| Validation sets | |||||
---|---|---|---|---|---|---|
Methods | C (8 genes) | B (28 genes) | M (51 genes) | |||
 | AUC | ( | AUC | ( | AUC | ( |
Statistical CGP (scoring functions) | ||||||
   sens | 0.913 | (2.5/10.6) | 0.891 | (2.3/6.0) | 0.818 | (1.9/4.2) |
   spec | 0.321 | (0.4/1.4) | 0.310 | (0.4/1.2) | 0.418 | (0.8/2.0) |
   ppv | 0.405 | (0.8/5.2) | 0.423 | (1.2/18.4) | 0.553 | (1.7/28.6) |
   npv | 0.974 | (3.9/42.0) | 0.956 | (3.5/20.9) | 0.891 | (2.8/13.2) |
   amss | 0.989 | (4.8/110.) | 0.966 | (4.1/53.7) | 0.911 | (3.5/44.7) |
   hmss | 0.989 | (4.9/113.) | 0.969 | (4.2/55.3) | 0.909 | (3.5/45.6) |
   OR | 0.403 | (0.8/5.2) | 0.424 | (1.2/18.4) | 0.552 | (1.7/28.6) |
   chisq | 0.984 | (4.7/73.8) | 0.963 | (3.9/35.9) | 0.902 | (3.2/27.0) |
   bchisq | 0.984 | (4.7/73.8) | 0.963 | (3.9/35.9) | 0.903 | (3.2/27.0) |
   F | 0.965 | (4.0/45.8) | 0.921 | (3.2/22.5) | 0.838 | (2.5/15.1) |
Inductive CGP (machine learning algorithms) | ||||||
   NB | 0.930 |  | 0.889 |  | 0.820 |  |
   LR | 0.882 |  | 0.935 |  | 0.828 |  |
   ADTree | 0.976 |  | 0.981 |  | 0.925 |  |
   IBk | 0.998 |  | 0.929 |  | 0.946 |  |
   J48 | 0.935 |  | 0.828 |  | 0.752 |  |
   SMO/Poly | 0.997 |  | 0.876 |  | 0.933 |  |
   SMO/RBF | 0.963 |  | 0.932 |  | 0.964 |  |