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Abstract

Background: Drosophila melanogaster is an important organism used in many fields of biological research such as
genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development,
morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila.
Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such
studies have been limited by the slow and tedious process of acquiring phenotypic data.

Results: We have developed a system that automatically detects and measures key points and vein segments on a
Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila
wing images while vein segments are detected using an Active Contour algorithm.
The accuracy of our key point detection was compared against key point annotations of users. We also performed key
point detection using different training data sets of Drosophila wing images. We compared our software with an
existing automated image analysis system for Drosophila wings and showed that our system performs better than the
state of the art. Vein segments were manually measured and compared against the measurements obtained from our
system.

Conclusion: Our system was able to detect specific key points and vein segments from Drosophila wing images with
high accuracy.

Keywords: Drosophila, Image processing, Wing morphometrics, Automated detection

Background
Recent advances in high-throughput sequencing tech-
nology have enabled us to obtain genome information
from any kind of organism [1]. For humans, more than
a thousand of genome sequences and single nucleotide
polymorphisms among them have been characterized [2].
This further motivated genome-wide association studies
(GWAS) in the literature with the hopes of discovering the
variations responsible for genetic diseases and traits in the
genome sequences. The strategy of investigating the rela-
tionship between genotype and phenotype should succeed
in discovering the genetic basis for any inherited traits in
any kinds of organisms. However, in many higher animals
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other than human beings, the description of phenotype
needs manpower with expertise in morphology of the
animals under consideration; such a dependency of this
approach on available manpower may be a critical bot-
tleneck of GWAS. Hence, development of an automated
system for describing phenotype may be one of the best
solutions to this problem.
Fruit flies, in particular Drosophila melanogaster is an

important organism used for biological research fields
particularly in genetics and developmental biology. More-
over, the complete genome sequences of this species
and its related species [3] opened up an ideal opportu-
nity for comparative genomics analyses for the systematic
understanding of phenotype and genotype relationships.
Species belonging to the genus Drosophila are partic-
ularly useful for this purpose because there are more
than 2000 described species in the genus Drosophila [4],
each of which has distinct phenotypic characters. On
the other hand, this situation makes it difficult for ordi-
nary Drosophila researchers to distinguish morphological
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differences among different species and only a limited
number of researchers who are experts in Drosophila tax-
onomy can recognize key morphological characters to
identify the species.
The use of wing morphometrics for species identifi-

cation have been demonstrated on a variety of insect
species [5–9], because of the simple two dimensional
structures with clear-cut patterns of veins and their cross-
ings, which are frequently utilized as landmarks to mea-
sure distances and angles among them. There is much
interest in quantifying wing structures of Drosophila
[10–14] and Drosophila wings have been widely used to
study the genetics of development, morphometrics and
evolution [15–20]. Advances in technology have increased
the ease in which images of insect wings can be acquired.
However the extraction of phenotypic information for
further research and analysis is a manual and time con-
suming process. This has motivated the creation of sev-
eral software which aims to automate this task. One
common method involves using software for easy annota-
tion of landmarks on the wing (http://life.bio.sunysb.edu/
ee/rohlf/software.html, http://www.hockerley.plus.com/).
However annotating landmarks is time consuming and
prone to errors [21]. More advanced software attempt
to find the location of landmarks and vein lengths using
a variety of image processing and optimization meth-
ods. These methods tend to involve fitting a set of bezier
splines onto the wing veins. WINGMACHINE [22] is
a program that automatically detects and measures the
positions of veins and edges of wing blades from live flies.
MorphoJ [23] performs geometric morphometrics analy-
sis onmorphological landmark inputs. AlthoughMorphoJ
does not detect and extract landmarks, it is a useful
tool for studying data on shape combined with molecular
genetics or ecological information. Automated systems to
detect and extract information from wings from a variety
of other insect species exist [24–28]. However only a few
of these programs are able to extract specific unique key
points that are used for the prediction of the fly species.
Crnojevic et al. [28] trained a svm classifier based on His-
togram of Oriented Gradient (HOG) and Complete Local
Binary Pattern (CLBP) features for vein junction detec-
tion of hoverflies. In addition the junctions were used
to construct convex hulls which were used to discrimi-
nate 4 different hoverfly species. Thus a more specific and
customized software is needed to automate the detection
and prediction process of Drosophila wings. As men-
tioned previously, the wing morphology of Drosophila
species is highly favorable for automated image analysis
[22]. Therefore, in this paper we introduce an automated
system that locates specific keypoints on a Drosophila
wing image and performs morphometrics measurement
of several important vein segments. The extraction
of these phenotypic data serves as a base for future

studies and research of Drosophila wings such as specie
prediction.
The software requires the user to annotate three specific

key points on the fly wing before key points and vein seg-
ments are calculated automatically. The program provides
an intuitive user interface and users can manually edit key
points and vein segment lengths if the prediction is inac-
curate. In this contribution, we report the performance of
our program and perform a comparison against WING-
MACHINE [22] an existing program that automates the
measurement of Drosophila wings.

Implementation
Data set
A total of 959 flies from 16 Drosophila species was
collected in a wood on the Minami-osawa campus
of Tokyo Metropolitan University in Tokyo, Japan.
The species identified according to their morphology
were Dichaetophora acutissima, Drosophila annulipes, D.
bizonata, D. busckii, D. curviceps, D. hydei, D. immi-
grans, D. lutescens, D. rufa, D. sternopleuralis, D. suzukii,
Hirtodrosophila sexvittata, Liodrosophila aerea, Micro-
drosophila sp., Scaptodrosophila coracina and Scaptomyza
graminum (Table 1). A one-sided wing was taken from
each individual and placed in 8 μl mounting solution
(ethanol : glycerol = 2 : 3) dropped on a glass slide. After
a coverslip was placed, the slide was placed under a stere-
omicroscope (Nikon SMZ-10A) and the wing photograph
was taken by a digital camera (Canon EOS 40D), where the
original image resolutions was 1936×1288, 2816×1880,
or 3888×2592 pixels.

