by the following evaluation
function:

Segmentation with 
a parameter set

Iterate segmentations with changing 
parameter values until an accurate 
segmentation is computed

Input image

(b)

(a)

Segmentation result

Segmentations with 
all parameter sets

Select a segmentation 
result by an 
evaluation function

Input image Segmentation result

Fig. 1 Comparison of typical and BCOMS approaches. Schematic comparison of membrane segmentation processes in typical (a) and BCOMS
(b) approaches. a Typical approaches iterate segmentation of an input image with a parameter set, evaluation of the segmentation result, and
adjustment of the parameter set until the segmentation is sufficiently accurate. b In BCOMS approach, segmentations are computed with all
parameter sets and the optimal segmentation is selected by an evaluation function. The icons indicate the processed images and segmentation
results, which are 3D time-lapse data
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maximize

P
pIp

�Sedgep yð ÞP
pS

edge
p yð Þ ; y ¼ y1; y2;⋯; ymð Þ ð4Þ

subject to
X
p

Snucp �Semb
∼

p yð Þ ¼ 0 ð5Þ

V min yð Þ
V max yð Þ¼

>
0:95 ð6Þ

Eq. (4) maximizes the objective functions, and Eqs. (5)
and (6) define the equality and inequality constraints,
respectively. The vector y is a set of all parameter values
included in the embryonic region segmentation method,
and m is the number of parameters in the method (the
parameters are listed in Additional file 1: Table S1).
Semb(y) is the segmented embryonic region calculated
with the parameter set y. Sedge(y) is created by extracting
an edge on each focal plane of the segmented embryonic
region Semb(y). Sp

edge(y). is the binary value of pixel p in

Sedge(y). Ip is the intensity value of pixel p in membrane
image I. The * operator denotes multiplication, namely,
each pixel intensity value in the membrane image I is
multiplied by the corresponding pixel’s binary value in
Sedge(y). Σp denotes summation over the pixel indices p.
Note that all images and segmentation results are 4D
(3D time-lapse) data. Therefore, the objective function
measures the average intensity value of the pixels that
are segmented as the embryonic edge in the membrane
image. Sp

emb(y) and Sp
nuc denote the binary values of pixel

p in the segmented embryonic region Semb(y) and in the
seed nuclei image, respectively. The seed nuclei image
contains the segmented nuclear regions created by a pre-
viously developed image processing method (see
Methods for details). The ~ operator represents inver-
sion of a binary image. Therefore, the equality constraint
(5) ensures that all nuclei are enclosed in the segmented
embryonic region. Vmin(y) and Vmax(y) are the minimum
and maximum volumes of the segmented embryos
calculated with the parameter set y, respectively. The
volume is calculated by counting the pixels contained in

Segmentations 
with all 
parameter sets

Remove segmentation 
results that violate the 
constraints

Select a segmentation 
result that maximizes 
the objective function

Membrane 
image, 

Segmented embryonic 
regions, 

Seed nuclei, 

Segmented embryonic 
region, 

Membrane image, 

Segmented embryonic 
region, 

Segmentations with 
all parameter sets

Select a segmentation 
result that maximizes 
the objective function

Constraints are included in 
the segmentation method

Segmented 
membranes, 

Segmented membranes, 

(a)

(b)

Fig. 2 Schematic of the BCOMS framework. Schematic representation of embryonic region segmentation (a) and cell membrane segmentation
(b) processes. In the two-step segmentation process of the cell membrane, the optimal segmentations are selected by solving optimization problems
under defined constraints. The icons indicate the processed images and segmentation results, which are 3D time-lapse data. Names and variables of
the icons (for example, I, Semb(y) and Smemb(z)) are defined in the main text
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each segmented embryonic region at each time point.
The inequality constraint (6) ensures that the embryo
maintains a near-stable volume throughout its develop-
ment, as observed in our experiments. The inequality
constraint excludes segmentations in which the later-
stage embryonic regions are shrunken. Shrinking in
later-stage embryos occurs by photo-bleaching, which
degrades the image quality. To cancel this effect, our
method adjusts the contraction bias by changing the
weight parameters in the level set method according to
the image brightness (see Methods for details). The
inequality constraint ensures the correct performance of
this adjustment.
The value of the objective function is maximized when

