Samplings per Experiment
|
Algorithms
|
ε
M
|
ε
S
|
ε
F
|
---|
| |
Mean
|
STD
|
Mean
|
STD
|
Mean
|
STD
|
3
|
LS
|
94.36
|
36.54
|
0.95
|
0.20
|
368.06
|
123.08
|
|
TLS
|
94.36
|
36.54
|
0.95
|
0.20
|
368.06
|
123.08
|
|
CTLS
|
94.36
|
36.54
|
0.95
|
0.20
|
368.06
|
123.08
|
6
|
LS
|
16.35
|
5.11
|
0.59
|
0.14
|
71.10
|
17.84
|
|
TLS
|
196.04
|
2239.78
|
0.74
|
0.20
|
1778.75
|
24252.19
|
|
CTLS
|
14.96
|
5.63
|
0.63
|
0.16
|
64.29
|
21.34
|
9
|
LS
|
7.87
|
2.42
|
0.46
|
0.09
|
35.73
|
9.03
|
|
TLS
|
11.96
|
9.68
|
0.54
|
0.13
|
67.47
|
118.27
|
|
CTLS
|
6.61
|
2.74
|
0.47
|
0.10
|
31.57
|
12.05
|
12
|
LS
|
5.19
|
1.64
|
0.40
|
0.06
|
24.98
|
6.47
|
|
TLS
|
6.20
|
2.34
|
0.45
|
0.09
|
32.42
|
15.33
|
|
CTLS
|
3.79
|
1.48
|
0.40
|
0.06
|
19.59
|
6.74
|
21
|
LS
|
3.74
|
1.06
|
0.38
|
0.02
|
18.12
|
4.39
|
|
TLS
|
3.71
|
1.36
|
0.40
|
0.05
|
20.40
|
8.51
|
|
CTLS
|
2.20
|
0.68
|
0.38
|
0.02
|
11.29
|
2.93
|
30
|
LS
|
3.70
|
0.87
|
0.41
|
0.06
|
17.21
|
3.62
|
|
TLS
|
3.45
|
1.20
|
0.44
|
0.07
|
18.75
|
7.30
|
|
CTLS
|
2.31
|
0.56
|
0.49
|
0.03
|
10.10
|
1.96
|
60
|
LS
|
3.75
|
0.66
|
0.50
|
0.01
|
17.05
|
2.59
|
|
TLS
|
3.59
|
1.05
|
0.52
|
0.05
|
16.25
|
4.74
|
|
CTLS
|
2.51
|
0.52
|
0.50
|
0.01
|
10.76
|
1.45
|
- The table shows the error comparisons in terms of the mean and the standard deviation (STD) for different numbers of data points for each method based on 1000 Monte-Carlo Simulations. ε
M
is the sum of two terms, i.e (l/N1) Σ |α
ij
| and (l/N2) Σ |β
ij
| where α
ij
and β
ij
are the relative magnitude errors in the non-zero and zero elements of the true Jacobian, respectively, and N1 and N2 are the number of non-zero and zero elements in the true Jacobian, respectively. ε
S
is given by (1/n2) Σ |sign (
ij
) - sign (f
ij
)|, i.e. the average sign differences, where
ij
and f
ij
are the (i-th row, j-th column) elements of the estimated and the true Jacobian, respectively. ε
F
is the Frobenius norm of the difference between the estimated and the true Jacobian, i.e. || - F||
F
.