Table 1 Species and the number of samples used in this study

Species Female Male

Dichaetophora acutissima 20 25

Drosophila annulipes 31 27

Drosophila bizonata 31 31

Drosophila busckii 35 41

Drosophila curviceps 20 26

Drosophila hydei 11 20

Drosophila immigrans 41 41

Drosophila lutescens 14 42

Drosophila rufa 41 41

Drosophila sternopleuralis 42 42

Drosophila suzukii 22 19

Hirtodrosophila sexvittata 41 41

Liodrosophila aerea 41 41

Microdrosophila sp. 15 10

Scaptodrosophila coracina 5 34

Scaptomyza graminum 36 32

http://life.bio.sunysb.edu/ee/rohlf/software.html
http://life.bio.sunysb.edu/ee/rohlf/software.html
http://www.hockerley.plus.com/
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A total of 600 images were used for image processing.
Figure 1 shows the arc-lengths to be measured as well as
the mean and standard deviation of the pixel intensities of
all 600 images. To conserve memory usage and improve
processing speed, small image patches around the man-
ually annotated key points were cropped and stored in
small image patch files. In practise, only image patches
near the key point locations were needed for key point
detection. All images are also converted to gray scale
images. Let annotated images be denoted by Dm, where
m = 1 · · ·N and N = 600 is the total number of images.

Key point detection
To identify a species from the wing image 13 key points
are needed. The key points are labelled ‘a’ to ‘m’ and can be
found in Fig. 1. Key point ‘k’ is the boundary of the costal
fringe and the others are intersections of veins. Given a
new, unannotated fly wing image I, key points detection is
carried out in two steps. The first step aligns the annotated
images Dm and the input image I. In the next step, key
points are detected using template matching.
To align the input image I with Dm, the user is required

to click the location of the three key points ‘a’, ‘h’ and ‘k’ on
I (see Fig. 1). A screen shot of the software can be found in
Fig. 2. An affine transformation matrix Qm is then calcu-
lated by matching the key points ‘a’, ‘h’ and ‘k’ in I and Dm.
Hence, each image in the data set Dm is associated with

one affine transformation Qm, m = 1, · · ·N . This trans-
formation matrix is then used to transform all images in
the data set from Dm to D′

m. Figure 3 shows an exam-
ple of transforming Dm to D′

m. In our implementation,
only pixels within a small image patch near the annotated
key points of Dm are transformed. This process greatly
increase the processing speed. As an affine transforma-
tion is used to align the images, the software is capable of
handling fly wings of any orientation.

Templatematching
Image patches between I and Dm are matched and the
best match locations are predicted to be the key point
locations. Define wI(x, y, θ) to be an image patch centred
at (x, y), oriented at an angle θ extracted from the image
I. Similarly, let wD′

m(x, y, θ) be an image patch extracted
from the image D′

m. The objective is to find the best
match between wI and wD′

m by adjusting the image patch
parametersm, x, y, θ .
We shall describe the template matching procedure

using key point j as illustration. The procedure for match-
ing other key points is similar. The location of key point
j in Dm, xmj , ymj is known since Dm has been manually
annotated. The transformed location x′m

j , y′m
j can be cal-

culated using Qm. Five templates wD′
m

(
x′m
j , y′m

j , θ
)

are
constructed with θ = −10,−5, 0, 5, 10 degrees. Fig. 4c,

Fig. 1 Figure shows the thirteen keypoints and vein segments that can be automatically measured by the software described in this paper. In
additional, the mean and standard deviation of the pixel intensities of all 600 images used are shown as well
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Fig. 2 Screen shot of the user interface

d, b, e and f show examples of these five templates. Next,
we want to match these templates to a target location
wI

(
x′m
j , y′m

j , 0
)
in image I. One last step before the match-

ing process is to normalize the pixel intensities within the
patches by performing a linear transformation tomake the
range of pixel intensities within the image patch between
0 and 255.
Matching is done by sliding the window w̃D′

m
(
x′m
j , y′m

j , θ
)

with respect to w̃I
(
x′m
j , y′m

j , 0
)
. w̃D′

m
(
x′m
j , y′m

j , θ
)

and

w̃I
(
x′m
j , y′m

j , 0
)
are the normalized image patches. Figure 5

illustrates the matching process. The matching score is
given by,

sm,θ (cx, cy) =
∥∥∥w̃D′

m
(
x′m
j , y′m

j , θ
)

− w̃I
(
x′m
j − cx, y′m

j − cy, 0
)∥∥∥
(1)

cx, cy is the shift of the center locations between the
image patches, with −15 ≤ cx, cy ≤ 15. ‖ · ‖ is the
Euclidean norm. Finally, the predicted key point location

corresponds to the best match among all shifts, orienta-
tions and template images Dm.(

c∗x , c∗y , θ∗,m∗) = argmin sm,θ (cx, cy) (2)

and the key point j’s coordinate is,
(
xIj , yIj

)
=

(
x′m∗
j − c∗x , y′m∗

j − c∗y
)

(3)

The above process is repeated for the remaining key
points on I. The details of the above algorithm can
be found in Algorithm 1 KEYPOINT-DETECTION in
Additional file 1.

Arc length calculations
Tracing the arcs as depicted in Fig. 1 is done using
active contours while the Euclidean distances between
key points are calculated trivially. In the active contour
method, an estimate of the desired curve is first gener-
ated using a template. The curve is then evolved using
a variational principle via a gradient descend method.
Two essential ingredients for applying the active contour
method are estimation of the initial curve and the existent

a b c

Fig. 3 a shows an example input image I while b shows an unmapped image Dm . After applying a transformation matrix to Dm , the mapped image
D′
m is obtained (c)
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a

b

c d e f
Fig. 4 Figure showing the target location and templates created using D′

m for key point j. The target location wD′
m

(
x′mj , y′mj , θ = 0

)
(a) is created at

the location
(
x′mj , y′mj

)
on image I. c, d, b, e and f shows the 5 templates wD′

m

(
x′mj , y′mj , θ

)
created at

(
x′mj , y′mj

)
on image D′

m with θ = −10,−5, 0,

5, 10 degrees respectively

of a good gradient to guide the curve towards the desired
position.