the edge of the segmented embryonic regions locates on
the outermost membranes (Fig. 3a), and decreases when
the edge locates inside these membranes (Fig. 3b). When
the edge locates along the inner membranes (Fig. 3c),
the objective value may again increase but these segmen-
tations are rejected by the equality constraint (5) that
forces the embryonic regions to enclose all seed nuclei.
In the cell membrane segmentation process (Fig. 2b),

the segmentation results computed over the whole par-
ameter space are evaluated by the following evaluation
function:

maximize

P
pIp

�Smemb
p Zð ÞP

pS
memb
p Zð Þ ;Z ¼ Z1;Z2;⋯;Znð Þ ð7Þ

where the vector Z is the set of all parameter values in-
cluded in the cell membrane segmentation method and
n is the number of parameters in the method (the pa-
rameters are listed in Additional file 1: Table S1). Sp

emb(Z)
is the binary value of pixel p in the segmented cell mem-
branes calculated with the parameter set Z. No explicit
constraints are given for the evaluation function (7).
However, the watershed segmentation in the cell seg-
mentation method is seeded with nuclei (see Methods
for details), and each seed nucleus is enclosed by its self-

formed region. By ensuring that each nuclear region is
enclosed in its own cellular region, this method imposes
an implicit biological constraint corresponding to Eq. (5)
in the evaluation of embryonic region segmentation. An
inequality constraint corresponding to Eq. (6) is not im-
posed, because the cell size may change.

Comparison with ground truth
To extract the cell shape dynamics, we recorded the em-
bryonic development of C. elegans in the two- to 54-cell
stages by 3D time-lapse imaging. For membrane seg-
mentation by the BCOMS framework, we labeled the cell
nucleus and cell membrane of the embryo as mCherry
and GFP, respectively. Applying BCOMS to the image
data, we acquired the segmentation results (Fig. 4, see also
Additional file 2: Figure S1). The cell shapes were accur-
ately segmented across all focal planes throughout the de-
velopmental period, including the deep focal planes
(z = 9) where the image quality was reduced, and at later
developmental stages. The segmentation results revealed a
variety of cell shapes, from spherical to squashed.
As BCOMS was developed for automated extraction

of the cell shape dynamics from the segmentation re-
sults, we must evaluate the accuracy of the extracted cell
shapes. For this purpose, we created a ground truth of
the 24-cell stage embryo by manual segmentation. This
stage was selected because the cells contact each other
in all three dimensions, and are sufficiently large to
evaluate their shape features. Gastrulation in C. elegans
is initiated around the 26-cell stage, so accurate segmen-
tation of the embryo at this stage is essential for analyz-
ing the cell shape dynamics during morphogenesis.
To quantitatively measure the cell shapes, we selected

25 cell shape features that are widely used in the image
processing field. These features include volume, perim-
eter length, centroid location, cell length, surface area,
convexity and sphericity. We computed the shape fea-
tures of every cell in both the BCOMS result and the
ground truth, then calculated their deviations by

(a) (b) (c)

Fig. 3 The objective function is maximized when the segmented membranes are just on the membranes. Embryonic region segmentations of a
membrane image computed with different parameter sets. Red lines indicate the edges of the segmentation results. The value of the objective
function is maximized when the edge locates just on the outermost membrane (a), and reduces when the edge locates inside this membrane
(b). The value may again increase when the edge locates on the inner membranes (c). However this result is rejected because it violates the
equality constraint (Eq. (5) that forces the embryonic regions to enclose all seed nuclei

