Skip to main content

Table 4 Coverage values of modules on positive, negative and random datasets

From: An integrative computational approach to effectively guide experimental identification of regulatory elements in promoters

Regulatory module Positive promoter set Negative promoter set Random genomic set
C + p-valuea C Rankb C R Rankb
1 0.92 3.8E-23 0.0181 1 0.0155 1
2 0.92 8.8E-14 0.0776 8 0.0813 7
3 1 2.2E-20 0.0350 3 0.0308 4
4c 1 6.5E-19 0.0362 5 0.0399 6
5 1 4.1E-19 0.0371 6 0.0385 5
6 1 3.4E-23 0.0360 4 0.0187 2
7 1 3.5E-14 0.1101 10 0.0922 9
8 1 1.9E-09 0.2018 11 0.2137 11
9 1 1.6E-13 0.1009 9 0.1035 10
10 0.77 5.9E-19 0.0200 2 0.0223 3
11 1 6.8E-15 0.0642 7 0.0813 8
Add1 1 5.5E-31 0.0091   0.0047  
Add2 1 3.6E-47 0.0000   0.000267d  
  1. ap-values are calculated as probability of 13*C+ successful hits out of 13 trials, with probability of success in one trial CR.
  2. bRank is according to the ratio C+/C and C+/CR respectively.
  3. cFunctional module 4 does not rank high according to its p- value. One can easily find motifs combinations exhibiting superior statistics (for example, Add1 (Meme1 + Meme4 + TGIF) or Add2 (Meme1 + Meme2 + Meme5).
  4. dTo calculate this value, another random sequence set was generated by repeating 10 times the procedure of random splitting the Salmonella genome. In total the module can be found on 21 of such sequences.