Dataset
|
Method
|
F
|
G-Mean
|
AUC
|
OOB error
|
---|
1. Circle
|
Original data
|
0.9081
|
0.9339
|
0.9389
|
0.0296
|
Random oversampling
|
0.9249
|
0.9553
|
0.9567
|
0.0163
|
SMOTE
|
0.9086
|
0.9535
|
0.9579
|
0.0384
|
Borderline-SMOTE1
|
0.9110
|
0.9534
|
0.9619
|
0.0438
|
Safe-level-SMOTE
|
0.9146
|
0.9595
|
0.9559
|
0.0431
|
C-SMOTE
|
0.9302
|
0.9713
|
0.9813
|
0.0702
|
k-means-SMOTE
|
0.9262
|
0.9589
|
0.9602
|
0.0323
|
CURE-SMOTE
|
0.9431
|
0.9808
|
0.9855
|
0.0323
|
2. Blood-transfusion
|
Original data
|
0.3509
|
0.5094
|
0.5083
|
0.2548
|
Random oversampling
|
0.3903
|
0.5490
|
0.5449
|
0.2250
|
SMOTE
|
0.4118
|
0.5798
|
0.5537
|
0.2152
|
Borderline-SMOTE1
|
0.4185
|
0.5832
|
0.5424
|
0.1630
|
Safe-level-SMOTE
|
0.4494
|
0.6174
|
0.5549
|
0.2479
|
C-SMOTE
|
0.4006
|
0.5549
|
0.5531
|
0.2418
|
k-means-SMOTE
|
0.4157
|
0.5941
|
0.5433
|
0.1872
|
CURE-SMOTE
|
0.5393
|
0.6719
|
0.6533
|
0.2531
|
3. Haberman’s survival
|
Original data
|
0.3279
|
0.5018
|
0.6063
|
0.3149
|
Random oversampling
|
0.3504
|
0.5178
|
0.5959
|
0.1534
|
SMOTE
|
0.4350
|
0.5971
|
0.6259
|
0.1728
|
Borderline-SMOTE1
|
0.4523
|
0.6119
|
0.6298
|
0.2589
|
Safe-level-SMOTE
|
0.4762
|
0.6008
|
0.6030
|
0.3077
|
C-SMOTE
|
0.4528
|
0.5487
|
0.5656
|
0.2780
|
k-means-SMOTE
|
0.4685
|
0.6249
|
0.6328
|
0.1828
|
CURE-SMOTE
|
0.5000
|
0.6282
|
0.6940
|
0.2717
|
4. Breast–cancer-wisconsin
|
Original data
|
0.9486
|
0.9619
|
0.9491
|
0.0446
|
Random oversampling
|
0.9451
|
0.9623
|
0.9620
|
0.0301
|
SMOTE
|
0.9502
|
0.9666
|
0.9627
|
0.0341
|
Borderline-SMOTE1
|
0.9506
|
0.9661
|
0.9635
|
0.0379
|
Safe-level-SMOTE
|
0.9509
|
0.9671
|
0.9638
|
0.0404
|
C-SMOTE
|
0.9491
|
0.9636
|
0.9561
|
0.0380
|
k-means-SMOTE
|
0.9449
|
0.9616
|
0.9562
|
0.0373
|
CURE-SMOTE
|
0.9511
|
0.9664
|
0.9621
|
0.0427
|
5. SPECT.train
|
Original data
|
0.6348
|
0.6764
|
0.6579
|
0.3634
|
Random oversampling
|
0.6539
|
0.6924
|
0.6753
|
0.3468
|
SMOTE
|
0.6618
|
0.6990
|
0.6825
|
0.3688
|
Borderline-SMOTE1
|
0.6710
|
0.6926
|
0.6746
|
0.3489
|
Safe-level-SMOTE
|
0.6770
|
0.7074
|
0.6913
|
0.3160
|
C-SMOTE
|
0.6564
|
0.6936
|
0.6764
|
0.3448
|
k-means-SMOTE
|
0.6796
|
0.6941
|
0.6846
|
0.3599
|
CURE-SMOTE
|
0.6855
|
0.7155
|
0.6951
|
0.1108
|
- From the classification results obtained by the different sampling algorithms discussed in Table 4, the best F-value, G-mean and AUC were achieved on the Circle dataset by CURE-SMOTE, and its OOB error is second-best, behind only random sampling. The overall classification result on the blood-transfusion dataset is poorer, but the CURE-SMOTE algorithm achieves the best F-value, G-mean and AUC, while its OOB error is inferior to the original data. On the Haberman's survival dataset, the F-value, G-mean and AUC achieved by CURE-SMOTE are superior to the other sampling algorithms. For the breast-cancer-wisconsin dataset, CURE-SMOTE achieves the best F-value, but its G-mean and AUC are slightly lower, although they are little different from the other sampling algorithms. On the SPECT dataset, CURE-SMOTE surpasses the other sampling algorithms with regard to F-value, G-mean, AUC and OOB error
- The best value of every performance evaluation criteria obtained by the algorithms are marked in boldface