Azuma and Onami BMC Bioinformatics  (2017) 18:307 Page 5 of 11



subtracting the feature values of the segmentation result
from those of the ground truth, and dividing the abso-
lute values of the results by the ground truth values. The
average deviation among all features was 5.6% ± 3.5%
(mean ± SD; the results of 13 representative features are
shown in Table 1, and the results of all features are
shown in Additional file 3: Table S2).
Currently, no method can automate the extraction of

cell shapes in C. elegans embryos. Therefore, we com-
pared our result with the cell shapes of Drosophila and
mouse embryos extracted by RACE software [21]. Steg-
maier et al. [21] calculated the deviations of 22 cell
shape features and averaged them over both organisms,
obtaining 9.8% ± 4.9%. As the 25 features used in our
comparison include all 22 of their features, we recalcu-
lated the average deviation of 22 shape features previ-
ously calculated by BCOMS, and obtained 5.6% ± 3.7%.
Although the evaluated organisms are different, this
comparison confirms that our segmentation result is suf-
ficiently accurate to analyze cell shape features.

Analysis of deviation
The deviations are expected to be larger in the z direc-
tion (where the resolution is poorer) than in the x–y dir-
ection. To confirm this expectation, we compared the
deviations of the cell lengths in the x, y and z directions.
Indeed, the deviation was larger along the z axis (9.4%)
than along the planar directions (4.6% and 7.3% in the x
and y directions, respectively). Likewise, the perimeter
lengths deviated more on the YZ and ZX planes (9.1%

and 10.5% respectively) than on the XY planes (3.3%).
These results support the larger deviation in the z direc-
tion than in the x–y direction.
To further analyze the cause of the deviation, we mea-

sured the distance of each pixel in each cell of the auto-
mated segmentation result from the nearest pixel in the
corresponding cell of the ground truth (right images of
Fig. 5, see also Additional file 4: Figure S2). In most of the
cells, the edges differed by approximately one pixel from
the ground truth. As the drawn line cannot pass through
the exact center of the membrane, some deviation is inev-
itable. Moreover, the computationally segmented mem-
branes are one pixel thick and are three-dimensionally
connected (in a 26-connected neighborhood). On the
other hand, manual segmentation cannot be drawn to
pixel-level accuracy. Considering these difficulties, devia-
tions of a few pixels are acceptable.
The differences were larger in some locations. Repre-

sentative focal planes with deviations exceeding two
pixels are shown in Fig. 5, b and c. Regions of large dif-
ference include the contacting surfaces of adjacent cells
(Fig. 5b) or bare surfaces that do not contact with other
cells (Fig. 5c). In both scenarios, the surfaces were parallel
to the focal planes. In the contacting surfaces of adjacent
cells (Fig. 5b), membrane signals were difficult to distin-
guish from noise even by manual inspection. These mem-
branes are diagonal in the focal planes. Therefore, to
accurately connect them between adjacent focal planes,
we must imagine their three-dimensional shapes. Manual
segmentation of these membranes is inherently less

Z
=

9
Z

=
22

33
=

Z

44-cell stage24-cell stage12-cell stage6-cell stage

weiv
D3

Fig. 4 Accurate segmentations across focal planes and time pointsShown are the membrane images and segmentation results computed by
BCOMS at representative developmental stages and focal (Z) planes. The bottom and top focal planes are denoted as Z = 1 and Z = 36, respectively.
The top panels are the 3D volume renderings of the membrane images and segmentation results. Cellular regions are rendered in different colors and
the segmented membranes and background are rendered in black
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accurate than segmentation of membranes perpendicular
to the focal planes. In addition, during watershed segmen-
tation, a region of a cell might extend beyond the separat-
ing membrane with insufficient fluorescence signals. On
the other hand, in bare surfaces that do not contact with

other cells (Fig. 5c), the automated segmentation extracted
the outer (dimmer) bare surfaces instead of the correct
bare surfaces. Parameter sets that do not extract the dim-
mer bare surfaces cannot avoid the incursion of extracted
bare surfaces inside the true embryonic region during the
level set segmentation. Segmentations using these param-
eter sets were generated in the segmentation process but
rejected by the constraints, which force the embryonic
region to enclose all of the segmented nuclei. However,
extraction of the dimmer bare surfaces is not necessarily
inaccurate because these surfaces are brighter than the
background. We conclude that the deviations between the
BCOMS segmentations and the ground truth arise from
extremely ambiguous membranes.

