Skip to main content

Table 4 Root mean squared error for Q

From: A fast least-squares algorithm for population inference

K N α AD LS FRAPPE Significance LSα
2 100 0.10 0.48 0.72 0.52 AD = FR < LS 0.64
2 100 0.50 1.12 1.13 1.03 FR = AD = LS 1.18
2 100 1.00 2.22 2.22 2.29 AD = LS = FR 2.22
2 100 2.00 4.13 4.11 4.50 LS = AD = FR 3.84
2 1000 0.10 0.57 0.97 0.63 AD < FR < LS 0.74
2 1000 0.50 0.69 0.74 0.71 AD < FR < LS 0.74
2 1000 1.00 0.86 0.91 1.00 AD < LS < FR 0.91
2 1000 2.00 1.58 1.65 2.33 AD = LS < FR 0.93
2 10000 0.10 0.59 1.03 0.61 AD < FR < LS 0.76
2 10000 0.50 0.70 0.81 0.72 AD < FR < LS 0.73
2 10000 1.00 0.74 0.77 0.79 AD < LS < FR 0.77
2 10000 2.00 0.89 0.97 1.32 AD < LS < FR 0.96
3 100 0.10 0.62 0.74 0.63 AD = FR < LS 0.66
3 100 0.50 2.01 1.81 2.00 LS < FR = AD 1.91
3 100 1.00 3.49 3.23 3.60 LS < AD = FR 3.23
3 100 2.00 5.77 5.39 5.89 LS < AD = FR 5.00
3 1000 0.10 0.68 1.15 0.73 AD < FR < LS 0.76
3 1000 0.50 0.85 0.88 0.89 AD < LS = FR 0.93
3 1000 1.00 1.18 1.17 1.35 LS = AD < FR 1.17
3 1000 2.00 1.94 1.92 2.49 LS = AD < FR 1.20
3 10000 0.10 0.74 1.26 0.76 AD < FR < LS 0.79
3 10000 0.50 0.87 0.97 0.87 AD = FR < LS 0.87
3 10000 1.00 0.89 0.92 0.95 AD < LS < FR 0.92
3 10000 2.00 1.07 1.09 1.49 AD < LS < FR 1.09
4 100 0.10 0.79 0.76 0.80 LS = AD = FR 0.77
4 100 0.50 2.81 2.40 2.85 LS < AD = FR 2.56
4 100 1.00 4.43 4.01 4.55 LS < AD = FR 4.01
4 100 2.00 6.63 6.13 6.81 LS < AD = FR 5.65
4 1000 0.10 0.73 1.17 0.74 AD = FR < LS 0.72
4 1000 0.50 0.95 0.95 1.00 LS = AD < FR 1.07
4 1000 1.00 1.34 1.32 1.47 LS = AD < FR 1.32
4 1000 2.00 2.09 2.06 2.50 LS = AD < FR 1.32
4 10000 0.10 0.84 1.33 0.84 AD = FR < LS 0.74
4 10000 0.50 0.96 1.03 0.96 AD = FR < LS 0.95
4 10000 1.00 0.97 0.99 1.03 AD < LS < FR 0.99
4 10000 2.00 1.14 1.15 1.51 AD = LS < FR 1.15
  1. ‘AD’ = Admixture with ε = MN×10-4, ‘LS1’ = Least-squares with ε = MN×10-4 and α = 1, ‘FR’ = FRAPPE with ε = 1. Bold values indicate significantly less error than those without bold. ‘<’ indicates significantly less at 4.6e-4 level, and ‘=’ indicates insignificant difference. ‘LSα’ = Least-squares with correct α provided only for reference.