unfolded $\left\{\begin{array}{c}1-\mathrm{\theta \beta }-D\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{1em}{0ex}}f=0\\ D\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2em}{0ex}}\phantom{\rule{2em}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{0.3em}{0ex}}f=1\\ \frac{\theta }{100f}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{0.3em}{0ex}}0 $\left\{\begin{array}{c}1-\theta -D\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{1em}{0ex}}f=0\\ D\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2em}{0ex}}\phantom{\rule{2em}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{0.3em}{0ex}}f=1\\ \frac{\theta }{99}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{0.3em}{0ex}}0
folded $\left\{\begin{array}{c}\frac{\left(1-\mathrm{\theta \beta }\right)}{2}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{1em}{0ex}}f=0\\ \frac{\left(1-\mathrm{\theta \beta }\right)}{2}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{1em}{0ex}}f=1\\ \frac{\theta }{200f\left(1-f\right)}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{1em}{0ex}}0 $\left\{\begin{array}{c}\frac{1-\theta }{2}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{1em}{0ex}}f=0\\ \frac{1-\theta }{2}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{1em}{0ex}}f=1\\ \frac{\theta }{99}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{2.36043pt}{0ex}}\phantom{\rule{1em}{0ex}}0
1. We discretize the interval [0,1] with N d = 100 breakpoints. The numbers 99, 100 and 200 appearing in the formulæ in the table are normalization factors (respectively N d − 1, N d and 2N d ). β is a normalization constant for the divergent function 1/f,$\beta =\sum _{i=1}^{{N}_{d}}\frac{1}{i}=ln\left({N}_{d}\right)+\gamma$ where γ = 0.57721… is the Euler-Mascheroni constant.