Initialization of active contours
The initialization of active contour curves is critical for
finding the fly wing vein accurately. If the initial curve lies
far away from the vein, active contour might evolve this
arc to another vein.
For example, setting the initial curves to straight lines

works well for arcs fg, gh, jl and kl as these arcs are

relatively straight. This is not the case for arc ml as there
is another vein just below it. Active contour will tend to
evolve this curve towards the vein below ml.
A good initialization of curves can be obtained by map-

ping veins of a template fly wing image to the input image
I. This template wing should provide a good represen-
tation of wings for all different fly wing species. This
mapping is done by aligning the template fly wing image
with the input image. The alignment process has been
described in the key point detection section.

Fig. 5 The process of template matching is shown here. Each patch is moved across the search area. The Normalized Squared Summed of Pixel
Intensity Differences is calculated at each position. The position with the least pixel-wise difference corresponds to the key point location
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Figure 6 illustrates this concept. First a fly wing image
is chosen to be the template wing image (Fig. 6a). We
have selected our template wing such that key point k is
equidistant to both key point j and l. Mapped arcs will
be warped badly if key point k is not equidistant to both
key points j and l. Different arcs are drawn using different
colours in Fig. 6 for clarity. Arc ml is drawn outside of the
template wing due to two reasons. The first is that the arc
ml of the template wing that we have chosen is quite flat
and does not provide a suitable representation of other fly
wings’ ml arcs, which have more curvature. Secondly, it
can be noticed that there is another vein just below arc ml
that lies close to arc ml. Active Contour might evolve the
mapped arc to the wrong vein if the mapped arc happens
to lie closer to that vein and not arc ml. To prevent this,
the arc ml is drawn outside the template wing image so
that the mapped arc also lies outside the fly wing. Some
results of this mapping are shown in Fig. 6b – d. One can
now notice how the mapped arc ml of Fig. 6c lies outside
the wing, rather than in between the two veins.

Generation of gradients for active contour optimization
Figure 7 shows how the input image is processed to pro-
duce a gradient for active contour optimization. The main
idea is to make the veins’ pixels very bright and for them
to be surrounded by pixels that become darker as they
become further away from the veins. A step-by-step work
flow of how the preprocessed image is obtained is shown
in Fig. 7a. The original image (Fig. 7b) is blurred and
inverted to obtain an image where the veins’ pixels are
very bright. The result is shown in Fig. 7c. A second image

is needed to help produce a smooth downwards gradi-
ent away from the vein. Edges (Fig. 7d) are found on
the blurred image before applying a threshold to obtain
a binary image (Fig. 7e). The binary image is dilated to
make the fly wing veins thicker before inverting the image
(Fig. 7f). A distance transform (Fig. 7g) is applied before
inverting the image one last time (Fig. 7h). The two images
(Fig. 7c and h) are then added pixel-wise to produce
the preprocessed image P (Fig. 7i). This process is inte-
grated in the software and is done automatically before
performing Active Contour.

Active contour formalism
Given an image P, the arc length between 2 key points can
be found by finding the path that follows high intensity
pixels between the two points. Curves are also represented
by connecting short straight line segments. Given 2 key
points pa = (xa, ya) and pb = (xb, yb), n straight line seg-
ments are created to connect pa to pb by n−1 intermediate
points (x1, y1). . .(xn−1, yn−1) where (x0, y0) = (xa, ya) and
(xn, yn) = (xb, yb). The ith line segment thus has a length
of

√
(xi − xi−1)2 + (yi − yi−1)2. An objective function for

the active contour can then be defined as,

L(x1, y1, . . .xn−1, yn−1) = f (x0, . . .yn,P)+α

n∑
i=1

(li−l0)2 (4)

where l0 = ‖pa − pb‖/n is a constant and α ≥ 0 is a
tuning parameter. l0 is the equilibrium length of the line
segments, i.e. if li = l0 then its contribution to the sec-
ond term in Eq. 4 is zero. The function f is chosen such

a b

c d

Fig. 6 a shows a wing from a male Drosophila rufa fly which is being used as a template wing. This image is chosen as its key point k is equidistant to
both key point j and l. b - d shows the mapped arc lengths using the template wing for 3 different images. The colours red, blue, orange, green and
magenta represents the arc segments fg, gh, jl, kl, lm respectively
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b c

d e

f g

ha i
Fig. 7 Figure shows the preprocessing of image I (b) before the arc lengths are found. c and h shows the inverted image of I and the inverted
distance map of I respectively. Both images are added pixel-wise to get P, the processed image (i)

that f is small along paths of high image intensity. Tomake
the active contours invariant with respect to fluctuations
of the overall image intensity, we make f to be invari-
ant to image intensity multiplication, i.e. f (x0, . . .yn,P) =
f (x0, . . .yn, aP). Hence f can be defined as:

f (x0, . . .yn,P) = 〈P〉
2

n∑
i=1

li
[

1
P(xi−1, yi−1) + ε

+ 1
P(xi, yi) + ε

]

(5)

〈P〉 = 1
2

[
P(x0, y0) + P(xn, yn)

]
(6)

〈P〉 is the normalization on the image intensity such that
f becomes invariant under image intensity multiplication.
0 < ε 	 1 is a small regularizer to prevent numerical
overflow. The desired curve can be found by minimizing
the objective function:

L
(
x∗
1, y∗

1, . . .x∗
n−1, y∗

n−1
) = min

x1,...yn−1
L(x1, . . .yn−1) (7)

using gradient descend method,
(
x(t+1)
k , y(t+1)

k

)
=

(
x(t)
k , y(t)

k

)
−η∂kL

(
x(t)
1 , . . .y(t)

n−1

)
(8)

Finally, the arc length can then be calculated by:

la,b =
n∑

i=1

√(
x∗
i − x∗

i−1
)2 + (

y∗
i − y∗

i−1
)2 (9)

The details of the algorithm can be found in Algorithm
2 ARC-LENGTH in Additional file 1.

