Skip to main content

Table 1 Summary of simulation results

From: Selecting informative subsets of sparse supermatrices increases the chance to find correct trees

Simulation

Saturation

tic

taxa

Genes

d QS -value

d QS

f

      

(min/max)

( correct )

Gaussian Set1

       

Unreduced

0.29

0.15

50

50

0.003

(0.99/1.0)

0.01

mare with B

0.69

0.62

9

6

0.0

(0.73/1.0)

0.67

mare with B

0.74

0.74

7

9

0.0

(0.6/1.0)

0.47

Gaussian Set2

       

Unreduced

0.29

0.1

50

50

0.003

(0.98/0.99)

0

mare with B

0.67

0.61

10

5

0

(0.6/1.0)

0.51

mare with B

0.73

0.73

7

9

0

(0.2/1)

0.42

Power-law non-random Set1

       

Unreduced

0.13

0.06

50

50

0.17

(0.48/0.99)

0

mare with B

0.46

0.38

25

12

0.02

(0.81/1.0)

0.15

mare with B

0.51

0.51

15

24

0.02

(0.48/1.0)

0.16

Power-law non-random Set2

       

Unreduced

0.13

0.05

50

50

0.15

(0.43/0.99)

0

mare with B

0.45

0.38

24.5

10

0.06

(0.64/1.0)

0.09

mare with B

0.53

0.53

23

16

0.01

(0.47/1.0)

0.12

Gene threshold Set1

       

With B

0.72

0.50

34

2

0.05

(0.00/0.42)

0.06

Gene threshold Set2

       

With B

0.64

0.28

44

3

0.03

(0.00/0.59)

0.03

Gene/taxa threshold Set1

       

With B

0.59

0.37

21

4

0.05

(0.00/0.46)

0.12

Gene/taxa threshold Set2

       

With B

0.66

0.30

21.5

4

0.01

(0.00/0.45)

0.25

  1. All values are medians of 100 simulations.
  2. total information content (tic) of un-weighted matrices is allways higher due to the fact that all genes are coded as present/absent (1/0).
  3. f(correct) refers to the frequency of correct trees per 100 simulations.