Comparison between adjacent time points
As only a limited number of ground truths can be cre-
ated by manual effort, we compared the segmentation
results between two adjacent time points. Although the
cell shapes may change throughout the cell cycle, they
should be almost stable between two adjacent time
points, because the time interval of our imaging is 15 s
(1.1% of the mean cell-cycle period). We computed the
shape features throughout the development of each cell,
then calculated their deviations between two adjacent

Table 1 Deviations between BCOMS and ground truth for 13
representative cell shape features

Deviation (%)

Volume 3.4

PerimeterXY 3.3

PerimeterYZ 9.1

PerimeterZX 10.5

CentroidX 0.8

CentroidY 0.9

CentroidZ 0.9

Width 4.6

Height 7.3

Depth 9.4

Surface area 7.4

Convexity 3.3

Sphericity 5.3

(b) Z = 22

(c) Z = 35

(a) 3D view

Fig. 5 Differences between automated segmentations and ground truth caused by membranes parallel to the focal planes. (Left to right) Original
image, BCOMS, ground truth, and pixel-level difference in the 24-cell stage embryo. 3D view images (a) and 2D view images (b, Z=22; c, Z=35).
The cellular regions in the BCOMS segmentations and the ground truth are represented by different colors. For each pixel in each cell of the auto-
mated segmentation result, the pixel level difference was measured as the distance from the nearest pixel in the corresponding cell of the
ground truth, and is displayed in pseudo color. The differences increase at the contacting surfaces of adjacent cells (b), and at bare surfaces that
do not contact with other cells (c)
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time points. The deviation was calculated by subtracting
the feature values at the previous time-point from those
at the later time point, and dividing the absolute values
of the results by the feature values at the previous time
point. Across all cell cycles and all cells, the average
deviation among all features was 4.3% ± 2.7% (the results
of 13 representative features are shown in Table 2, and
the results of all features are shown in Additional file 5:
Table S3). The average deviation was smaller than that
between the automated segmentation result and the
ground truth. This result suggests that BCOMS success-
fully segments the membrane throughout the early
embryonic development of C. elegans.

Discussion
BCOMS framework
Our new framework BCOMS was developed for auto-
mated cell shape extraction in C. elegans embryos.
BCOMS automates not only the segmentation process
but also the evaluation process. The evaluation was
automated by solving an optimization problem under
biological constraints. To apply BCOMS, we must adjust
the parameters to fit the biological constraints, rather
than adjust the image processing parameters. This
replacement of the parameter fitting provides obvious
benefits to both users and developers, and can be
regarded as the major contribution of BCOMS.

Benefit to users
When solving new problems by existing segmentation
methods, we must adjust the image processing parame-
ters (noise threshold, window size and sigma value in
filtering, and the weights of the energy terms). Such
adjustment requires understanding of what is controlled

by each parameter. Therefore, users need at least a basic
knowledge of the underlying algorithm. To users un-
familiar with image processing, such as experimental bi-
ologists, gaining this understanding is non-trivial.
BCOMS replaces the image processing parameters with
biological constraints. In the present study, the constraints
enclose the nuclei within the embryonic or cellular
regions, and limit the volume change of the embryo or
each cell to a certain range. The former constraint is
parameter-free, and the parameter of the latter is easily
understood by biologists. Therefore, this replacement con-
verts the complicated image processing method to a more
user-friendly framework.