Species identification from fly wing images
The Drosophila species can be identified from the wing
image using 13 key points (Fig. 1). The centroid of wing
was estimated as the centroid of the octagon whose ver-
tices were the key points ‘a’, ‘h’, ‘i’, ‘j’, ‘k’, ‘l’, ‘m’ and ‘b’. The
centroid of the octagon was computed from the area-
weighted average of the centroids of the five triangles split
from the octagon. Then, Euclidean distances from the
wing centroid to the 13 key points were measured and
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normalized by dividing by the distance between ‘a’ and ‘j’
(wing length).
In addition to the normalized distances from 13 key

points to the centroid, we measured three traditional wing
indices, costal-index, c3 fringe and 5x-index [29–31] to
identify the species from a wing image. The costal-index is
defined as the ratio of the length of the vein l-m to that of
the vein j-l. The C3 fringe is the ratio of the length of the
vein k-l to that of the vein j-l. The 5X-index is the ratio of
the length of the vein g-h to that of the vein f-g. Because
arc lengths of wing veins were required to compute these
indices, we used a fitting of veins to Bezier paths. As a
result, for each wing, we obtained 16 variables to con-
struct the training dataset and measured their values for
589 flies from 15 species excluding Microdrosophila sp.,
which was used as a sample for a negative control as will
be explained later.
With this size of the training dataset, however, uti-

lization of all of the 16 variables did not show the best
performance in the species identification in our prelim-
inary test, where the data from 588 files were used to
construct the training dataset and the remaining data
from one fly was used as the test data. Therefore, we
examined the conditions that may give the best result
among all the possible numbers (2-16) and possible com-
binations of these numbers of variables (65519 patterns in
total) and found that the best result was obtained when
six variables, the distances from the key points e, f, g
and m to the centroid, costal-index and c3-fringe, were
employed. Accordingly, we used only these six variables
for the following discriminant analysis.
The mean vector and the variance and covariance

matrix of the six variables were computed for the 15
species and for male and female separately excluding
Drosophila hydei female and Scaptodrosophila coracina
female due to a small sample size. Therefore, we obtained
the vectors for 28 groups in total. Then, the squared
Mahalanobis’ distance, D2, [32] from each wing to each
group was computed. Following De Maesschalck et al.
([33]), we used D2

i,j = (xj − μ̂i)T Ŝi
−1

(xj − μ̂i), where xj
denotes the vector of j-th wing, μ̂i and Ŝi denote the mean
vector and the variance and covariance matrix for i-th
group, with the aid of the R package ([34]).
For each wing image from unknown sample, the

D2 values were computed with μ̂i and Ŝi for the
28 groups and the group that gave the smallest D2

value was identified to be the species of the sample.
The statistical significance of the goodness of fit to the
inferred group was obtained by the chi-square test with
n degrees of freedom. When the smallest D2 value was
larger than the expected value for the best-fit species
at the 0.1% level, the sample’s species was identified as
‘unknown’.

To examine the efficiency of species identification by the
discriminant analysis, we used 370 additional wing images
not included in the training data from 15 species includ-
ingMicrodrosophila sp., which were absent in the training
data and thus expected to be identified as ‘unknown’
species if the method worked correctly.

Evaluation metric of key point detection
The key points of each fly wing in the data set is found
using the methods described above. To test the accuracy
of the key point detection algorithm, 15 fly wing images,
one from each species, is manually annotated by 10 users.
This give us 10 X,Y coordinates for each key point for each
of the 15 fly wing images. The covariance matrix, which
represents the spread of the 10 annotated points for a
single key point, can be obtained from the manually anno-
tated data. These covariances matrices are then used for
benchmarking the accuracy of the automated methods.
A total of 15 covariance matrices, 1 for each annotated

image, are obtained for a single key point. The 15 covari-
ance matrices are summed and averaged to obtain the
final covariance matrix for a single key point. This process
is done for all key points. Table 2 shows the covariance
matrix obtained for each key point. One might notice
that the covariance matrix of key points ‘a’, ‘b’, ‘c’, ‘k’ and
‘m’ contains larger values. This indicates that the manual
annotations of these key points have a large spread and
it is not easy even for humans to locate these key points
consistently.

Results
Key point detection results
Some results of Key Point Detection are shown in Fig. 8.
To determine if a predicted key point is accurate, we
check if the euclidean distance (in pixels) between the pre-
dicted key point and the ground truth is less than some
threshold. The threshold used in our experiment is 2 stan-
dard deviations away from the corresponding key point’s
covariancematrix. The results of this experiment are sum-
marized in Table 3. The mean deviation in pixels for each
point is also reported. Accuracy for key points ‘a’, ‘h’ and
‘k’ are not reported as these points were marked by the
user. The mean pixel deviation is also slightly higher for
key points ‘b’, ‘c’, ‘l’ and m’. These key points are located
on slightly thicker fly wing veins as compared to other key
points. A thicker vein would increase the candidate area
for a key point and this explains the larger values in pixel
deviations.
Different sized data sets were used to predict key points.

For the data set of size 100, 100 images had key points
manually annotated and used for template matching. The
remaining 500 images were used to test the accuracy of the
algorithm. Cross validations was also done for this data
set. Similarly, for the data set of size 599, 599 images had
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Table 2 15 images were annotated by 10 users to obtain a
covariance matrix per key point per image. The average
covariance matrix for a single key point is obtained by finding the
mean and standard deviation of the 15 covariance matrix

