Skip to main content
Figure 1 | BMC Bioinformatics

Figure 1

From: Bacterial syntenies: an exact approach with gene quorum

Figure 1

Example of Network Alignment Multigraph. A simple example of layered data graph (top) and network alignment multigraph NAM (bottom). The layered data graph represents three genomes (blue, red and green). Vertices represent genes and coloured edges represent strict gene adjacency along each genome (no gaps edges in this example). The inter-genomic gene-to-gene correspondence relation S is represented by black dotted edges (notice that S is neither one-to-one nor transitive). If we choose to associate genes that form cliques of S (other choices are possible, see text), then the corresponding network alignment multigraph (NAM) is displayed on the bottom. The vertices of the NAM are 3 - uples (cliques) of genes, also called spines. The coloured edges between spines correspond to the original edges in the layered data graph. For instance, (a1, a2, a3) is red-connected to (b1, b2, b3) because a2 is connected to b2 in the red layer of the layered data graph. The same is true for (b1, b2, b3) and (c1, c2, c3) since b2 and c2 are connected in the red layer. Conversely, (a1, a2, a3) is not blue-connected to (b1, b2, b3) since there is one gap gene (d1) on the blue genome separating a1 from b1 (see text on how to introduce gaps). Syntons are the sets of spines that are connected for all colours. They form a partition of the PNAM vertices. In this case there are 2 syntons: {(a1, a2, a3)} and {(b1, a2, a3), (b1, b2, b3), (c1, c2, c3)}.

Back to article page