Skip to main content

Table 2 Performance and feature recovery of a classical approach versus Genes method of MEvoLib for four sets of hmtDNA sequences

From: MEvoLib v1.0: the first molecular evolution library for Python

Num. Seqs. Configurations Time (s) Mem. (MB) CDS feat. rRNA feat. tRNA feat.
100 Gene 1.56 32.37 26 (+13) 3 (+1) 21 (-1)
100 Product 1.41 32.33 18 (+5) 2 (0) 20 (-2)
100 All 1.42 32.46 15 (+2) 2 (0) 20 (-2)
1000 Gene 13.15 91.42 26 (+13) 5 (+3) 43 (+21)
1000 Product 12.71 92.06 22 (+9) 4 (+2) 20 (-2)
1000 All 13.74 92.63 15 (+2) 2 (0) 20 (-2)
10000 Gene 127.95 687.63 31 (+18) 5 (+3) 45 (+23)
10000 Product 171.80 692.59 34 (+21) 4 (+2) 20 (-2)
10000 All 136.91 700.73 13 (0) 2 (0) 20 (-2)
31752 Gene 412.22 2126.83 33 (+20) 5 (+3) 46 (+24)
31752 Product 467.78 2144.32 51 (+38) 6 (+4) 20 (-2)
31752 All 509.78 2177.28 13 (0) 2 (0) 20 (-2)
  1. The recovered features are CDS, rRNA and tRNA. The classical approach uses the qualifiers gene or product separately, whilst the Genes method exploits all of them. The second column of each feature shows the result’s divergence from the expected value
\