a b⎛
⎝ 9.06 ± 6.37 −0.127 ± 2.64

−0.127 ± 2.64 6.20 ± 3.99

⎞
⎠

⎛
⎝ 16.3 ± 13.1 5.22 ± 4.19

5.22 ± 4.19 5.17 ± 2.20

⎞
⎠

c d⎛
⎝ 12.1 ± 14.2 −2.50 ± 3.73

−2.50 ± 3.73 2.75 ± 2.07

⎞
⎠

⎛
⎝ 2.47 ± 1.33 −0.0481 ± 0.584

−0.0481 ± 0.584 1.40 ± 0.836

⎞
⎠

e f⎛
⎝ 1.99 ± 0.935 0.0319 ± 0.655

0.0319 ± 0.655 2.07 ± 0.927

⎞
⎠

⎛
⎝ 1.72 ± 1.17 −0.0474 ± 0.452

−0.0474 ± 0.452 1.38 ± 0.652

⎞
⎠

g h⎛
⎝ 2.35 ± 1.48 0.263 ± 0.840

0.263 ± 0.840 2.21 ± 1.62

⎞
⎠

⎛
⎝ 2.43 ± 1.32 0.259 ± 0.980

0.259 ± 0.980 2.06 ± 1.45

⎞
⎠

i j⎛
⎝ 2.22 ± 1.32 −0.141 ± 0.710

−0.141 ± 0.710 1.35 ± 0.633

⎞
⎠

⎛
⎝ 2.41 ± 0.848 0.190 ± 0.691

0.190 ± 0.691 1.81 ± 0.669

⎞
⎠

k l⎛
⎝ 12.3 ± 9.36 6.16 ± 6.01

6.16 ± 6.01 8.91 ± 5.29

⎞
⎠

⎛
⎝ 5.21 ± 2.62 −1.43 ± 1.26

−1.43 ± 1.26 1.97 ± 0.746

⎞
⎠

m⎛
⎝ 13.5 ± 15.0 −3.64 ± 5.56

−3.64 ± 5.56 9.09 ± 5.76

⎞
⎠

key points manually annotated and the remaining image
was used for testing the algorithm. We expect that the
data set of size 599 will yield better results. The accu-
racy results are shown in Table 3. We also downsized our
images further and repeated the above experiments. The
results of the downsized dataset can be found in Table 4.
We also compared our method against an existing fly

wing fitting software, WINGMACHINE [22]. WINGMA-
CHINE first detects curves in a fly wing image that fit a
priori template before fitting spline curves to the image.
The location of two landmarks - the humeral break and
alula notch, need to be known before curve fitting can take
place. We ran the Wings software on ten images in our
dataset. The results are shown in Fig. 8g – i and Table 5.
WINGMACHINE tries to find the fly wing veins using
edge detection methods and results were not so ideal in
cases where there were background artefacts. Moreover,
the edge detection algorithm sometimes fail to pick up
some veins that are too faint. This can lead to a wrong pre-
diction on the joint locations which results in a bad fit for
the spline curves.

Arc length results
Some examples of good results of Active Contour are
shown in Fig. 8. Note that even though there are dark
patches (Fig. 8d), background artefacts (Fig. 8e) or spots
on the wing (Fig. 8f), Active Contour is still able to find the
fly wing vein accurately most of the time.
We found a total of 4 bad results out of 600 images in

our dataset. Users are allowed to edit bad results of arc
lengths in the fly wing software. Some examples of bad
results of Active Contour are also displayed in Fig. 8. As
can been seen in Fig. 8j and k, air bubbles are present in
the background while dust is present in Fig. 8l. It can be
observed that only the location of arc lm is incorrect and
that artefacts in these images lie above arc lm. It has been
mentioned previously that the arc lm is initialized above
the fly wing. These artefacts in the background produces
large peaks in the active contour gradient image, result-
ing in Active Contour getting stuck in the local maxima
of the artefact. Other arcs do not suffer from this problem
as these arcs are initialized onto the foreground which has
little artefacts. Thus only artefacts that lie just above the
fly wing affects the accuracy of Active Contour.
The accuracy of our Active Contour method was also

tested. Arc lengths ground truth of fifteen different fly
wings, one for each species, are annotated manually and
compared with the arc lengths found using Active Con-
tour. The error is calculated as the area bounded by the
annotated arc and the predicted arc. The error is then
divided by the length of the annotated arc. The results are
tabulated in Table 6. This is normal as a longer arc spans a
larger area of the image and this increases the amount of
noise and background artefact that might affect the Active
Contour algorithm.

Species identification results
The efficiency of the wing image analysis for species iden-
tification is shown in Table 7. Out of 370 flies examined,
346 flies were identified as the correct species (success
rate was 94%), whereas the capability of identifying cor-
rect sex was poor (success rate was 56%). This suggests
that the wing morphology is not significantly different
between female and male, whereas the between-species
difference is significantly larger than the within-species
difference among all of the 15 species examined. In addi-
tion, it is noteworthy that the present system perfectly
recognized Microdrosophila sp., which was not included
in the training data, as ‘unknown’ species. This suggests
that the present system has a discrimination power to give
an appropriate answer even when the species of sample is
not included in the training data. Therefore, the present
system is expected to be useful to analyze wing morphol-
ogy for species identification among species belonging to
Drosophila and related genera, even after more data for
more species are added.
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a b c

d e f

g h i

j k l

Fig. 8 a - c shows some key point prediction results of our method. d -f shows arc lengths found using our method. The colours red, blue, orange,
green andmagenta represents the arc segments fg, gh, jl, kl, lm respectively. g - i shows key point and arc length predicted for the same images
using the WINGMACHINE software. Red arrows are used to indicate the errors for clarity. The errors in g and i are due to incorrect prediction of joint
locations while the error in h is due to a bad fitting results of an a priori template wing. Lastly, j - l shows three examples of bad arc length
estimation results found using Active Contour due to artefacts in the background such as air bubbles and dust particles. The red arrows show the
artefacts that affect the Active contour algorithm. There are a total of four images with bad arc length estimation out of our dataset of 600 images

Discussion
Our software has managed to successfully predict land-
marks on up to 15 different species of fly wing images.
Incorrect landmarks detected can be corrected using the
software user interface with ease. In addition, our soft-
ware is able to accurately calculate and measure specific
vein segments which are required for fly specie detection.
Incorrect vein segments found can also be corrected using
the user interface of the software.
In contrast toWINGMACHINE software, which makes

use of high level features to optimize fit of an a priori
model of a fly wing, our software utilizes low level features
such as edges and pixel values to find land marks and vein
segments. As mentioned by WINGMACHINE, develop-
ing detection algorithms using low levels features tend to
encounter problems such as varying thickness of veins,
uneven lighting and background artefacts which cause
inaccuracies during prediction. However, our software
manages to overcome themajority of these difficulties and
performs well for images in our dataset.

