Skip to main content

Table 4 Weights calculated using neighborhood function for square lattice

From: CellExcite: an efficient simulation environment for excitable cells

# 0 1 2 3 4 5 6 7 8 9
d 0 r 2 r MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbiqaaaobdaGcaaqaaKqzWfGaeGOmaidaleqaaOGaemOCaihaaa@3449@ 2r 5 r MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbiqaaaobdaGcaaqaaKqzWfGaeGynaudaleqaaOGaemOCaihaaa@344F@ 2 2 r MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbiqaaaobjugCbiabikdaYOWaaOaaaeaajugCbiabikdaYaWcbeaakiabdkhaYbaa@3624@ 3r 10 r MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbiqaaaobdaGcaaqaaKqzWfGaeGymaeJaeGimaadaleqaaOGaemOCaihaaa@3535@ 13 r MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbiqaaaobdaGcaaqaaKqzWfGaeGymaeJaeG4mamdaleqaaOGaemOCaihaaa@353B@ 4r
ν r ( d ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbaWaaCbiaeaajugCbiabe27aUbWcbeqaaKqzWfGaeSyOLCfaaOWaaSbaaSqaaiabdkhaYbqabaGcdaqadaqaaKqzWfGaemizaqgakiaawIcacaGLPaaaaaa@3ADC@ −4 1 N/A N/A N/A N/A N/A N/A N/A N/A
ν 2 r ( d ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbaWaaCbiaeaajugCbiabe27aUbWcbeqaaKqzWfGaeSyOLCfaaOWaaSbaaSqaaiabikdaYiabdkhaYbqabaGcdaqadaqaaKqzWfGaemizaqgakiaawIcacaGLPaaaaaa@3BCE@ −32.8 4:48 2.72 1 N/A N/A N/A N/A N/A N/A
ν 3 r ( d ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbaWaaCbiaeaajugCbiabe27aUbWcbeqaaKqzWfGaeSyOLCfaaOWaaSbaaSqaaiabiodaZiabdkhaYbqabaGcdaqadaqaaKqzWfGaemizaqgakiaawIcacaGLPaaaaaa@3BD0@ −159.88 14:39 10.31 5.29 3.79 1.40 1 N/A N/A N/A
ν 4 r ( d ) MathType@MTEF@5@5@+=feaagaart1ev2aqatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaaeaabaWaaaGcbaWaaCbiaeaajugCbiabe27aUbWcbeqaaKqzWfGaeSyOLCfaaOWaaSbaaSqaaiabisda0iabdkhaYbqabaGcdaqadaqaaKqzWfGaemizaqgakiaawIcacaGLPaaaaaa@3BD2@ −636.52 42:52 33.12 20.08 15.64 12.18 5.75 4.48 2.12 1