Skip to main content
Figure 3 | BMC Bioinformatics

Figure 3

From: Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs

Figure 3

Illustration of the cluster decomposition of a bipartite toy example. (a) We demonstrate the graph decomposition with our algorithm on a small bipartite graph with overlapping cluster structure. The original graph consists of partitions V1 = {1 ... 4} (red filled nodes) and V2 = {5 ... 10} (blue filled nodes) connected by edges A(12) colored in black. We decomposed it into two clusters for partition V1 and three clusters for partition V2. The resulting fuzzy clustering is illustrated as a weighted graph connecting original nodes to cluster nodes (framed red and blue). The cluster assignments C(1) and C(2) are indicated by dashed lines, where the coloring corresponds to the degree of cluster membership. The interconnections of the clusters form the backbone graph, encoded in the adjacency matrix B(12) which we denote by continous lines where color indicates the edge weight.

Another way of illustrating the graph decomposition is shown in (b). It is clearer especially for larger graphs. First, we plot hierarchical clusterings of the nodes' degrees of membership in partitions V1 and V2 (encoded by C(1) and C(2)). This facilitates the identification of overlapping clusters (e.g. nodes 1 and 10 are assigned to more than one cluster) or hard cluster assignments (e.g. node 5). The backbone graph B(12) is shown bottom right. This backbone graph is densely connected in our example.

Back to article page