One advantage of using WINGMACHINE over our
software is that only two land marks are needed for detec-
tion instead of three. However, it should be noted that
WINGMACHINE software may require pretreatment of
image data and this may require more manpower as com-
pared to our software. The advantage of using MorphoJ
is that phenotypic data can be easily read and analysed
within the software. However, MorphoJ does not have the
capabilities to detect and extract these information from
images automatically.
There are a few drawbacks for our algorithm. The first

is the need for a large dataset. As demonstrated in the
key point detection results section, a large dataset con-
taining fly wing images of numerous fly species would
help increase the accuracy of our algorithm. This results
in a slow detection process as each image in the dataset
has to be loaded. To reduce the time taken for the detec-
tion process, image patches centered on the fly wing’s key
points are cropped from the original fly wing image and
saved in a separate image. This separate image is loaded
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Table 3 Results obtained using images with the original resolution

Dataset = 599 Dataset = 100

1 degree rotation 5 degree rotation 1 degree rotation 5 degree rotation

Point Within 2
stddev (%)

Mean Pixel Dev Within 2
stddev (%)

Mean Pixel Dev Within 2
stddev (%)

Mean Pixel Dev Within 2
stddev (%)

Mean Pixel Dev

b 99.3 3.13 ± 2.24 99.3 3.21 ± 2.24 98.8 3.39 ± 2.36 98.9 3.38 ± 2.39

c 86.0 4.24 ± 3.84 86.0 4.35 ± 4.32 83.5 4.57 ± 4.22 82.8 4.74 ± 4.64

d 91.5 2.59 ± 2.02 90.3 2.61 ± 2.04 87.8 2.69 ± 2.36 87.7 2.69 ± 2.41

e 92.7 2.49 ± 1.19 91.5 2.52 ± 1.23 90.1 2.70 ± 2.87 89.7 2.66 ± 2.28

f 83.7 2.56 ± 1.12 82.8 2.61 ± 2.34 78.9 2.74 ± 2.40 78.9 2.78 ± 2.50

g 95.5 2.54 ± 1.72 95.8 2.53 ± 1.67 93.0 2.65 ± 2.08 92.4 2.71 ± 2.49

i 85.0 2.72 ± 1.60 83.8 2.77 ± 1.90 79.9 2.98 ± 2.17 79.4 2.95 ± 2.19

j 90.5 2.81 ± 4.25 90.7 2.86 ± 4.24 87.7 2.97 ± 4.45 87.2 3.01 ± 4.40

l 74.0 5.45 ± 12.3 73.5 6.40 ± 15.3 65.4 11.0 ± 22.5 64.6 12.1 ± 24.6

m 94.5 5.25 ± 5.48 93.3 5.66 ± 6.62 91.0 6.37 ± 7.56 89.4 6.53 ± 7.58

The results of using different a dataset of size 599 and 100 are shown as well. As shown in the table, using a larger dataset yields a more accurate result. Also note that key
points a, h, k are excluded as these key points are annotated by the users and are thus not being predicted

instead of the whole fly wing image. As the separate image
is significantly smaller in size than the original fly wing
image, loading it is much faster and thus reduces the time
taken for key point detection. Although this method has
worked well for our dataset, it is not an efficient solution
where the size of the dataset can be very large.
The second disadvantage lies with our active contour

algorithm. The veins that are currently being measured by
active contour tend to lie on the circumference of the wing
or on areas where there are no other veins lying close by.
Our active contour may face problems measuring veins
which have other separate veins in the surrounding area.
In our active contour algorithm, we first initialize the vein
segment as a straight line. In cases where there are no

other veins that lie near the targeted vein, the vein seg-
ment will always evolve to the targeted vein. However, if
there exist other nearby veins that run parallel to the tar-
geted vein, active contour may choose to evolve the vein
segment towards the other veins which are beside the
target vein. Thus an improvement of the current active
contour algorithm is required if it is needed to measure
such veins in the future.

Conclusion
In this paper, we have demonstrated how to locate
Drosophila wing key points and obtain arc lengths of the
wing veins using image processing methods. Our results
show that our method is accurate and we compared our

Table 4 Results obtained using images 4 times smaller than the original resolution

Dataset = 599 Dataset = 100

1 degree rotation 5 degree rotation 1 degree rotation 5 degree rotation

Point Within 2
stddev (%)

Mean Pixel Dev Within 2
stddev (%)

Mean Pixel Dev Within 2
stddev (%)

Mean Pixel Dev Within 2
stddev (%)

Mean Pixel Dev

b 84.8 5.55 ± 3.53 84.2 5.65 ± 3.84 85.1 5.67 ± 3.91 85.0 5.72 ± 3.74

c 52.7 7.92 ± 5.94 53.0 7.97 ± 6.00 48.9 8.47 ± 6.33 49.0 8.45 ± 6.45

d 25.0 7.03 ± 9.16 27.2 6.99 ± 9.62 24.6 7.97 ± 10.9 26.5 7.77 ± 10.6

e 59.7 5.31 ± 6.19 62.3 5.55 ± 7.23 55.7 6.61 ± 8.76 55.4 6.91 ± 9.54

f 8.33 10.4 ± 14.4 8.17 9.84 ± 13.5 9.89 12.2 ± 16.7 10.1 12.6 ± 16.8

g 36.8 8.65 ± 9.95 37.7 9.23 ± 10.7 33.5 11.7 ± 13.5 32.8 12.0 ± 13.4

i 27.7 6.25 ± 6.73 28.7 6.24 ± 6.93 27.9 6.64 ± 7.49 27.3 6.57 ± 7.33

j 36.3 4.63 ± 5.21 34.0 4.96 ± 6.34 34.2 5.35 ± 6.11 33.1 5.76 ± 7.31

l 22.8 26.7 ± 34.2 23.0 26.3 ± 34.2 17.9 30.5 ± 35.0 17.4 30.6 ± 35.4

m 48.8 16.2 ± 13.7 47.0 16.3 ± 13.4 48.1 16.1 ± 13.8 47.6 16.1 ± 13.6

The results of using different a dataset of size 599 and 100 are shown as well. As shown in the table, using a larger dataset yields a more accurate result. Also note that key
points a, h, k are excluded as these key points are annotated by the users and are thus not being predicted
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Table 5 A total of 10 fly wings images were used for prediction
and the performance and accuracy of our method and
WINGMACHINE is shown in this table. WINGMACHINE performs
poorly in some cases when the wing veins or joints are faint and
are not found using edge detection methods

Point Accuracy of
our method
(%)

Mean pixel
deviation

Accuracy of
WINGMACHINE
software method
(%)