Benefit to developers
Although BCOMS was developed for cell membrane
segmentation in C. elegans, this framework is applicable
to membrane segmentation in other organisms. To this
end, both the segmentation and evaluation processes can
be customized. To customize the segmentation process,
we can simply replace the segmentation method. For
instance, our novel segmentation method can be re-
placed by an existing method. In the evaluation process,
the objective function measures the consistency between
the membrane image and segmentation results, and is
applicable to membrane segmentation in other organ-
isms. However, the biological constraints may need to be
tailored to different organisms. For example, the con-
straint of embryonic size stability is not suitable for
mouse embryos, because mouse embryos grow as their
development proceeds. In such cases, the constraints
must be newly constructed. If the constraints are too
strict, no segmentations are generated. Conversely, if the
constraints are too loose, biologically unacceptable seg-
mentations are selected. As the number of constraints is
unlimited, the segmentation should incorporate as many
constraints as possible. These constraints can be con-
structed by users with no knowledge of image process-
ing, but must be based on biological knowledge of the
target organism. This will present no problem to
researchers familiar with the target organism. To fully
exploit the advantages of BCOMS, experimentalists
should collaborate with software developers.

Performance of BCOMS
The performance of BCOMS was validated by compari-
sons with the ground truth and by comparing the results
at two adjacent time points. After analyzing the pixel-
level deviation of the automated segmentation result
from the ground truth in each cellular region, we found
that the deviations increased on membranes parallel to
the focal planes. In fact, these membranes were difficult
to segregate even by manual methods. Therefore, even
the ground truth is not necessarily accurate. Comparing

Table 2 Deviations between two adjacent time points for 13
representative cell shape features

Deviation (%)

Volume 2.5

PerimeterXY 6.3

PerimeterYZ 6.4

PerimeterZX 7.3

CentroidX 0.7

CentroidY 0.7

CentroidZ 1.1

Width 4.6

Height 4.1

Depth 4.2

Surface area 2.7

Convexity 4.7

Sphericity 1.6
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the two segmentations, many of these difficult-to-
separate membranes were more accurately segmented by
BCOMS than by the manual method. Therefore, the
accuracy of the automated segmentation is equivalent to
that of manual analysis.
Additionally, the automated segmentation faithfully

follows the segmentation “rule” that every cell is neces-
sarily separated by membranes, and that the membranes
are three-dimensionally connected into a 26-connected
neighborhood. In contrast, adjacent cells in manual seg-
mentation may be directly contacted with no intervening
membranes. The faithful segmentation by the automated
method is especially important in systematic large-scale
analyses, where stereotypical data are desired.

Future work
Here, the optimization problem was solved by exhaust-
ive searching. Although the search was completed in
reasonable computational time, the computational effi-
ciency would be improved by applying a more sophisti-
cated optimization method. In future work, we will
explore various optimization methods, and identify the
most suitable methods for our problem. To this end, we
will clarify how each parameter relates to the objective
function and the biological constraints. A more sophisti-
cated computation will reduce the human labor and
time consumption of BCOMS applications, achieving an
efficient developmental environment and a user-friendly
analysis framework.

Conclusion
We developed a new framework BCOMS which auto-
mated extraction of cell shapes in developing C. elegans
embryos. The accuracy of BCOMS was validated by
comparisons with the ground truth and by comparing
the results at two adjacent time points. By replacing
image processing parameters with easily adjustable bio-
logical constraints, BCOMS provides a user-friendly
framework. The framework is also applicable to other
model organisms by customizing the biological con-
straints. This customization is a critical step requiring
collaboration between an experimentalist and a software
developer.

Methods
Sample preparation and image acquisition
The C. elegans strain was OD95 ltIs37 [(pAA64)
pie-1p::mCherry::his-58 + unc-119(+)] IV. ltIs38 [pAA1;
pie-1::GFP::PH(PLC1delta1) + unc-119(+)]. Worms were
grown and maintained at 22 °C by a standard procedure
[28]. The embryos were dissected from adult worms on
glass slides and mounted in a solution of 20-μm beads
in M9 buffer [29]. Cover slips were placed on the
mounts and sealed with Vaseline. Time-lapse imaging