Mean pixel
deviation

a Marked
by human

- 0 27.2 ± 10.4

b 100. 2.59 ± 1.36 60.0 14.6 ± 16.4

c 100. 2.86 ± 1.97 30.0 15.8 ± 11.2

d 90.0 2.52 ± 1.08 10.0 26.1 ± 27.3

e 90.0 2.64 ± 1.36 40.0 19.0 ± 20.3

f 90.0 3.00 ± 1.07 0 63.7 ± 49.0

g 90.0 2.97 ± 1.32 20.0 81.8 ± 53.9

h Marked
by human

- 10.0 84.9 ± 100.

i 60.0 2.86 ± 1.84 50.0 75.8 ± 104.

j 90.0 2.43 ± 1.41 50.0 78.1 ± 108.

k Marked
by human

- N.A. -

l 70.0 10.3 ± 17.6 0 105. ± 106.

m 100. 3.27 ± 2.69 60.0 24.9 ± 37.8

Table 6 Active Contour error measurement on 15 fly wings, one
for each specie. Images are selected are random. The error is
calculated as the area bounded by the annotated arc and the
predicted arc. The error is then divided by the length of the
annotated arc

Fly ARC_F_G ARC_G_H ARC_J_L ARC_K_L ARC_L_M

D.bizonata f_1 0.495 0 0.383 1.061 3.077

D. sternopleuralis
m_2

0.831 0.07 0.838 0.624 3.491

D.annulipes_m_13 0 0.111 0.12 1.44 6.658

D.buskii_f_20 0.583 0 1.602 0.658 6.776

D.coracina_m_10 1.124 0.383 1.712 1.761 3.975

D.curviceps f_2 0.263 0.012 0.734 1.645 5.795

D.hydei_m_14 0.446 0 0.562 1.521 6.948

D.immigrans f_18 0.05 0.133 0.546 0 6.229

D.lutescens_m_10 0.539 0.086 0.527 0.328 4.607

rufa_m_20 0.153 0.021 0.985 0.712 4.8

D. suzukii_m_03 0.709 0 0.202 0.14 4.254

Di.acutissima_m_17 0.954 0 0.826 1.741 3.99

H.sexbittata_f_22 0.734 0.237 1.034 2.289 4.048

L.area_m_13 1.828 0.093 0.156 0.846 2.833

S.graminum_f_17 0.637 0.019 1.19 2.476 4.499

Table 7 Efficiency of species identification using the wing image
analysis

Species No of
samples

No of
success
for species

(%) No of
success
for species
and sex

(%)

Dichaetophora
acutissima

3 3 100 - -

Drosophila
annulipes

14 14 100 7 50

Drosophila
bizonata

18 16 89 10 56

Drosophila busckii 32 31 97 19 59

Drosophila
curviceps

10 10 100 5 50

Drosophila hydei 17 15 88 6 35

Drosophila
immigrans

38 33 87 29 76

Drosophila
lutescens

20 20 100 - -

Drosophila rufa 38 35 92 20 53

Drosophila
sternopleuralis

38 36 95 17 45

Hirtodrosophila
sexvittata

38 32 84 22 58

Liodrosophila
aerea

38 38 100 25 66

Scaptodrosophila
coracina

17 16 94 11 65

Scaptomyza
graminum

24 22 92 8 33

Microdrosophila sp. 25 25 100 - -

Total 370 346 94 179 56

Hyphens indicate that the sex-separated databases are not available.
Microdrosophila sp. is not included in the training data and the success is defined as
the case of identified as ’unknown’

method against WINGMACHINE, another existing fly
wing prediction software.
Listed here are some possible areas for future work. The

first is to enhance our algorithm to perform key point
predictions without the help of user defined key points.
We could also improve the arc length finding method
such that it is able to find the vein accurately even with
background artefacts. Another possible area for future
work would be to perform further research and analysis of
the data extracted to build a fly species phenotypic tree.
Lastly, our algorithm could be extended to predict more
than just fifteen species of fly or perhaps be used to predict
the species of other insects.

Availability and requirements
Project name: DrosoWing
Project home page: http://evolgen.biol.se.tmu.ac.jp/fly/
wing/

http://evolgen.biol.se.tmu.ac.jp/fly/wing/
http://evolgen.biol.se.tmu.ac.jp/fly/wing/


Loh et al. BMC Bioinformatics  (2017) 18:319 Page 13 of 14

Operating system:Web browsers that support HTML5
Programming language: JavaScript, Java
Requirements: NA
License: NA

Additional file

Additional file 1: Algorithms used in the paper. This supplementary
document contains a detailed description of the algorithms used in this
paper. The Key Point Detection algorithm is shown on page 1 while the Arc
Length Detection algorithm can be found on page 2. (PDF 141 kb)

Abbreviations
CLBP: Complete local binary pattern; GWAS: Genome wide association studies;
HOG: Histogram of oriented gradient

Acknowledgement
None.

Funding
Grant from Tokyo Metropolitan University. Grant from The Biomedical Research
Council of A*STAR (Agency for Science, Technology and Research) Singapore.

Availability of data andmaterials
The web application, software and images are available for download at this
site: http://evolgen.biol.se.tmu.ac.jp/fly/wing/. A supplementary document
(Algorithms.pdf) accompanies this manuscript.

Authors’ contributions
SYML and YO created the software and implemented the algorithms used in
the paper. SK and KT acquired images of Drosophila wings. KT and HKL
provided suggestions, improvements and guidance throughout the duration
of this project. SYML, YO, KT and HKL contributed to the writing of the
manuscript. All authors have read and approved the final version of this
manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval
Animal experiments: The study was approved by the Research Ethics and
Safety Committee of Tokyo Metropolitan University. All experiments were
performed in accordance with the Committee policies.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Imaging Informatics Division, Bioinformatics Institute, 30 Biopolis Street,
#07-01, Matrix, Singapore 138671 Singapore, Singapore. 2Department of
Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397,
Japan. 3Research Center for Genomics and Bioinformatics, Tokyo Metropolitan
University, Hachioji, Tokyo 192-0397, Japan.

Received: 8 July 2016 Accepted: 9 June 2017

References
1. Metzker ML. Sequencing technologies the next generation. Nat Rev Genet.

2010;11:31–46.
2. The 1000 G enomes Project Consortium. A map of human genome

variation from population-scale sequencing. Nature. 2010;467:1061–73.
3. Clark A, et al. Evolution of genes and genomes on the Drosophila

phylogeny. Nature. 2007;450:203–18.

4. Markow TA, O’Grady PM. Drosophila: A Guide to Species Identification and
Use. London: Academic Press; 2005.

5. Silans LMN, Passerat De, et al. Wing morphometry of Phlebotomus
perniciosus (Diptera: Psychodidae): calibration of methods with a
laboratory population. Ann Trop Med Parasitol. 1996;90(5):543–50.

6. Hall MJR, MacLeod N, Wardhana AH. Use of wing morphometrics to
identify populations of the Old World screwworm fly, Chrysomya bezziana
(Diptera: Calliphoridae): A preliminary study of the utility of museum
specimens. Acta Tropica. 2014;138:S49–55.

7. Francoy TM, et al. Identification of Africanized honey bees through wing
morphometrics: two fast and efficient procedures. Apidologie. 2008;39(5):
488–94.

8. MORPHOMETRIC, COMPARATIVE. Preliminary study of wing morphometry
in relation to tsetse population genetics. Res Action. 2005;101:133.

9. Rohlf FJ, Archie JW. A comparison of Fourier methods for the description of
wing shape in mosquitoes (Diptera: Culicidae). Syst Biol. 1984;33(3):302–17.

10. Van Cann J, et al. Wing morphometrics as a possible tool for the diagnosis
of the Ceratitis fasciventris, C. anonae, C. rosa complex (Diptera,
Tephritidae). ZooKeys. 2015;540:489.

11. Klingenberg CP, Leandro RM. Distances anddirections in multidimensional
shape spaces: implications for morphometric applications. Syst Biol.
2005;54(4):678–88.

12. Dickinson MH, Hannaford S, Palka J. The evolution of insect wings and
their sensory apparatus. Brain Behav Evol. 1997;50(1):13–24.

13. Garcia-Bellido A, De Celis JF. Developmental genetics of the venation
pattern of Drosophila. Annu Rev Genet. 1992;26(1):277–304.

14. Klingenberg CP, Zaklan SD. Morphological integration between
developmental compartments in the Drosophila wing. Evolution.
2000;54(4):1273–85.

15. Cowley DE, William RA, Rutledge JJ. Quantitative genetics of Drosophila
melanogaster. I. Sexual dimorphism in genetic parameters for wing traits.
Genetics. 1986;114(2):549–66.

16. Garcia-Bellido A. Genetic control of wing disc development in, Drosophila.
Cell patterning. Vol. 29. Amsterdam: Elsevier; 1975, pp. 161–82.

17. Diaz-Benjumea FJ, Cohen SM. Interaction between dorsal and ventral
cells in the imaginal disc directs wing development in Drosophila. Cell.
1993;75(4):741–52.

18. Garcia-Bellido A, De Celis JF. Developmental genetics of the venation
pattern of Drosophila. Annu Rev Genet. 1992;26(1):277–304.

19. Stark J, et al. The evolution and development of dipteran wing veins: a
systematic approach. Annu Rev Entomology. 1999;44(1):97–129.

20. Klingenberg CP, Zaklan SD. Morphological integration between
developmental compartments in the Drosophila wing. Evolution.
2000;54(4):1273–85.

21. Dedej S, Nazzi F. Two distances of forewing venation as estimates of
wing size. J Apic Res. 1994;33(1):59–61.

22. Houle D, et al. Automated measurement of Drosophila wings. BMC Evol
Biol. 2003;3(1):1.

23. Klingenberg CP. MorphoJ: an integrated software package for geometric
morphometrics. Mol Ecol Resour. 2011;11(2):353–7.

24. Zhou Y-H, Long-Bin L, James Rohlf F. Automatic description of the
venation of mosquito wings from digitized images. Syst Biol. 1985;34(3):
346–58.

25. Tofilski A. DrawWing, a program for numerical description of insect wings.
J Insect Sci. 2004;4(1):17.

26. Schroder S, et al. The new key to bees: automated identification by image
analysis of wings, Pollinating bees-the Conservation Link Between
Agriculture and Nature. Brasilia: Ministry of Environment; 2002.

27. Weeks PJD, et al. Automating insect identification: exploring the
limitations of a prototype system. J Appl Entomology. 1999;123(1):1–8.

28. Crnojevic V, et al. Image processing method for automatic discrimination
of hoverfly species. Math Probl Eng. 2014;2014:Article ID 986271.

29. Gibert P, et al. Comparative analysis of morphological traits among,
Drosophila melanogaster and D. simulans: genetic variability, clines and
phenotypic plasticity. Drosophila melanogaster, Drosophila simulans: So
Similar, So Different. Netherlands: Springer; 2004, pp. 165–79.

30. Sturtevant AH. The classification of the genus Drosophila, with
descriptions of nine new species, Vol. 4213. Austin: University of Texas
Publication; 1942, pp. 5–51.

31. Wheeler MR, Takada H. Diptera: Drosophilidae. Insects Micronesia.
1964;14:164–242.

http://dx.doi.org/10.1186/s12859-017-1720-y
http://evolgen.biol.se.tmu.ac.jp/fly/wing/


Loh et al. BMC Bioinformatics  (2017) 18:319 Page 14 of 14

32. Mahalanobis PC. On the generalized distance in statistics. Proc Nat Inst Sci
India. 1936;2(1):49–55.

33. De Maesschalck R, et al. The Mahalanobis distance. Chemometr Intell Lab
Syst. 2000;50:1–18.

34. R Core Team. R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing; 2015. https://www.R-
project.org/.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

https://www.R-project.org/
https://www.R-project.org/

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Implementation
	Data set
	Key point detection
	Template matching

	Arc length calculations
	Initialization of active contours
	Generation of gradients for active contour optimization
	Active contour formalism

	Species identification from fly wing images
	Evaluation metric of key point detection

	Results
	Key point detection results
	Arc length results
	Species identification results

	Discussion
	Conclusion
	Availability and requirements
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgement
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval
	Publisher's Note
	Author details
	References