was performed with a spinning disk confocal unit CSU-
X1 (Yokogawa Electric Corp.) mounted on an Eclipse Ti-E
microscope (Nikon Instruments Inc.) equipped with an
EM-CCD camera (iXon DU-897, Andor Technology Ltd).
Images were acquired using a CFI Plan Apo VC 60XWI
objective lens and a piezo stage controller (Nano-Drive,
Mad City Labs). For system control and image acquisition,
we employed iQ (Andor Technology Ltd). The image
resolution was 256 × 256 pixels (2× binning), the axial (z)
resolution was 0.5 μm, and the time interval was 15 s. The
focal planes and time points numbered 36 and 428,
respectively.

Two-step segmentation
We initially applied nuclei-seeded watershed segmentation
with an additional seed located outside of the embryo, and
defined the background. However, some cellular regions in
the segmentation result were extended into the background
and some of these extended cellular regions penetrated into
other cellular regions through the background (Additional
file 6: Figure S3). These discrepancies were caused by the
insufficient fluorescent signals of the membranes located
on the edge of the embryo, where the signal intensities are
lower than those on the contacting surfaces of adjacent
cells. To solve this problem, we replaced the background
seed with separate segmentation of the embryonic region,
before segmenting the cellular regions.

Embryonic region segmentation
Segmentation of the embryonic region was performed by a
level set method [26, 27], which achieves better smoothing
properties of the resulting segmentation than the watershed
method [30]. As the initial region for the level set method,
we temporally summed the 4D (3D time-lapse) image to
generate a 3D image stack, then extracted the pixels with
intensities above the mean intensity.
In deeper focal planes, the images become dimmer and

their quality degrades. To offset this degradation, we calcu-
lated the average intensity of the pixels enclosed by the ini-
tial contour on each focal plane of the 3D image stack, and
multiplied it by an adjustment factor. At later time points,
the images are similarly dimmed by photo-bleaching. To
cancel this effect, we adjusted the contraction bias (corre-
sponding to the weight of the curve-length term in [26]) in
the level set segmentation according to the image bright-
ness. Specifically, dimmer images were assigned a weaker
bias than brighter images. The bias of each image stack at
time t was calculated as

cb tð Þ ¼ c � vars tð Þb: ð8Þ

Here, vars(t) is the intensity variance of the pixels
enclosed by the initial embryonic region of the 3D image
stack at time t, and c and b are parameters.
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For embryonic region segmentation, the membrane
images were first applied to a Gaussian filter, then proc-
essed by the level set method [26, 27] initialized by the
pre-segmented contour.

Cell nuclei segmentation
The nuclei were segmented by our previously developed
scheme [31]. After computing the 3D Difference of
Gaussian filtering, the method applies adaptive noise
thresholding, followed by a size threshold that removes
small regions. The segmentation in the developmental
stages is almost error-free [31]. Here, the minimal errors
in the segmentation results were removed by manual
curation. Note that the segmentation was performed on
cell nuclei images that are acquired in a different chan-
nel from that of the cell membrane images. The images
are not shown in this manuscript.

Cell membrane segmentation
Using the segmented nuclei as seeds for the watershed,
we segmented the cellular regions. However, as the
fluorescent signals on the membranes were insufficient,
some of the cellular regions extended into adjacent cells
beyond the separating membranes (see Additional file 7:
Figure S4, the segmentation results with α = 0). To solve
this problem, we created hybrid images Ihyb by the
following formula:

Sdist ¼ D
h
Snuc
∼ i

ð9Þ

Ihybp ¼ Ip þ α�Sdistp ð10Þ

where Snuc is the seed nuclei image. The ~ operator rep-
resents inversion of a binary image and D[*] denotes the
Euclidean distance transform. Ip and Sp

dist denote the
intensity values of pixel p in the membrane image and in
Sdist, respectively, and α is a parameter. The second term
in Eq. (10) weights the intensities according to the dis-
tances of the pixels from the nuclei. As α increases, each
region becomes increasingly less likely to extend far
from the seed nucleus in the hybrid image Ihyb. For a
given image, the number of parameters and the compu-
tational time are smaller in the watershed segmentation
than in the level set. Therefore, the hybrid watershed
method is appropriate for segmenting large-scale image
data such as the image data in the present study.
The hybrid images were first input to an averaging fil-

ter. Next, the membranes were segmented by the nuclei-
seeded watershed approach. The parameters used in this
study are listed in Additional file 1: Table S1. The sample
segmentation results and the values of the objective func-
tion computed with different αs are shown in Additional
file 7: Figure S4. Cell membranes separating the cells were

extracted as watershed lines with single-pixel thick-
ness, and were three-dimensionally connected (in a
26-connected neighborhood). Therefore, the final cell
membranes constituted the cell membranes separating
the cells, and the surfaces of the embryonic region.
Each of the extracted cellular regions was separated
by segmented cell membranes.

Creation of ground truth
The ground truth of the 24-cell stage embryo was manu-
ally created. First, the cellular regions were manually
segmented on each image plane using the ROI manager
in ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes
of Health, Bethesda, Maryland, USA, http://imagej.nih.
gov/ij/, 1997–2016.). Next the segmented regions were
associated with the image planes, reconstructing the 3D
cells. In this reconstruction, performed by custom-made
software, the overlapped regions of adjacent cells were
equally divided.

Additional files

Additional file 1: Table S1. Parameter values (XLSX 9 kb)

Additional file 2: Figure S1. Accurate segmentations across focal
planes and time points, related to Fig. 4. Shown are the membrane
images and segmentation results computed by BCOMS at representative
developmental stages and focal (Z) planes. The bottom and top focal planes
are denoted as Z = 1 and Z = 36, respectively. The top panels are the 3D
volume renderings of the membrane images and segmentation results. The
segmented membranes are rendered in green and background are
rendered in black. Cellular regions are rendered in black in 2D view images
and in dark blue in 3D view images. (PDF 222 kb)

Additional file 3: Table S2. Deviation between BCOMS and ground
truth for all cell shape features (XLSX 9 kb)

Additional file 4: Figure S2. Differences between automated
segmentations and ground truth caused by membranes parallel to the
focal planes, related to Fig. 5. (Left to right) Original image, BCOMS,
ground truth, and pixel-level difference in the 24-cell stage embryo. The
segmented membranes are rendered in green in the BCOMS segmentations
and the ground truth. Cellular regions are rendered in black in 2D view
images (b, c) and in dark blue in 3D view images (a) and background are
rendered in black. For each pixel in each cell of the automated segmentation
result, the pixel level difference was measured as the distance from the
nearest pixel in the corresponding cell of the ground truth, and is displayed
in pseudo color. The differences increase at the contacting surfaces of
adjacent cells (b), and at bare surfaces that do not contact with other cells
(c). (PDF 96 kb)

Additional file 5: Table S3. Deviation between two adjacent time
points for all cell shape features (XLSX 9 kb)

Additional file 6: Figure S3. Mis-segmentation of embryonic edge
membranes. Original membrane images and watershed segmentation
results at the 12-cell (a, Z = 8) and 44-cell (b, Z = 8) embryonic
stages. Cellular regions are represented by different colors. The
cellular regions colored in yellow extend into the background and
penetrate into other cellular regions (white arrows) through the
background. (PDF 47 kb)

Additional file 7: Figure S4. Differences of segmentation results on α
values. Cell membrane segmentation results computed with different α
values in Eq. (10). In these comparisons, the seeded watershed
segmentation was not preceded by an average filter. Shown are
representative results of 12-cell (a, Z = 9) and 44-cell (b, Z = 20) embryonic
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stages. (a, b) White arrows indicate cells that obviously extended into
adjacent cells beyond the separating membranes. Cellular regions are
represented by different colors. (c) Value of the objective function at
each α, computed over the whole embryogenesis data (see segmentation
result in the main text). (PDF 73 kb)
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